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Abstract
This paper  presents an innovative method for  inserting

testpoints in the circuit-under-test to obtain complete fault
coverage for  a specified set of test patterns.  Rather than
using probabilistic techniques for  test point  placement,  a
path tracing procedureis used to place both control  and
observation points.  Rather than adding extra scan elements
to drive the control  points, a few of  the existing primary
inputs to the circuit are ANDed together to formsignals that
drive thecontrol  points.  By selecting which patterns the
control  point  is activated for,  the effectiveness of  each
control point is maximized.  A comparison is made with the
best previously  published  results  for  other  test  point
insertion methods, and it is shown that the proposed method
requires fewer testpoints and less overhead to achieve the
same or better fault coverage.

1.  Introduction
Pseudo-random pattern testing is an attractive technique

for built-in self-test (BIST) because very little hardware is
required for test pattern generation.  A linear feedback shift
register (LFSR) or cellular automaton (CA) can be used to
generate the pseudo-random patterns.  These circuitscan also
be used as output response analyzers thereby serving two
purposes during BIST.

Unfortunately,  the pseudo-random  patterns  that  are
generated during BIST donot always provide high enough
fault coverage for a reasonable test  length.  There are two
ways to solve this problem:  modify the pattern generator,
or modify the circuit-under-test.  A pseudo-random pattern
generator can be modified by adding logic to weight  the
patterns [Schnurmann 75],[Wunderlich 87], [Pomeranz 92];
map  the  patterns  [Touba¬95a,¬95b],  [Chatterjee¬95a]; or
reseed the generator  [Venkataraman¬93],  [Hellebrand¬95],
[Zacharia¬95].  The circuit-under-test can be modified by
inserting test points [Eichelberger 83]; or by redesigning it
[Touba¬94],  [Chiang¬94],  [Chatterjee¬95b].   Each of  these
techniqueshas its advantages,  and the one that  is most
suitable depends on the particular  application.  This paper
presents  a  new method  for  inserting  test  points  in
combinational circuitsthat significantly reduces the number
of  test points required  for  a particular  fault  coverage
compared with previous techniques.

Test  point  insertion  involves adding  control  and
observation points to the circuit-under-testin a way that the
system function remains the same,  but  the testability  is
improved. An observation point is an additional  primary
output  that  is inserted  in  the  circuit  to  increase  the

observability  of  faults in the circuit.   In the example in
Fig.¬1,  an observation point  is inserted at the output  of
gate¬G1 such that  faults are observable regardless of  the
logic value at node y.   A control  point is inserted in the
circuit such that when it is activated, it fixes the logic value
at a particular node to increase the controllability  of  some
faults in the circuit.  A  control  point  can also affect the
observability  of  some faults in the circuit  because it  can
change the propagation paths forthe faults.  In the example
in Fig. 2, a control point is inserted to fix the logic value at
the output of gate¬G1 to a ‘1’  when the control  point  is
activated (this is  called  a control-1  point).   This  is
accomplished by  placing an OR  gate at  the output  of
gate¬G1.   In the example in  Fig.  3,  a control  point  is
inserted to fix the logic value at the output of  gate¬G1 to a
‘0’  when the control  point  is activated (this is called a
control-0 point). This is accomplished by placing an AND
gate at the output of gate¬G1.  During system operation, the
control  points are not activated and thus don't  affect  the
system function.  However, control  points do add an extra
level of logic to some paths in the circuit.  If a control point
is placedon a critical  timing path, it can increase the delay
through the circuit.

Since test points add both area andperformance overhead,
it is important to try to minimize the number of  test points
that  are inserted to achieve the desired fault  coverage.
Optimal test point placement for circuits with reconvergent
fan-out has  been  shown  to  be  NP-complete
[Krishnamurthy¬87].  Briers and Totton [Briers¬86] were the
first to propose a systematic method for test point placement
to increase pseudo-random pattern testability.   They use
simulation statistics to identify correlation between signals,



