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Abstract. Recent years have seen the emergence of droplet-based microfluidic systems for safety-critical biomedical

applications. In order to ensure reliability, microsystems incorporating microfluidic components must be tested adequately. In

this paper, we investigate test planning and test resource optimization for droplet-based microfluidic arrays. We first formulate

the test planning problem and prove that it is NP-hard. We then describe an optimization method based on integer linear

programming (ILP) that yields optimal solutions. Due to the NP-hard nature of the problem, we develop heuristic approaches

for optimization. Experimental results indicate that for large array sizes, the heuristic methods yield solutions that are close

to provable lower bounds. These heuristics ensure scalability and low computation cost.

Keywords: droplet-based microfluidic systems, concurrent testing, microfluidic arrays, test planning, test resource opti-
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1. Introduction

Next-generation system-on-chip designs are expected to be

composite microsystems with microelectromechanical and

microfluidic components [15, 23]. These mixed-signal and

mixed-technology systems monolithically integrate micro-

electronics with microsensors and microactuators, thereby

leading to chips that can not only compute and commu-

nicate, but also sense and actuate. This high level of inte-

gration is enabling a new class of microsystems targeted

at health care, environmental monitoring, biomedical anal-

ysis, harmful agent detection for countering bio-terrorism,

and precision fluid dispensing [13].

In recent years, novel droplet-based microfluidic systems

have been developed to analyze nanoliter volumes of agents

[18]. These systems reduce the rate of reagent consump-

tion, thereby enabling continuous sampling and analysis for

on-line, real-time biological/chemical analysis. By scaling

down the concentration of the samples, simple sensing tech-
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niques can be utilized to replace conventional, costly, and

time-consuming practices involving batch analysis, sample

pre-treatment and frequent calibration. Droplet-based mi-

crofluidic systems therefore offer a promising platform for

massively parallel DNA analysis, and real-time molecular

detection and recognition.

As microfluidic systems become widespread in safety-

critical biomedical applications, system reliability emerges

as an essential performance parameter. In order to ensure

reliability, composite microsystems incorporating microflu-

idic components must be tested adequately. Therefore, there

is a pressing need for efficient test methodologies for these

microsystems. The ITRS 2003 document recognizes the

need for new test methods for disruptive device technologies

that underly microelectromechanical systems and sensors,

and highlights it as one of the five difficult test challenges

beyond 2009 [27].

Recently, a fault classification and a unified test method-

ology for droplet-based microfluidic systems has been de-

veloped [22]. Faults are classified as either catastrophic or

parametric, and they are detected by electrostatically con-

trolling and tracking droplet motion. This cost-effective test

methodology facilitates concurrent testing, which allows
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fault testing and biomedical assays to run simultaneously on

a microfluidic system. Test planning and test resource opti-

mization are motivated by the need for concurrent testing.

In this paper, we investigate test planning and test

resource optimization problems for droplet-based microflu-

idic arrays. We first formulate the test planning problem

and prove that it is NP-hard. We then show how optimal

solutions can be obtained using integer linear programming

(ILP). Due to the NP-hard nature of the problem, the ILP

model is not applicable to large microfluidic arrays. We

therefore develop heuristics to solve this problem in a

computationally efficient manner. Experiments show that

for large array sizes, the results obtained from the heuristic

method are close to provable lower bounds.

The organization of the remainder of the paper is as fol-

lows. In Section 2, we present an overview of droplet-based

microfluidic systems. Related prior work is discussed in

Section 3. Section 4 describes the problem of test planning

and test resource optimization. This problem is shown to be

NP-hard in Section 5. An optimal solution based on inte-

ger linear programming is proposed in Section 6. Section

7 presents several heuristic algorithms, which are evalu-

ated through simulation experiments in Section 8. Finally,

conclusions are drawn in Section 9.

2. Background: Droplet-Based Microfluidic Systems

The operation of droplet-based microfluidic systems is

based on the principle of electrowetting actuation. By vary-

ing the electrical potential along a linear array of electrodes,

electrowetting can be used to move liquid droplets of nano-

liter volume along this line of electrodes [18]. Droplets can

also be transported, in user-defined patterns under clocked-

voltage control, over a two-dimensional array of electrodes

without the need for pumps and valves.

The basic component of a droplet-based microfluidic sys-

tem is shown in Fig. 1. The droplet, usually containing

biomedical samples, and the filler medium, such as sili-

cone oil, are sandwiched between two parallel glass plates.

