
Observation
Point

y

G1
G2

Figure 1 . Example of Observation Point

Control
Point

Cntl

G2

G3

G1

Figure 2 . Example of Control-1 Point

Control
Point

Cntl

G2

G3

G1

Figure 3 . Example of Control-0 Point

Test Point Inser tion Based on Path Tracing

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Stanford University, Stanford, CA 94305

Abstract
This paper presents an innovative method for inserting

testpoints in the circuit-under-test to obtain complete fault
coverage for a specified set of test patterns. Rather than
using probabilistic techniques for test point placement, a
path tracing procedureis used to place both control and
observation points. Rather than adding extra scan elements
to drive the control points, a few of the existing primary
inputs to the circuit are ANDed together to formsignals that
drive thecontrol points. By selecting which patterns the
control point is activated for, the effectiveness of each
control point is maximized. A comparison is made with the
best previously published results for other test point
insertion methods, and it is shown that the proposed method
requires fewer testpoints and less overhead to achieve the
same or better fault coverage.

1. Introduction
Pseudo-random pattern testing is an attractive technique

for built-in self-test (BIST) because very little hardware is
required for test pattern generation. A linear feedback shift
register (LFSR) or cellular automaton (CA) can be used to
generate the pseudo-random patterns. These circuitscan also
be used as output response analyzers thereby serving two
purposes during BIST.

Unfortunately, the pseudo-random patterns that are
generated during BIST donot always provide high enough
fault coverage for a reasonable test length. There are two
ways to solve this problem: modify the pattern generator,
or modify the circuit-under-test. A pseudo-random pattern
generator can be modified by adding logic to weight the
patterns [Schnurmann 75],[Wunderlich 87], [Pomeranz 92];
map the patterns [Touba¬95a,¬95b], [Chatterjee¬95a]; or
reseed the generator [Venkataraman¬93], [Hellebrand¬95],
[Zacharia¬95]. The circuit-under-test can be modified by
inserting test points [Eichelberger 83]; or by redesigning it
[Touba¬94], [Chiang¬94], [Chatterjee¬95b]. Each of these
techniqueshas its advantages, and the one that is most
suitable depends on the particular application. This paper
presents a new method for inserting test points in
combinational circuitsthat significantly reduces the number
of test points required for a particular fault coverage
compared with previous techniques.

Test point insertion involves adding control and
observation points to the circuit-under-testin a way that the
system function remains the same, but the testability is
improved. An observation point is an additional primary
output that is inserted in the circuit to increase the

observability of faults in the circuit. In the example in
Fig.¬1, an observation point is inserted at the output of
gate¬G1 such that faults are observable regardless of the
logic value at node y. A control point is inserted in the
circuit such that when it is activated, it fixes the logic value
at a particular node to increase the controllability of some
faults in the circuit. A control point can also affect the
observability of some faults in the circuit because it can
change the propagation paths forthe faults. In the example
in Fig. 2, a control point is inserted to fix the logic value at
the output of gate¬G1 to a ‘1’ when the control point is
activated (this is called a control-1 point). This is
accomplished by placing an OR gate at the output of
gate¬G1. In the example in Fig. 3, a control point is
inserted to fix the logic value at the output of gate¬G1 to a
‘0’ when the control point is activated (this is called a
control-0 point). This is accomplished by placing an AND
gate at the output of gate¬G1. During system operation, the
control points are not activated and thus don't affect the
system function. However, control points do add an extra
level of logic to some paths in the circuit. If a control point
is placedon a critical timing path, it can increase the delay
through the circuit.

Since test points add both area andperformance overhead,
it is important to try to minimize the number of test points
that are inserted to achieve the desired fault coverage.
Optimal test point placement for circuits with reconvergent
fan-out has been shown to be NP-complete
[Krishnamurthy¬87]. Briers and Totton [Briers¬86] were the
first to propose a systematic method for test point placement
to increase pseudo-random pattern testability. They use
simulation statistics to identify correlation between signals,