and then insert  test  points to break the correlation.  The
number of  test  points inserted by  this method is large.
Iyengar  and  Brand  [Iyengar¬89]  proposed  an improved
method that  uses fault  simulation to identify  gates that
block fault propagation, andthen insert test points to allow
propagation.   Savaria et al.,  in  [Savaria¬91]  and
[Youssef¬93], use the COP testability measures [Brglez¬84]
to guide the placement oftest points.  They identify sectors
of hard-to-detect faults and insert test points atthe origins of
the sectors.  Seiss et al., in [Seiss¬91], form a cost function
based on the COP testability measures andthen compute, in
linear time, the gradient of thefunction with respect to each
possible test point.  The gradients are used to approximate
the global testability  impact  for  inserting a particular  test
point.   Based on these approximations,  a test  point  is
inserted andthe COP testability measures are recomputed.
This process iterates until  the testability  is satisfactory.
Cheng and Lin, in [Cheng¬95], enhance the procedure in
[Seiss¬91] to consider the performanceimpact of  inserting a
particular test point. They showed that by avoiding control
point insertion on critical  timing paths, high fault coverage
can be achieved with zero performance degradation.   In
[Touba¬94], a method is proposed for inserting test  points
during logic synthesis.  The logic is factored in a way that
minimizes the number of test points that are required.

This paper  presents  a  new  method  for  test  point
insertion.  Fault simulation is used to identify faults that are
not detected by a specified set of  test patterns.  For each
undetectedfault, a path tracing procedure is used to identify
the set of test points that will enable the fault to be detected,
i.e., the set of test  point  solutions for the fault.  Given the
set  of  test  points solutions for  each undetected fault,  a
minimal  set  of  test  points to achieve the desired fault
coverage isselected using a set covering procedure.  A new
technique is used for driving the control points. Rather than
adding extra scan elements to drivethe control  points, a few
of  the existing primary inputs to the circuit  are ANDed
together to form signals that drive the control  points.  This
logic selects which patterns the control  points are activated
for.  A method is described for synthesizing this logic to
maximize the effectiveness of each control point.

Unlike other methods for test  point  placement that  are
basedon signal  probabilities or  detection probabilities for
pseudo-random patterns, the method presented in this paper
is not based on randomness properties of  the test patterns
and therefore can be used for any set of test patterns.  Theset
of  test patterns can be pseudo-random, quasi-random (e.g.,
generated by a multiple input signature register), or not  be
random at all.  Other test  point  placement  methods that
assumepseudo-random patterns may not  be effective for
BIST techniques that use multiple input signature registers
to apply patterns to the circuit-under-test.

2. Overview of Test Point Inser tion
Procedure
The problem of interest  is given a set  of  test  patterns

that will  be applied to the circuit-under-test, insert as few
test points as necessary to enable all  of  the faults in the

circuit  to be detected. An  overview  of  the test  point
insertion procedure is as follows:
1. Perform fault simulation to identify undetected faults.

Fault simulation is performed for the set of  test patterns
applied to the circuit-under-test to determinewhich faults are
already detected and which require test points in order to be
detected.
2. Compute the set of test points that enable each undetected

fault to be detected.
For each of the faults that require test points, a set of  test

point solutions is computed such that if  any  test  point  in
the set is inserted into the circuit, the fault will  be detected.
This is described in Sections 3 and 4.
3. Select a minimal set of test points that provides complete

fault coverage.
Given the set of test point solutions for each fault, a set

covering procedure is used to find a minimal  set  of  test
pointsthat enables all  of  the faults to be detected.  This is
described in Sec.¬5.
4. Synthesize logic to activate the control points.

Pattern decoding logic is synthesized to activate control
points for certain patterns.  This is described in Sec.¬6.

3. Computing Test Point Solutions
The faults that go undetected by the set of test  patterns

applied to the circuit-under-test are the faultsthat require test
points in order  to be detected.  This section describes a
method forcomputing the set of  test points solutions for a
given undetected fault for a specified set of test patterns.

Definit ion 1 :  Test point p is said to bea solution for
fault f if  inserting test point p into the circuit enables fault f
to be detected for the specified set of test patterns.

In order  for  a fault  to be detected,  it  must  be both
provoked and propagatedto a primary output.  A  stuck-at 1
(stuck-at 0) fault is provoked if  the logic value at the fault
site is ‘0’ (‘1’) .  A fault is propagated toa primary output if
a sensitized path exists from the fault  site to a primary
output.   An observation  point  can  only  help  with
propagating a fault, while a control point can help with both
provoking and propagating a fault.