The bottom plate contains a patterned array of individually

controllable electrodes, while the top plate is coated with

a ground electrode. The hydrophobic dielectric insulator is

added to the top and bottom plates to decrease the wettabil-

ity of the surface and to add capacitance between the droplet

and the control electrode.

Fig. 1. Basic component of a droplet-based microfluidic

system.

Fig. 2. Droplet transport in a two-dimensional array.

The basic principle underlying droplet transportation is

the electrostatic control of the interfacial tension at the

droplet/insulator interface. A control (actuating) voltage

is applied to an electrode adjacent to the droplet and, at

the same time, the electrode just under the droplet is de-

activated. This causes an accumulation of charge in the

droplet/insulator interface, resulting in an interfacial ten-

sion gradient across the gap between the adjacent electrodes,

which consequently causes the transportation of the droplet.

The velocity of the droplet can be controlled by adjusting

the actuation voltage (0–90V), and droplets can be moved

at speeds of up to 20 cm/s. Based on this principle, mi-

crofluidic droplets can be moved freely to any location of a

two-dimensional array; see Fig. 2. This design, which has

been fabricated on PCBs at Duke University [18], is ideally

suited for a large-scale integrated microfluidic system. Such

a system is expected to be common in the near future for

various biomedical applications, such as DNA sequencing

and bimolecular detection. A droplet can be easily detected

using the capacitive sensing circuit shown in Fig. 3.

Using a two-dimensional microfluidic array, many com-

mon operations for different biomedical assays can be

performed, such as sample introduction (dispense), sam-

ple movement (transport), temporarily sample preservation

(store), and mixing of different samples (mix). Note that

these operations can be performed anywhere on the array,

whereas in continuous-flow systems they must operate in a

specific micromixer or microchamber. The configurations

of the microfluidic array, i.e., the routes that sample droplet

travel and the rendezvous points of droplets, can be obtained

using software running on a PC or an ASIC [20, 21]; they

are then programmed into a microcontroller that controls

the voltages of the electrodes in the array. Test planning for

Fig. 3. Simple capacitive sensing circuit.
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a microfluidic array can also be implemented using a PC or

an ASIC.

3. Related Prior Work

Over the past decade, the focus in testing research has broad-

ened from logic and memory test to include the testing of

analog and mixed-signal circuits. MEMS is a relatively

young field compared to IC design, and MEMS testing

is still in its infancy. Recently, fault modeling and fault

simulation in surface micromachined MEMS have received

attention [4, 11, 14]. Researchers at Carnegie Mellon Uni-

versity are developing a comprehensive testing methodol-

ogy for a class of MEMS known as surface micromachined

sensors.

However, test techniques for MEMS cannot be directly

applied to microfluidic systems, since the techniques and

tools currently in use for MEMS testing do not handle

fluids. Hence they are of limited use for testing microflu-

idic devices. Most recent work in this area has been lim-

ited to the testing of continuous-flow microfluidic systems

[8, 9, 10]. Researchers at the MESA+ Research Institute of

the University of Twente have applied mixed-signal testing

techniques to the problem of testing a microanalysis system.

Also, a design-for-testability (DFT) technique for Flow-

FET-based microfluidic systems has been proposed [9].

Similar to the MOSFET, a Flow-FET has source and drain

electrodes over which a relatively large voltage (∼100 V)

is applied. Due to the principle of electro-osmotic flow, the

electric field moves the charge accumulated between the

fluid and the surface of channel, dragging the bulk liquid

through the channel.

Optimal strategies for moving droplets in a microfluidic

system are proposed in [3]. The A∗ algorithm from artificial

intelligence is used as the basis of a systematic search,

which is performed to generate a sequence of control signals

for moving one or multiple droplets from the start to the

goal positions in the shortest number of steps. This method

is closely related to the optimization problem of motion

planning with multiple moving robots [1, 12]. There are

two different groups of path planning problems for moving

robots. Navigation problem attempts to find a path from a

start position to a goal position through the shortest path,

whereas coverage problem focuses on finding the path of

coverage of an environment by mobile robots.