and then insert test points to break the correlation. The
number of test points inserted by this method is large.
Iyengar and Brand [Iyengar¬89] proposed an improved
method that uses fault simulation to identify gates that
block fault propagation, andthen insert test points to allow
propagation. Savaria et al., in [Savaria¬91] and
[Youssef¬93], use the COP testability measures [Brglez¬84]
to guide the placement oftest points. They identify sectors
of hard-to-detect faults and insert test points atthe origins of
the sectors. Seiss et al., in [Seiss¬91], form a cost function
based on the COP testability measures andthen compute, in
linear time, the gradient of thefunction with respect to each
possible test point. The gradients are used to approximate
the global testability impact for inserting a particular test
point. Based on these approximations, a test point is
inserted andthe COP testability measures are recomputed.
This process iterates until the testability is satisfactory.
Cheng and Lin, in [Cheng¬95], enhance the procedure in
[Seiss¬91] to consider the performanceimpact of inserting a
particular test point. They showed that by avoiding control
point insertion on critical timing paths, high fault coverage
can be achieved with zero performance degradation. In
[Touba¬94], a method is proposed for inserting test points
during logic synthesis. The logic is factored in a way that
minimizes the number of test points that are required.

This paper presents a new method for test point
insertion. Fault simulation is used to identify faults that are
not detected by a specified set of test patterns. For each
undetectedfault, a path tracing procedure is used to identify
the set of test points that will enable the fault to be detected,
i.e., the set of test point solutions for the fault. Given the
set of test points solutions for each undetected fault, a
minimal set of test points to achieve the desired fault
coverage isselected using a set covering procedure. A new
technique is used for driving the control points. Rather than
adding extra scan elements to drivethe control points, a few
of the existing primary inputs to the circuit are ANDed
together to form signals that drive the control points. This
logic selects which patterns the control points are activated
for. A method is described for synthesizing this logic to
maximize the effectiveness of each control point.

Unlike other methods for test point placement that are
basedon signal probabilities or detection probabilities for
pseudo-random patterns, the method presented in this paper
is not based on randomness properties of the test patterns
and therefore can be used for any set of test patterns. Theset
of test patterns can be pseudo-random, quasi-random (e.g.,
generated by a multiple input signature register), or not be
random at all. Other test point placement methods that
assumepseudo-random patterns may not be effective for
BIST techniques that use multiple input signature registers
to apply patterns to the circuit-under-test.

2. Overview of Test Point Inser tion
Procedure
The problem of interest is given a set of test patterns

that will be applied to the circuit-under-test, insert as few
test points as necessary to enable all of the faults in the

circuit to be detected. An overview of the test point
insertion procedure is as follows:
1. Perform fault simulation to identify undetected faults.

Fault simulation is performed for the set of test patterns
applied to the circuit-under-test to determinewhich faults are
already detected and which require test points in order to be
detected.
2. Compute the set of test points that enable each undetected

fault to be detected.
For each of the faults that require test points, a set of test

point solutions is computed such that if any test point in
the set is inserted into the circuit, the fault will be detected.
This is described in Sections 3 and 4.
3. Select a minimal set of test points that provides complete

fault coverage.
Given the set of test point solutions for each fault, a set

covering procedure is used to find a minimal set of test
pointsthat enables all of the faults to be detected. This is
described in Sec.¬5.
4. Synthesize logic to activate the control points.

Pattern decoding logic is synthesized to activate control
points for certain patterns. This is described in Sec.¬6.

3. Computing Test Point Solutions
The faults that go undetected by the set of test patterns

applied to the circuit-under-test are the faultsthat require test
points in order to be detected. This section describes a
method forcomputing the set of test points solutions for a
given undetected fault for a specified set of test patterns.

Definit ion 1 : Test point p is said to bea solution for
fault f if inserting test point p into the circuit enables fault f
to be detected for the specified set of test patterns.

In order for a fault to be detected, it must be both
provoked and propagatedto a primary output. A stuck-at 1
(stuck-at 0) fault is provoked if the logic value at the fault
site is ‘0’ (‘1’) . A fault is propagated toa primary output if
a sensitized path exists from the fault site to a primary
output. An observation point can only help with
propagating a fault, while a control point can help with both
provoking and propagating a fault.

Definit ion 2 : A sensitized path exists from nodex to
nodey in a circuit if complementing the logic value at node
x complements the logic value at nodey.

Note that a sensitized path exists from an input of gate g
to the output of the gateg if all of the other inputs to gateg
areat the non-controlling logic value ('0' for OR and NOR
gates, and'1' for AND and NAND gate).