Definit ion 2 :  A sensitized path exists from nodex to
nodey in a circuit if complementing the logic value at node
x complements the logic value at nodey.

Note that a sensitized path exists from an input of gate g
to the output of the gateg if all of the other inputs to gateg
areat the non-controlling logic value ('0' for OR and NOR
gates, and'1' for AND and NAND gate).

The method presented here for computing  test  point
solutions involves identifying sensitized paths to and from
fault sites in the circuit.  Fault-free simulation is performed
for a pattern, and then path tracing from the fault  sites is
usedto identify  the sensitized paths.  A  fast  approximate
method  for  path  tracing  is given  in  [Abramovici¬84].
Techniques  for  faster  operation  are suggested  in
[Ramakrishnan90].  An exact  method for  path tracing is
given in [Menon¬91].   These three papers describe path
tracing from  the  primary  outputs  (called  critical  path



tracing), however the techniques can be easilygeneralized for
path tracing from a fault site.

3.1 Computing Observation Point Solutions
Some patterns may provoke a fault but not propagate it

to a primary output.  If a fault is provoked by a pattern, then
an observation point that is inserted at a node that the fault
can propagate to will  enable the fault to be detected and
therefore is a solution for  the fault. To find the set  of
observation point solutions for a fault that is provoked by a
particular pattern,path tracing can be used to identify the
nodes that the fault can propagate to.An example is shown
in Fig. 4.  Fault-free simulation is performed for a pattern
that provokes the fault, and forward path tracing from the
fault  site is used to identify  the propagation path for the
fault.  The fault propagates through gates G3 and G5, but  is
blocked at gatesG6 andG8 and therefore doesn't propagateto
a primary output.  Inserting an observation point at node a
or nodeb would enable the fault to be detected,so those two
nodes form the set of observation point solutions for the fault
for that pattern.  The union of  the set of  observation point
solutions for  each pattern that  provokes a particular fault
gives the full set of observation point solutions for the fault.
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Figure 4 . Example:  Observation Point at Nodea or b is a
Solution

3.2 Computing Control Point Solutions
Some patterns may propagate a fault to a primary output

but not provoke the fault. In that case, a control  point is a
solution for the fault if  it complements the logic value at
the fault site thereby provoking the fault.  For a fault that is
propagated toa primary output by a particular pattern, path
tracing can be used to find the nodes that have a sensitized
path to the fault site for that pattern.  Control  points that
complement the logic value at a node that has a sensitized
path to the fault site are solutions for the fault provided that
they don’t block fault propagationto a primary output.  An
example is shown  in  Fig.  5. Fault-free simulation  is
performed for a pattern that propagates the faultto a primary
output, and backward path tracing fromthe fault site is used
to identify sensitizedpaths.  Both inputs of  gate G6 have a
sensitizedpath to the output  of  gate G6.   Neither  of  the
inputs of  gate G4 have a sensitized path to the output  of
gateG4.  One of the inputs of gate G3 has a sensitized path
to the output of gate G3.  Inserting a control-1 point at node
a, c, d, or e would complement the value at  the fault  site
thereby provoking thefault.  However, forward path tracing
from nodee identifies that it has a sensitized path to gate
G9, so inserting a control-1 point at nodee would block the
fault from propagating to a primary output.  Therefore, only
control-1 points at nodesa, c, andd are solutions.
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Figure 5 . Example:  Control-1 Point at Nodea, c, or d is a
Solution, but Nodee is Not a Solution Because It Blocks