4. Problem Definition

In the test methodology proposed in [22], test stimuli

droplets are dispensed into the microfluidic system from the

droplet source and transported through the array (travers-

ing the cells) by following the designed testing scheme. As

described in [22], most catastrophic faults in droplet-based

microfluidic systems can lead to a complete cessation of

droplet transportation. Thus, for the faulty case, the test

stimuli droplet is stuck at an intermediate point during mo-

tion. On the other hand, the detection of all test stimuli

droplets at the droplet sinks indicates fault-free operation.

This methodology allows fault testing and biomedical as-

says to run concurrently on a microfluidic system. An ef-

ficient test plan not only ensures that the testing operation

does not conflict with the normal biomedical assay, but it

also guides test stimuli droplets to cover all the cells avail-

able for testing. This test plan can be optimized to minimize

the total testing time cost for a given test hardware over-

head, which refers here to the number of droplet sources

and droplet sinks. Note that some faults such as electrode

shorts affect two adjacent electrodes [19, 22]. To detect such

faults, defect-oriented test procedures are required, which

focus on pairs of cells and the traversal of droplets from

one cell to all its neighbors [19]. For simplicity, we do not

take into account such types of faults in this paper; only

catastrophic faults related to a single cell are targeted.

We can formulate the test planning problem in terms of

graph partitioning and the Hamiltonian path problem from

graph theory [5]. The key idea underlying this optimiza-

tion approach is to model the two-dimensional microfluidic

array as a directed graph, and then partition it into non-

overlapping subgraphs. Each part of the microfluidic array

is represented by a subgraph that is tested concurrently and

independent of the other parts. In this way, the total test

application time is reduced.

First we model the array of microfluidic cells using a

directed graph G = (V, E) where the set of vertices V repre-

sents the set of available microfluidic cells, droplet sources

and droplet sinks, and eij ∈ E is a directed edge from ver-

tex i to vertex j if and only if these two vertices represent

two adjacent microfluidic cells and they satisfy the criterion

described below.

Note that unlike V, E is not determined a priori; rather

the set of edges is a variable, and the edges are determined

through the optimization procedure.

Definition 1. A Hamiltonian path from vertex s to vertex t

in a graph G is a path that starts at vertex s, ends at vertex t,

and visits every vertex of G exactly once.

We define eij as follows:

ei j =















1 if a Hamiltonian path from a droplet source to a

droplet sink includes vertex i and vertex j

in consecutive order

0 otherwise

If a Hamiltonian path exists in an array with n cells, then

for any cell i in the array,
∑n

j=1 ei j =
∑n

j=1 e j i = 1.

The problem of finding a Hamiltonian path in graph G

from one source to one sink can be expressed as the follow-

ing problem: find a numerical instance of the set of binary

variables E = {eij}, e.g., {e12 = 1, e21 = 0, . . . , eij = 1,

. . .}, that represents a Hamiltonian path from one source to

one sink.
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Fig. 4. Graph model for a 4× 4 array.

If a Hamiltonian path exists, the cost C for this path

is defined as C =
∑n

i=1

∑n
j=1 ei jwi j , where i represents

any vertex in this path, j is the vertex adjacent to i in the

path, and wij is the weight of eij. Without loss of gener-

ality, we set wij to be a constant value, assuming that the

transportation velocity between any two adjacent microflu-

idic cells is the same. For simplicity, let wij=1. Therefore,

C =
∑n

i=1

∑n
j=1 ei j =

∑n
i=1 1 = n, i.e., the number of ver-

tices on the Hamiltonian path. If G has no Hamiltonian path,

the cost C is infinite.

Figure 4 gives an example of a graph model for single

source and single sink. In the graph model of this 4×4 array,

a black arrow between vertices i and j denotes that eij = 1,

while the gray arrow between vertices i and j denotes that

eij = 0. The cost C for this example is 11.

Based on the above definitions, we now develop the test

planning problem for multiple sources and multiple sinks.

We attempt to partition the directed graph representing the

microfluidic array into subgraphs, such that in each sub-

graph there exists a Hamiltonian path from one source to

one sink. In this way, the testing of the different partitions

can be performed independently and simultaneously in non-

overlapping parts of the microfluidic array. The total cost

for the array is the maximum of the cost for any of these sub-

graphs. This leads us to the following optimization problem

for minimizing the total cost:

• Optimal Partitioning Problem (OPP): Given N

source/sink pairs, determine an optimal partition that

divides the available cells in the array into N non-

overlapping partitions, such that in each partition there

exists a Hamiltonian Path from one source to one sink

and the maximum of the cost for these Hamiltonian paths

is minimized.