The method presented here for computing test point
solutions involves identifying sensitized paths to and from
fault sites in the circuit. Fault-free simulation is performed
for a pattern, and then path tracing from the fault sites is
usedto identify the sensitized paths. A fast approximate
method for path tracing is given in [Abramovici¬84].
Techniques for faster operation are suggested in
[Ramakrishnan90]. An exact method for path tracing is
given in [Menon¬91]. These three papers describe path
tracing from the primary outputs (called critical path

tracing), however the techniques can be easilygeneralized for
path tracing from a fault site.

3.1 Computing Observation Point Solutions
Some patterns may provoke a fault but not propagate it

to a primary output. If a fault is provoked by a pattern, then
an observation point that is inserted at a node that the fault
can propagate to will enable the fault to be detected and
therefore is a solution for the fault. To find the set of
observation point solutions for a fault that is provoked by a
particular pattern,path tracing can be used to identify the
nodes that the fault can propagate to.An example is shown
in Fig. 4. Fault-free simulation is performed for a pattern
that provokes the fault, and forward path tracing from the
fault site is used to identify the propagation path for the
fault. The fault propagates through gates G3 and G5, but is
blocked at gatesG6 andG8 and therefore doesn't propagateto
a primary output. Inserting an observation point at node a
or nodeb would enable the fault to be detected,so those two
nodes form the set of observation point solutions for the fault
for that pattern. The union of the set of observation point
solutions for each pattern that provokes a particular fault
gives the full set of observation point solutions for the fault.

1
0

0 s-a-1

11

0
0

1
1

0

1

1
1

1

1

0

1

0

a
b

G1

G2

G3

G4

G5

G6

G7

G8

G9

Figure 4 . Example: Observation Point at Nodea or b is a
Solution

3.2 Computing Control Point Solutions
Some patterns may propagate a fault to a primary output

but not provoke the fault. In that case, a control point is a
solution for the fault if it complements the logic value at
the fault site thereby provoking the fault. For a fault that is
propagated toa primary output by a particular pattern, path
tracing can be used to find the nodes that have a sensitized
path to the fault site for that pattern. Control points that
complement the logic value at a node that has a sensitized
path to the fault site are solutions for the fault provided that
they don’t block fault propagationto a primary output. An
example is shown in Fig. 5. Fault-free simulation is
performed for a pattern that propagates the faultto a primary
output, and backward path tracing fromthe fault site is used
to identify sensitizedpaths. Both inputs of gate G6 have a
sensitizedpath to the output of gate G6. Neither of the
inputs of gate G4 have a sensitized path to the output of
gateG4. One of the inputs of gate G3 has a sensitized path
to the output of gate G3. Inserting a control-1 point at node
a, c, d, or e would complement the value at the fault site
thereby provoking thefault. However, forward path tracing
from nodee identifies that it has a sensitized path to gate
G9, so inserting a control-1 point at nodee would block the
fault from propagating to a primary output. Therefore, only
control-1 points at nodesa, c, andd are solutions.

0
1

0

01

1
1

1
1

0

1

1

1

1

0
1

1

1

a

G1

G2

G3

G4

G5

G6

G7

G8

G9

s-a-0

c

e
d

Figure 5 . Example: Control-1 Point at Nodea, c, or d is a
Solution, but Nodee is Not a Solution Because It Blocks

Propagation to a Primary Output

Some patterns may provoke a fault but a single gate may
block propagation to a primary output. In that case, a
control point can enable propagation to a primary output if
it complements the logic value at the controlling input of
the blocking gate. For a provoked fault for which fault
propagation is blocked bya single gate, path tracing can be
used to find the nodes that have a sensitized path to the
controlling input of the blocking gate. Control points that
complement the logic value at a node that has a sensitized
path to the controlling input of a blocking gate are solutions
for the fault provided that they still provoke the fault. An
example is shown in Fig.¬6. Fault-free simulation is
performed for a pattern that provokes thefault, and backward
path tracing from thecontrolling input of the blocking gate
is used identify sensitized paths. Both of the inputs of gate
G7 are sensitized to the output of G7. Both of the inputs to
G4 are sensitized to the output of G4. The output of G4
fans out to gate G6, and forward path tracing identifies that
it has a sensitized path to the fault site. Inserting control
points at the nodes before the fanout would cause the faultto
not be provoked, and therefore they are not solutions.
Control-0points at nodes f, g, and h form the solution set
for the fault for that pattern. The union of the set of control
point solutions for a particular fault for each pattern gives
the full set of control point solutions for the fault.