Propagation to a Primary Output

Some patterns may provoke a fault but a single gate may
block propagation to a primary  output.   In  that  case,  a
control point can enable propagation to a primary output if
it complements the logic value at the controlling input  of
the blocking gate.  For  a provoked fault for  which fault
propagation is blocked bya single gate, path tracing can be
used to find the nodes that have a sensitized path to  the
controlling input of the blocking gate.  Control  points that
complement the logic value at a node that has a sensitized
path to the controlling input of a blocking gate are solutions
for the fault provided that they still  provoke the fault. An
example is  shown  in  Fig.¬6.  Fault-free  simulation  is
performed for a pattern that provokes thefault, and backward
path tracing from thecontrolling input of  the blocking gate
is used identify sensitized paths. Both of  the inputs of  gate
G7 are sensitized to the output of G7.  Both of the inputs to
G4 are sensitized to the output of G4.  The output  of G4
fans out to gate G6, and forward path tracing identifies that
it has a sensitized path to the fault site.  Inserting control
points at the nodes before the fanout would cause the faultto
not  be provoked,  and  therefore they  are not  solutions.
Control-0points at nodes f, g, and h form the solution set
for the fault for that pattern.  The union of the set of  control
point solutions for a particular fault for each pattern gives
the full set of control point solutions for the fault.
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F igure 6 . Example:  Control-0 Point at Nodef, g, or h are
Solutions, but  Nodese, i , and j  are Not Solutions Because They

Don't Provoke the Fault

4. Faults Requir ing Multiple Test Points
Some faults may not have single test point solutions.  If

none of  the patterns provoke or propagate the fault, then
multiple test points are required.  The existence of a single
test point solution for a fault can easily be checked when fault
simulation is performed to identify the undetected faults.

In Sec.¬3, a method was described for computing a set of



single test point solutions for a fault such that  if  any  test
point in the set is inserted in the circuit, the fault  will  be
detected.This method can be extended to handle faults that
require multiple test points.  If a fault requiresn test  points,
thenn sets of single test points can be computed such that if
one test point from each set  is inserted in the circuit, the
fault will be detected. For each pattern, path tracing can be
used to find a set of test points that provoke the fault and the
set of test points that propagate the fault to a primary output
as was described in Sec.¬3.  In the example in Fig. 7,  the
sensitized paths that provoke the fault and the paths where
the fault can propagate are identified using path tracing. The
control points that provoke the fault form one set (control-0
at node m and control-0 at node n),  and the observation
points that enable the fault to propagate to a primary output
form another set (observation point at nodea and nodeb).  If
a test point from each set is inserted in the circuit, then the
fault  will  be detected.  For faults with  single test  point
solutions, the full set of solutions was formed by taking the
union of  the sets of  single test  points solutions for  each
pattern, however this cannot be done for faults withmultiple
test point solutions.  The reason is that if  the union of  the
sets is taken, then a test point from one set will provoke the
fault for somepattern, but the test point from the other set
may propagate the fault to a primary output for a different
pattern, thus there is no guarantee that the fault  will  be
detected.  So instead of  computing the full set  of  multiple
test  point  solutions, the largest  set  of  multiple test  point
solutions for a single pattern is used.
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Figure 7 . Example:  A Control-0 Point at Nodem or n
Provokes the Fault, and an Observation Point at Nodea or b

Propagates the Fault to a Primary Output.

5.  Selecting a Set of Test Points to Insert
Once the set of  test point solutions for each undetected

fault has been computed, a set covering procedure can be
used to select a minimal  set of  test points that will enable
all  of  the faults to be detected.  A matrix is constructed in
which each column corresponds to a test  point  solution.
For each undetected fault, a row is added to the matrix in
which an ‘X’ is placed ineach column that corresponds to a
test  point  solution for  the fault.   If  the fault  requires a
multiple test  point  solution, then multiple rows are added.
An example is shown in Fig. 8.  The first row corresponds
to fault¬1 for which the set of  single test point solutions is
an observation point at nodew, acontrol-1 point at node¬u,
and a control-0 pointat node¬v. Fault 2 requires a multiple
test point  solution, so both the second and the third row
correspond to it. The set  of  control  points that  provokes
fault¬2 is a control-1 point at node¬ u, a control-0 point  at

node¬v, and  a control-1  point  at  node¬y.   The set  of
observationpoints that  propagate fault¬2 to  a  primary
output is an observation point at node¬v and an observation
point at node¬ x.