5. Analysis of Computational Complexity

In this section we prove that OPP is NP-hard. We first re-

view the following definition from computational complex-

ity theory:

Definition 2 [17]. Let L1 and L2 be two decision prob-

lems. L1 is polynomial-time reducible to L2 (L1 ≤ L2) if a

polynomial-time reduction f from L1 to L2 exists, subject

to

• f(x) is a yes-input for L2 if and only if x is a yes-input for

L1

• f is computable in polynomial-time.

We next note that if L1 is NP-complete, and L1 ≤ L2,

then L2 is NP-hard. This is a common technique to prove

that a given optimization problem is NP-hard.

We first consider the decision version D-PP of OPP, which

is expressed as follows.

• D-PP: Given N source/sink pairs and an upper limit D on

the cost, is it possible to partition array into N parts such

that there exists a Hamiltonian path of cost Ci for each

partition and max1≤i≤N {Ci } < D?

Theorem 1. OPP is NP-hard.

Proof: We first show that D−PP ∈ NP. We can non-

deterministically generate a N-partition and then verify in

polynomial time that max1≤i≤N {Ci } < D. To show that

D-PP is NP-hard, we reduce the problem of determining a

Hamiltonian cycle in grid graph (HC-GG), which is known

to be NP-complete [7 ]. A grid graph G is a finite, induced

subgraph of the infinite two-dimensional grid. It has a finite

set of vertices V= {v1, v2, . . ., vn}, where vi represents a

grid point (x, y). Note that x and y are positive integers,

denoting the x and y coordinates, respectively. An edge

exists in G between point (x, y) and (x′y′) if and only if

|x − x ′| + |y − y′| = 1.

We next define a polynomial-time reduction f from an

arbitrarily-chosen instance of HC-GG to an instance of D-

PP with N = 1 and D = ∞. Given a grid graph G, any

vertex vi in G is mapped to a cell ci in array A, such that

cell ci = f(vi) and cj = f(vj) are adjacent in A if and only if

there exists an edge between vi and vj in G. We define the

vertices with the maximum (or minimum) value x of the x-

coordinate (or the y-coordinate y) in the corresponding grid

graph to be boundary vertices in G. Similarly, the cells in

the array obtained by mapping from the boundary vertices

in G are defined as boundary cells in A. Next we attempt

to add a droplet source s1 and a droplet sink s2 to this

array. There are two possible cases. In Case 1, there exist

two adjacent boundary vertices (noted as v1 and vn) in G,

such that there also exist two adjacent cells (noted as c1

and cn) on the boundary of array A. We then add s1 next



Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems 203

Fig. 5. (a) Illustration of Case1; (b) Illustration of Case2.

to c1 and s2 next to cn; see Fig. 5(a). In Case 2, if there

are no adjacent boundary vertices in G and neither are there

adjacent boundary cells in A, we select a single boundary

cell denoted by c1, and place s1 and s2 together adjacent

to c1; see Fig. 5(b). It is obvious that the transformation

described above can be carried out in polynomial time.

Next we prove that there exists a Hamiltonian path from

s1 to s2 of cost C < ∞ in A if and only if there exists a

Hamiltonian cycle in G of cost less than ∞.

1. Proof for Case 1: Assume there exists a Hamiltonian

cycle in G, denoted by v1 v2. . .vn v1, where v1 and vn are

two adjacent boundary vertices. Due to the mapping f: G→

A, c1 = f (v1), cn = f (vn) and they are two adjacent cells

on the boundary of array A. In this way, there exists a path

f (v1) f (v2). . . f (vn) from c1 to cn that visits every cell exactly

once. In addition, s1 is adjacent to c1 and s2 adjacent to cn.

Therefore, there is a Hamiltonian path from s1 to s2 in A

and cost C = n < ∞.

On the other hand, if there exits a Hamiltonian path s1 c1

. . . cn s2 from s1 to s2 in array A, a Hamiltonian path from

c1 to cn also exists. Now by the inverse transformation f−1:

A→ G, it is seen that there exists a Hamiltonian path f−1(c1)

. . . f−1(cn) from f−1(c1) to f−1(cn). Moreover, f−1(c1) and

f−1(cn) are two adjacent vertices. Therefore, there exists a

Hamiltonian cycle f−1(c1). . . f−1(cn) f−1(c1) in G.