1
0

0

11

1
1

1
1

0

1

1

1

1

1
0

1

0

G1

G2

G3

G4

G5

G6

G7

G8

G9

s-a-0

g

h
f

e
i
j

F igure 6 . Example: Control-0 Point at Nodef, g, or h are
Solutions, but Nodese, i , and j are Not Solutions Because They

Don't Provoke the Fault

4. Faults Requir ing Multiple Test Points
Some faults may not have single test point solutions. If

none of the patterns provoke or propagate the fault, then
multiple test points are required. The existence of a single
test point solution for a fault can easily be checked when fault
simulation is performed to identify the undetected faults.

In Sec.¬3, a method was described for computing a set of

single test point solutions for a fault such that if any test
point in the set is inserted in the circuit, the fault will be
detected.This method can be extended to handle faults that
require multiple test points. If a fault requiresn test points,
thenn sets of single test points can be computed such that if
one test point from each set is inserted in the circuit, the
fault will be detected. For each pattern, path tracing can be
used to find a set of test points that provoke the fault and the
set of test points that propagate the fault to a primary output
as was described in Sec.¬3. In the example in Fig. 7, the
sensitized paths that provoke the fault and the paths where
the fault can propagate are identified using path tracing. The
control points that provoke the fault form one set (control-0
at node m and control-0 at node n), and the observation
points that enable the fault to propagate to a primary output
form another set (observation point at nodea and nodeb). If
a test point from each set is inserted in the circuit, then the
fault will be detected. For faults with single test point
solutions, the full set of solutions was formed by taking the
union of the sets of single test points solutions for each
pattern, however this cannot be done for faults withmultiple
test point solutions. The reason is that if the union of the
sets is taken, then a test point from one set will provoke the
fault for somepattern, but the test point from the other set
may propagate the fault to a primary output for a different
pattern, thus there is no guarantee that the fault will be
detected. So instead of computing the full set of multiple
test point solutions, the largest set of multiple test point
solutions for a single pattern is used.

1
0

1

11

0
1

1
1

1

1

1
0

1

1

0

1

0

G1

G2

G3

G4

G5

G6

G7

G8

G9
s-a-1

a
b

n
m

Figure 7 . Example: A Control-0 Point at Nodem or n
Provokes the Fault, and an Observation Point at Nodea or b

Propagates the Fault to a Primary Output.

5. Selecting a Set of Test Points to Insert
Once the set of test point solutions for each undetected

fault has been computed, a set covering procedure can be
used to select a minimal set of test points that will enable
all of the faults to be detected. A matrix is constructed in
which each column corresponds to a test point solution.
For each undetected fault, a row is added to the matrix in
which an ‘X’ is placed ineach column that corresponds to a
test point solution for the fault. If the fault requires a
multiple test point solution, then multiple rows are added.
An example is shown in Fig. 8. The first row corresponds
to fault¬1 for which the set of single test point solutions is
an observation point at nodew, acontrol-1 point at node¬u,
and a control-0 pointat node¬v. Fault 2 requires a multiple
test point solution, so both the second and the third row
correspond to it. The set of control points that provokes
fault¬2 is a control-1 point at node¬ u, a control-0 point at

node¬v, and a control-1 point at node¬y. The set of
observationpoints that propagate fault¬2 to a primary
output is an observation point at node¬v and an observation
point at node¬ x.

O-v O-w O-x C1-u C0-v C0-w C1-y C1-z
Fault 1 X X X
Fault 2 X X X

X X
Fault 3 X X X
Fault 4 X X X
Fault 5 X X

Figure 8 . Example: Matrix of Test Point Solutions for
Each¬Fault

A set coveringprocedure is used to select a minimal set
of columns that has at least one ‘X’ in each row (set
covering is NP-complete, but good heuristics exist
[Christofedes¬75]). One ‘X’ in each row ensures that all of
the faults will be detected. In the example in Fig. 8, one
such solution is the third column (observation point at node
x) and the fourth column (control-1 point at node u). The
test points corresponding to the selected columns areinserted
into the circuit. Note that for the example in Fig. 8, if the
test points were inserted one ata time based on maximizing
the fault coverage that results after each test point was
inserted (as is the case in other test point insertion methods),
thenthe first test point to be inserted would be a control-0
point at nodev because that would detectfault 1, fault 3, and
fault 4. However, in order to detect fault 2 and fault 5, at
least two more test points would have to be inserted. Thus,
for this example, the greedy method results in 3 test points
compared with only 2 if the set covering procedure is used.