O-v O-w O-x C1-u C0-v C0-w C1-y C1-z
Fault 1 X X X
Fault 2 X X X

X X
Fault 3 X X X
Fault 4 X X X
Fault 5 X X

Figure 8 . Example: Matrix of  Test Point Solutions for
Each¬Fault

A set coveringprocedure is used to select a minimal set
of  columns that  has at  least  one ‘X’  in each row  (set
covering  is NP-complete,  but  good  heuristics  exist
[Christofedes¬75]).  One ‘X’ in each row ensures that all  of
the faults will  be detected.  In the example in Fig.  8,  one
such solution is the third column (observation point at node
x) and the fourth column (control-1 point at node u).  The
test points corresponding to the selected columns areinserted
into the circuit.  Note that for the example in Fig. 8, if  the
test points were inserted one ata time based on maximizing
the fault  coverage that  results after  each test  point was
inserted (as is the case in other test point insertion methods),
thenthe first test point to be inserted would be a control-0
point at nodev because that would detectfault 1, fault 3, and
fault 4.  However, in order to detect fault 2 and fault 5,  at
least two more test points would have to be inserted.  Thus,
for this example, the greedy method results in 3 test points
compared with only 2 if the set covering procedure is used.

6.  Control Point Activation
Once the test points have been inserted, the remaining

task is to design the logic that drives the control  points.  A
control  point must be activated for certain patterns in order
to detect the faults for which it was inserted.  However, a
control point cannot be activated for all patternsbecause that
would reduce the fault  coverage. Previous  test  point
insertion techniques add extra scan elements to drive the
control points.  This is illustrated in Fig. 9 where two extra
scan elements are added to drive the two controlpoints.  The
pseudo-random pattern generator is used to apply  values to
the extra scan elements.  Thus a control  point is randomly
activated for  roughly half  of  the patterns.  This approach
limits the potential of  each control  point.  There may be
some patterns for which a control point is not activated, but
if  the control  point had been activated, some faults would
have been detected.  Conversely, there maybe some patterns
for which the control point is activated, but if  it hadn’ t been
activated, some faults would have been detected.

A new approach for activating control pointsis presented
here.  Pattern decoding logic is used to drive the control
points.  An example is shown in Fig. 10 where AND gates
are used to drive each of the control points.Control  point  1
is activated for any patternthat has a ‘1’  in the last two bit
positions. Control  point 2 is activated for any pattern that
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Figure 1 0 . Control  Points Driven by Pattern Decoding Logic

has a '1' in the third to last  bit  position,  and a '0'  in the
second to last bit position.  The decoding logic function for
activating each control point is formed by placing all  of  the
patterns for which the control  point should be activated in
the on-set, all of  the patterns for  which the control  point
should not be activated for in the off-set, and the remaining
patterns in the don’ t  care set  (how to determine which
patterns to place in the on-set and off-set will  be explained
later).  This function is then passed to a logic synthesis tool
to generate the pattern decoding logic.  Using this pattern
decoding logic to activate the control  point  maximizes the
control  point's effectiveness while ensuring that  it  won’ t
cause faults that  were previously  detected to  become
undetected.  Moreover, becauseof the large number of don’ t
cares,the pattern decoding logic usually  amounts to only
one or two gates (as indicatedby the experimental  results in
Sec.¬7)  and therefore results in less area overhead than
adding an extra scan element.  A test mode line is used to
disable the control  points during system operation.   The
delay introducedby a control  point during system operation
is the same regardless of which method is used to drive the
control  point.  In either case, the signal  driving the control
point is a static ‘0’ during system operation, so the delay
through the control  point is equal  to the delay through the
control gate (see Figs. 2 and 3).

Now the process of determining which patterns shouldbe
placed in the on-setand off-set of the pattern decoding logic

function for each control  point will  be explained.   First
consider the off-set.  A fault that was detected by pattern v
before inserting a control point may no longer be detected if
the controlpoint is activated for pattern v.  So one way to
ensure that inserting control points doesn’ t  cause faults to
no longer be detected is to place one patternthat detects each
fault  into the off-set  so that  the control  points won’ t  be
activated for  those patterns.   During  the  initial  fault
simulation,when a new fault  is detected, the pattern that
detected it is recorded.  These patterns are placed in the
off-set of the decoding logicfunction for each control  point.
This is a conservative approach since some of  the patterns
may detect thesame faults regardless of whether the control
point is activated or  not.  An optional  step to reduce the
off-set for a control  point is use fault  simulation to check
which patterns are really affected by the control point. Fault
simulation can be done with the control  point activated for
each pattern in the off-set, and the patterns which drop the
same set of faults as before(i.e., with no control  point) can
be removed from the off-set sinceit doesn’ t matter for those
patterns whether the control point is activated or not.