2. Proof for Case 2: If there exist no adjacent cells on

the boundary of A, we place s1 and s2 together next to one

boundary cell c1. This implies that in any path from s1 to

s2, c1 is visited at least twice. Therefore, there exists no

Hamiltonian path in A for this case and C = ∞. Similarly

in G, since there are no adjacent vertices on the boundary,

some boundary vertices have only degree one. This violates

the necessary condition for the existence of a Hamiltonian

cycle, i.e., every node should have a degree of at least two.

Hence there is also no Hamiltonian cycle in G.

Thus we have shown that any instance of HC-GG is

polynomial-time reducible to an instance of D-PP (N =

1 and D = ∞). Since HC-GG is NP-complete, D-PP is at

least NP-hard. Moreover, since D-PP is in NP, it is also

NP-complete. The optimization version of D-PP, i.e. the

Optimal Partitioning Problem is therefore NP-hard. �

6. Integer Linear Programming Model for OPP

Although OPP has been proven in Section 5 to be NP-hard,

we show in this section that it can be solved exactly using

integer linear programming (ILP) for a microfluidic array

of modest size. An ILP model can be described as follows:

Minimize : Ax (objective function)

Subject to : Bx ≤ C (constraint inequalities),

where x is a vector of variables, A is an objective function

vector, B is a constraint matrix and C is a column vector

of constraints. We used a popular public domain ILP solver

called lpsolve for our work [2 ].

We formulate the ILP model for OPP as follows. It is

obvious that when N = 1, OPP is equivalent to the Hamil-

tonian path problem for a single source and a single sink

described in the earlier section.

For N>1, we define a binary variable Sik as follows:

Sik =







1 if vertex i is in subgraph k, i.e., microfluidic

cell i belongs to partition k.

0 otherwise

where 1≤ k ≤ N. Since every vertex only belongs to one

subgraph,
∑N

k=1 Sik = 1 ∀i .

Definition 3. Vertex j is the connected neighbor of vertex i,

if there is an edge between i and j, and either eij = 1 or eji

= 1.

Next we impose the constraint that vertex i is in partition

k if and only if its connected neighbor is also in partition k.

This is expressed as follows:

Sik = 1 if and only if

n
∑

j=1

ei j S jk = 1 ⇒ Sik =

n
∑

j=1

ei j S jk .

The existence of Hamiltonian paths in non-overlapping

partitions ensures that, for every cell i in array,
∑n

j=1 ei j =
∑n

j=1 e j i = 1.

Finally, we incorporate the objective function into the

ILP model. The objective of this optimization problem is to

minimize the total cost C = maxk{Ck} = maxk{nk}, k =

1,2. . .N, where nk is the number of vertices visited by

Hamiltonian path k. It is easily seen that nk =
∑n

i=1 Sik .

Therefore, C = max1≤k≤N

∑n
i=1 Sik .
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Fig. 6. An example of 4× 4 microfluidic array.

We now have a mathematical programming model for

OPP, described as follows.

Objective : Minimize C = max
1≤k≤N

n
∑

i=1

Sik

Subject to:1.
N
∑

k=1

Sik = 1 ∀i.

2. Sik =
n
∑

j=1

ei j S jk ∀i, 1 ≤ k ≤

N .

3.
n
∑

j=1

ei j =
n
∑

j=1

e j i = 1 ∀i .

In order to solve the above mathematical program-

ming model using lpsolve, its objective function and

some constraint inequalities must be linearized to match

the canonical form of an ILP model. First, the objec-

tive function is linearized as: Minimize C, subject to

C ≥
∑n

i=1 Sik, 1 ≤ k ≤ N. The set of constraints in (2)

above contains the non-linear term eijSjk, which can be lin-

earized by introducing a binary variable Zijk = eijSjk, with

the following additional constraints [25 ]:

1. ei j + S jk − Z i jk ≤ 1.

2. ei j + S jk − 2Z i jk ≥ 0.

This transformation is verified as follows: If Sjk = 0, from

(1) and (2), Zijk + 1 ≥ eij and 2Zijk ≤ eij; since eij ≤ 1, Zijk =

0. If Sjk = 1, we get Zijk ≥ eij and 2Zijk ≤ eij + 1. Therefore,

Zijk = eij.

We now describe the ILP model for OPP, which includes

the new variable and constraints.

Objective: Minimize C

Subject to:1. C ≥
n
∑

i=1

Sik 1 ≤ k ≤ N .