The on-set of  the decoding logic function contains the
patterns for  which the control  point is activated.   The
purpose of a control point is to enable detection of the faults
for which it is a solution.  It must be activated for a pattern
that  detects each of  the faults for  which it  is a solution.
When the set  of  control  point  solutions are computed for
each undetected fault, the patterns for which each control
point enables the fault to be detected are recorded.  For a
control  point  that  is selected  for  insertion,  one of  the
recorded patterns is added to the on-set for  each fault  for
which the control point is a solution.  The patterns that are
added to the on-sets for each of the inserted control pointsare
chosen so that the on-sets are disjoint.  This ensures that
there are no conflicts with  more than one control  point
being activated for the same pattern.  An example of selecting
the on-sets for 3 control  points is shown in Fig.¬11. For
each fault, the set of  patterns for which each control  point
will enable the fault to be detected are listed.  One patternfor
each fault is selected and added to the appropriate control
point’s on-set.  The patterns are selected so that the on-set
for  each control  point  is disjoint.  If control¬point  1 is
activated for  the pattern 101110,  it enables fault¬1 and
fault¬3 to be detected.  Ifcontrol¬point¬2 is activatedfor the
samepattern, 101110,  it  enables fault¬2 to be detected.
However, if  both control¬point¬1 and control¬point¬2 are
activatedfor the same pattern, then it is possible that there
would be a conflict such that oneof  the faults would not be
detected. So in order to avoid that, control¬point¬2 can be
activated for the pattern011100 instead.

Control  Point  1 Control  Point  2 Control  Point  3
Fault 1 1 0 1 1 1 0,  110101,  001110,  ...
Fault 2 101110,0 1 1 1 0 0,  110110,  ... 000110,  000111,  001111,  ...
Fault 3 1 0 1 1 1 0,  010110,  010011,  ... 011010,  011011,  011111,  ...
Fault 4 0 0 1 0 1 0,  110111,  111001,  ...
Fault 5 1 1 0 0 1 1,  011010,  011001,  ...

On-Set { 101110,  001010} {0111000} {110011}

Figure 1 1 . Example:  Selecting On-Sets for 3 Control  Points



Table 1 . Results for Test Point Insertion in Benchmark Circuits

Circuit Num Num Coverage Coverage Num Num Decode No Condensation With  Condensation
Name Faults Red Before TPI After TPI Con Obs Gates Gates Scan Elem Gates Scan Elem

 s420 215 0 90.2% 100% 2 0 2 4 0 4 0
 s641 346 0 97.6% 100% 1 1 2 3 1 3 1
 s713 405 38 88.3% 100% 1 1 2 3 1 3 1
s838 667 0 93.8% 100% 2 0 6 7 0 7 0
s1196 968 0 99.6% 100% 1 0 1 2 0 2 0
s1238 1063 67 93.5% 100% 6 5 18 24 5 31 2
C2670 1881 92 91.3% 99%

100%
4
7

3
18

6
8

10
15

3
18

15
55

1
2

C2670.s 1717 0 96.7% 100% 2 2 4 6 2 9 1
C7552 5101 133 94.4% 99%

100%
4
19

6
61

9
24

13
43

6
61

23
183

2
5

C7552.s 4830 0 97.3% 100% 6 8 12 18 8 33 2

Table 2 . Comparison of Number of Test Points and Fault Coverage

Circuit [Briers 86] [Youssef  93] [Seiss 91] Path Tracing
Name Con Obs Cov Con Obs Cov Con Obs Cov Con Obs Cov

 s420 NA NA NA 2 0 100% NA NA NA 2 0 100%
 s641 NA NA NA 2 1 100% NA NA NA 1 1 100%
 s713 NA NA NA 2 1 97.8% NA NA NA 1 1 100%
 s838 NA NA NA 3 12 98.5% NA NA NA 2 0 100%
 s1238 NA NA NA 9 13 98.8% NA NA NA 6 5 100%
 C2670 7 46 99.9% 1 10 96.1% NA NA NA 4