2.
N
∑

k=1

Sik = 1 ∀i .

3. Sik =
n
∑

j=1

Z i jk ∀i 1 ≤ k ≤ N .

4. ei j + S jk − Z i jk ≤ 1 ∀i,∀ j, 1 ≤ k ≤ N .

5. ei j +S jk−2Z i jk ≥ 0 ∀i,∀ j, 1 ≤ k ≤ N .

6.
n
∑

j=1

ei j =
n
∑

j=1

e j i = 1 ∀i .

The above ILP model can now be solved using lpsolve.

The complexity of this model, measured by the number of

variables and the number of constraints, is O(n2×N), where

n is the number of cells in an array and N is the number of

source/sink pairs.

The following example illustrates an optimal partitioning

of a 4 × 4 microfluidic array with two sources a1 and a2, and

two sinks b1 and b2, respectively; see Fig. 6. The result is

obtained using lpsolve. It took 10 minutes of CPU time on a

1.6 GHz Pentium-IV PC with 392 MB of RAM. An optimal

partitioning generated by lpsolve is as follows: Partition 1

= {1, 2, 3, 5, 7, 9, a1, b1}, Partition 2 = {4, 6, 8, 10, 11,

12, a2, b2}; see Fig. 7. Based on this test plan, the total time

cost C is max{8, 8} = 8.

We have shown that an ILP model can be used to solve

this optimization problem exactly for a microfluidic array of

modest size. However, there exist several major limitations

inherent in OPP:

1. Sometimes there exists no Hamiltonian path in the array.

Even if Hamiltonian paths exist, optimal partitioning

Fig. 7. An optimal partition and droplet flow path for the 4×4 microfluidic array of Fig. 6.
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obtained by solving OPP may not be the best solution

for optimal test planning. The suboptimal nature of the

test plan derived from the optimal solution to OPP results

from the property of a Hamiltonian path that every node

in the path should be visited exactly once. Lower-cost

solutions can be obtained if we allow a cell to be visited

more than once.

2. The partitioning in OPP does not take into account the

constraint that droplets can never be in a cell directly

adjacent or diagonally adjacent to another droplet. The

optimal solution to OPP may be not a feasible test plan

because perhaps some test stimuli droplets would be

adjacent to each other, thereby leading to the mixing of

these droplets.

Moreover, due to the inherent complexity of the model,

there is a need for heuristic algorithms that can be applied to

a large array and that can eliminate the limitations inherent

in the OPP problem.

7. Heuristic Algorithms

One possible heuristic method is motivated by the similarity

of the test planning problem for a microfluidic array to

the robot motion planning problem, where we view every

test stimuli droplet as a mobile robot. However, there are a

number of important differences:

1. The test planning problem can be considered as a com-

bination of both the navigation problem and the full

coverage problem. It attempts to minimize the total time

cost from the starting point (droplet source) to the end

point (droplet sink), while it also requires all available

cells to be covered in the droplet path. Therefore it is

more complicated than either the navigation problem or

the coverage problem alone.

2. A major constraint in the application of multiple test

stimuli droplets is that droplets can never be in a cell

directly adjacent or diagonally adjacent to another

droplet except in the case of mixing of two droplets.

This restriction increases the complexity of the problem

of test planning and resource optimization.

7.1. Simple Monte-Carlo Search Algorithm (SMC)

Monte-Carlo based search algorithms have been proposed

in the literature for problems with a large number of con-

straints [16]. The key idea underlying these algorithms is

that random points are generated in the search space and

the point with the lowest value for the objective function

is taken to be the global optimum. In this modified ran-

dom walk method, a large number of simulation runs are

carried out to generate enough samples. First we apply the

simple Monte-Carlo search algorithm to heuristically solve

the problem of test planning and optimization. In each run,

the test stimuli droplet starts from the cell directly adjacent

to the droplet source and ends in the droplet sink. It ran-

domly moves to the neighboring cell with some probability

p. We mark the cell if it has been visited, then the larger p

is assigned to the motion towards the unmarked cell. After

randomly selecting the new positions of test stimuli droplets,

the procedure checks if no two droplets are directly adja-

cent or diagonally adjacent in their new positions. If this

restriction is satisfied, test stimuli droplets move to these

new positions. Otherwise the new positions are selected

again. If all available cells have been visited and test stimuli

droplets have reached the droplet sinks, the test process is

concluded. Here we assume that each droplet move only

once in each time slot. Therefore, the test plan with the

smallest number of total time slots, i.e., total test time, is

selected as the optimal solution.

7.2. Modified Real-Time Algorithm (MRT)

We can further leverage real-time search algorithms and in-

corporate them into the heuristic algorithm for test plan-

ning. While the previous Monte-Carlo search algorithm

simply marks the cell with a binary variable (0/1) based

on whether it has been visited, this modified algorithm

associates an evaluation function U with each cell. It al-

ways decides which neighboring cell to move to based only

on the U-values of its neighbors. That is, the droplet al-

ways greedily moves to an adjacent cell with the smallest

U-value. Ties due to same U-value neighbors are broken

randomly. Similar to the Monte-Carlo search algorithm, the

new positions of test stimuli droplets should be verified to

satisfy the physical restriction. Then the U-value of the cur-

rent cell is updated according to a predefined rule. We study

four different U-value update rules, which been used suc-

cessfully in robot motion planning, as listed in Table 1. Each

rule assigns a different meaning to the U- value. For exam-

ple, Node Counting interprets the U-value as the number of

times the location has been visited, while LRTA∗ interprets

U-value as approximations of the goal distances of the lo-

cation [12, 21]. The introduction of the evaluation function

U decreases the arbitrariness of the selection of new po-

sitions in the Monte-Carlo search algorithm and therefore

increases the possibility of finding a better solution for the

same number of simulation runs.

7.3. Proposed Improved Heuristic Algorithm for

Multiple Droplets (PIH-MD)

When multiple test droplets are used, the above heuris-

tic algorithms might move two droplets closer to each

other. Additional effort may therefore be needed to pre-

vent droplets from being directly or diagonally adjacent to

each other. Moreover, if these two droplets are too close,

the overlap of their coverage areas might increase, con-

sequently leading to low efficiency in searching. There-

fore we modify the heuristic algorithm for multiple test
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Table 1. Different U-value update rules.

Value-update rules Real-time search algorithms

U(current) = 1 + U(current) Node counting [1]

U(current) = 1 + U(New) Learning Real-time A∗ (LRTA∗) [12]

If U(current) ≤ U(New), U(current) = 1 + U(current) Wagner’s value-update rule [24]

U(current) = max(1 + U(current), 1 + U(New)) Thrun’s value-update rule [23]

droplets by attempting to separate two droplets. We add

a new evaluation function �P to approximate the relative

distance between two droplets. When ties for new posi-

tions with the lowest U-value are encountered, we eval-

uate the �P function for every two possible positions of

these droplets and select the new positions with smallest

value of �P. Instead of breaking such ties arbitrarily as

in MRT, this approach adds more guidance to heuristically

find the near-optimal solution for test planning. Simulation

results presented in the next section show that it provides

better performance than the simple Monte-Carlo search al-

gorithm and the modified real-time search algorithm for

multiple test stimuli droplets. The procedure is outlined in

Fig. 8.

Fig. 8. Sketch of the improved heuristic algorithm.
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Fig. 9. (a) Microfluidic array configuration in the first set of experiments. (b) Microfluidic array configuration in

the second set of experiments.

8. Experimental Results

In this section, we report simulation results on test plan-

ning and resource optimization for droplet-based two-

dimensional microfluidic arrays. Note that there exists an

inherent tradeoff between test hardware overhead, i.e., test

stimuli droplet source/sink pairs, and test application time.

The location and the number of droplet sources and sinks can

affect the time cost of the associated test plan [19]; a higher

test hardware overhead usually leads to less testing time.

Here we attempt to minimize the test application time for

a given test hardware overhead. In addition, the concurrent

test plan for a microfluidic array is also affected by the array

configuration, i.e., the usage of cells in normal biomedi-

cal assays. In fact, design-for-testability (DFT) techniques

can be used to optimize the assay schedule and array con-

figuration to increase the efficiency of the corresponding

concurrent test plan. In order to facilitate the evaluation and

comparison, a set of given array configurations are deployed

here for the different proposed test planning methods.

In the following experiments, two sets of cases are ana-

lyzed:

1. A single source and a single sink;

2. Two sources and two sinks.

The configurations of the microfluidic arrays, e.g., the

assignment of cells used for biomedical assays, as well as

the locations of the source and the sink used in both sets of

experiments, are shown in Fig. 9.