7
3
18

99%
100%

 C2670.s NA NA NA NA NA NA 3 7 100% 2 2 100%
 C7552 38 55 99.9% 11 5 98.9% NA NA NA 4

19
6
61

99%
100%

 C7552.s NA NA NA NA NA NA 18 2 100% 6 8 100%

7.  Exper imental Results
The method described in this paper was used toinsert test

points in some of the ISCAS 85 [Brglez 85]  and ISCAS 89
[Brglez¬89]  benchmark  ci rcui ts  that contain
random-pattern-resistantfaults.  LFSR's were used to apply
32,000 pseudo-random test patterns to each circuit.  It was
assumed that the flip-flops in the ISCAS 89 circuits were
configured as part of the LFSR during testing so that  the
circuitsare tested like combinational  circuits.  The number
of  stages in the LFSR for  each circuit  was equal  to the
number of primary inputs plus the number of flip-flops.

The procedure described in this paper was used to insert
test points into each circuit so that all  single stuck-at faults
were detected for the set  of  32,000  pseudo-random test
patterns.  The results are shown in  Table 1.   The total
number  of  faults is shown followed by the number  of
redundant faults.  The redundant faults are made testable by
the test point  insertion procedure.  Simplified versions of
the circuits C2670 and C7552 were made by removing the
redundant  logic;  these circuits are labeled C2670.s and
C7552.s.  The fault coverage before test point insertion and
after test point insertion is shown.  The fault coverage is for
all faults including redundant faults. The number of  control
points (Num Con) and the number of observation points
(Num Obs) that were inserted are shown.  The amount  of
pattern decoding logic that was needed to drive the control
points is shown.  It is measured in gate equivalents (GE's)

that reflect a static CMOS technology: (0.5)(n) GE’s for an
n-input NAND or NOR, and (2.5)(n-1) GE’s for an n-input
XOR.  The total hardware overhead added to each circuit  is
shown  for  two  cases.   The  first  case  is where  no
condensation network is used to combine the observation
points;  each observation point  is fed into an extra scan
element.  The number of  extra gate equivalents and extra
scan elements added to the circuit are shown for this case.
The extra gates are due to the pattern decodinglogic plus the
control gate for eachcontrol  point.  There is one extra scan
element for each observation point. The second case that is
shown is where the observation points are combinedthrough
a condensation network  which  is constructed  using  the
techniques in [Fox¬77]  to ensure that  no aliasing occurs.
The condensation network adds more gates, but reduces the
number of  extra scan elements.  As can be seen, very few
gates are required for the pattern decoding logic.The average
number of gate equivalents for thepattern decoding logic for
each control  point is less than 2 GE's.  The fault coverage
after  test  point  insertion is 100% of  all  faults including
those in the pattern decoding logic.

In Table 2,  the results for the path  tracing  method
described in this paper  are compared with the published
results for the test point  insertion methods in [Briers 86],
[Seiss 91], and [Youssef 93].  The number of  control  points
(Con) and observation points (Obs) that were inserted by
each  method  is shown  along with  the  resulting  fault



coverage (Cov).  As can be seen, the path tracing method
uses significantly fewer test points to achieve the same or
better fault coverage than the other methods.

8.  Conclusions
This paper presented two  innovations  for  test  point

insertion:  (1) a path tracing method for test point placement
of both control  and observation points, and (2)  the use of
pattern decoding logic to activate controlpoints.  These two
innovations greatly  improve the effectiveness of  control
points thereby reducing the total  number of  test points that
are required to provide a desired fault coverage.Experimental
results indicate asignificant reduction in the number of  test
points comparedwith previous methods.  Fewer test points
means less area and performance overhead  for  BIST.
Furthermore, unlike other test point insertion methods, the
method described in this paper  is not  based  on  signal
probabilities or  fault  detection probabilities, so it  can be
used to increase fault coverage for any set  of  test  patterns,
not just pseudo-random test patterns.

The methoddescribed in this paper can be extended to
minimize the performance impact  of  inserting test  points.
Critical  timing paths in the circuit  can be identified, and
then when the matrix of  test point solutions is formed (as
described in Sec.¬5), the columns that correspond to control
points on a critical  timing path can be removed.  The set
covering procedure willthen select  a set  of  test  points to
satisfy the fault coverage requirement without  adding any
delay  to  the critical  timing  paths.   This technique is
currently being investigated as a way to achieve complete
fault coverage during BIST with no performance degradation.
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