For arrays of modest size, optimal solutions can be ob-

tained using ILP model. Therefore, we can compare the

result of the heuristic algorithms with the optimal solu-

tion (OPT). However, for arrays of the larger size, optimal

solutions are not available. The performance of heuristic al-

gorithms in these cases can only be compared with a lower

bound (LB) and an upper bound (UB) on the optimal solu-

tion as described next.

In an ideal case, the available cells of the array can

be partitioned evenly. In each partition, there exists a

Hamiltonian path from one droplet source to one droplet

sink. Multiple tests can be run in non-overlapping parts in

parallel without violating the restriction on droplet motion.

Therefore, we have a lower bound LB on optimal solution

of [n/k], where n is the number of available cells in the sys-

tem and k is the number of source-sink pairs. The tightness

of this lower bound is determined by the topological con-

figuration of the microfluidic array. In addition, an upper

bound on the optimal solution can be shown to be 2×n,

which results from the depth-first search on a grid graph

[6].

Table 2. Simulation results for Case (1). The entries in the table denote testing time (in time-slots).

3 × 3 3 × 5 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9

OPT 8 12 14 23 N/A N/A N/A N/A

LB 8 10 14 22 30 41 52 64

UB 16 20 28 44 60 82 104 128

SMC 8 12 14 30 39 54 84 91

NC 8 12 14 23 34 47 66 77

LRTA∗ 8 12 14 25 34 47 66 81

Wagner 8 12 14 25 34 49 70 78

Thrun 8 12 14 23 32 47 62 77
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Fig. 10. Comparision of various heuristic approaches.

In the first set of experiments, we determined the test

time for two different heuristic algorithms, i.e., the simple

Monte-Carlo algorithm and the modified real-time algo-

rithm (four different U-value update rules) for Case (1). We

assigned 10,000 runs to the simple Monte-Carlo algorithm

and 1,000 runs to the modified real-time algorithm. Table 2

shows the simulation results. Some optimal solutions ob-

tained from the ILP model, as well as lower bounds and

upper bounds, are also listed. The results show that heuris-

tic algorithms provide close-to-optimal solutions for small

array sizes, such as 3 × 3, 4 × 4 and 5 × 5. When the

array size increases, the results for heuristic algorithms are

still contained between the lower bound and upper bound

of the optimal solution. The results for modified real-time

algorithm are much closer to the lower bound than the sim-

ple Monte-Carlo algorithm; see Fig. 10. These experimen-

tal results highlight the advantage of adding the evaluation

function U-value.

In the second set of experiments for multiple test stimuli

droplets (Case 2), we compare the modified real-time algo-

rithms (MRT) to the proposed improved heuristic algorithm

(PIH-MD). Here the arrays of larger sizes are considered.

Simulation result shows that the improved heuristic algo-

rithm significantly outperforms the modified real-time al-

gorithm for larger array sizes; see Fig. 11. The ratio of the

actual testing time to the lower bound is always under 1.8

Fig. 11. Simulation result for Case(2).

Fig. 12. Scalability of PIH-MD compared to MRT.
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Fig. 13. Comparison of the number of available solutions for 500 simulation runs.

for the improved heuristic algorithm, while this ratio for the

modified real-time algorithm increases with the array size;

see Fig. 12.

Finally, we study the number of available solutions for

each heuristic algorithm when the number of simulation

runs is fixed, i.e., 500. Figure 13 shows that the proposed

improved heuristic algorithm (PIH-MD) generates many

more available solutions than the modified real-time algo-

rithm (MRT). This advantage results from adding a new

evaluation function �P to reduce the overlap between the

coverage areas of the two test stimuli droplets, and it leads

to a better solution for test planning and resource optimiza

tion.

9. Conclusions

In this paper, we have presented an analysis of the test plan-

ning problem for droplet-based microfluidic systems. Due

to NP-hard nature of the problem, heuristic approaches are

needed. We have developed heuristic algorithms that are ap-

plicable to droplet-based microfluidic arrays of large sizes.

Experiment results have shown that the heuristic solutions

are close to the lower bounds on the optimal solutions. The

advantage of the improved heuristic algorithm for multi-

ple test stimuli droplets has been evaluated. In our ongo-

ing work, we are investigating fault tolerance techniques

based on the concurrent testing and reconfigurability of the

droplet-based microfluidic systems.
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