6. Control Point Activation
Once the test points have been inserted, the remaining

task is to design the logic that drives the control points. A
control point must be activated for certain patterns in order
to detect the faults for which it was inserted. However, a
control point cannot be activated for all patternsbecause that
would reduce the fault coverage. Previous test point
insertion techniques add extra scan elements to drive the
control points. This is illustrated in Fig. 9 where two extra
scan elements are added to drive the two controlpoints. The
pseudo-random pattern generator is used to apply values to
the extra scan elements. Thus a control point is randomly
activated for roughly half of the patterns. This approach
limits the potential of each control point. There may be
some patterns for which a control point is not activated, but
if the control point had been activated, some faults would
have been detected. Conversely, there maybe some patterns
for which the control point is activated, but if it hadn’ t been
activated, some faults would have been detected.

A new approach for activating control pointsis presented
here. Pattern decoding logic is used to drive the control
points. An example is shown in Fig. 10 where AND gates
are used to drive each of the control points.Control point 1
is activated for any patternthat has a ‘1’ in the last two bit
positions. Control point 2 is activated for any pattern that

Control
Point 1

Control
Point 2

Circuit Under Test

Figure 9 . Control Points Driven by Extra Scan Elements

Control
Point 1

Control
Point 2

Circuit Under Test

Test
Mode

Figure 1 0 . Control Points Driven by Pattern Decoding Logic

has a '1' in the third to last bit position, and a '0' in the
second to last bit position. The decoding logic function for
activating each control point is formed by placing all of the
patterns for which the control point should be activated in
the on-set, all of the patterns for which the control point
should not be activated for in the off-set, and the remaining
patterns in the don’ t care set (how to determine which
patterns to place in the on-set and off-set will be explained
later). This function is then passed to a logic synthesis tool
to generate the pattern decoding logic. Using this pattern
decoding logic to activate the control point maximizes the
control point's effectiveness while ensuring that it won’ t
cause faults that were previously detected to become
undetected. Moreover, becauseof the large number of don’ t
cares,the pattern decoding logic usually amounts to only
one or two gates (as indicatedby the experimental results in
Sec.¬7) and therefore results in less area overhead than
adding an extra scan element. A test mode line is used to
disable the control points during system operation. The
delay introducedby a control point during system operation
is the same regardless of which method is used to drive the
control point. In either case, the signal driving the control
point is a static ‘0’ during system operation, so the delay
through the control point is equal to the delay through the
control gate (see Figs. 2 and 3).

Now the process of determining which patterns shouldbe
placed in the on-setand off-set of the pattern decoding logic

function for each control point will be explained. First
consider the off-set. A fault that was detected by pattern v
before inserting a control point may no longer be detected if
the controlpoint is activated for pattern v. So one way to
ensure that inserting control points doesn’ t cause faults to
no longer be detected is to place one patternthat detects each
fault into the off-set so that the control points won’ t be
activated for those patterns. During the initial fault
simulation,when a new fault is detected, the pattern that
detected it is recorded. These patterns are placed in the
off-set of the decoding logicfunction for each control point.
This is a conservative approach since some of the patterns
may detect thesame faults regardless of whether the control
point is activated or not. An optional step to reduce the
off-set for a control point is use fault simulation to check
which patterns are really affected by the control point. Fault
simulation can be done with the control point activated for
each pattern in the off-set, and the patterns which drop the
same set of faults as before(i.e., with no control point) can
be removed from the off-set sinceit doesn’ t matter for those
patterns whether the control point is activated or not.

The on-set of the decoding logic function contains the
patterns for which the control point is activated. The
purpose of a control point is to enable detection of the faults
for which it is a solution. It must be activated for a pattern
that detects each of the faults for which it is a solution.
When the set of control point solutions are computed for
each undetected fault, the patterns for which each control
point enables the fault to be detected are recorded. For a
control point that is selected for insertion, one of the
recorded patterns is added to the on-set for each fault for
which the control point is a solution. The patterns that are
added to the on-sets for each of the inserted control pointsare
chosen so that the on-sets are disjoint. This ensures that
there are no conflicts with more than one control point
being activated for the same pattern. An example of selecting
the on-sets for 3 control points is shown in Fig.¬11. For
each fault, the set of patterns for which each control point
will enable the fault to be detected are listed. One patternfor
each fault is selected and added to the appropriate control
point’s on-set. The patterns are selected so that the on-set
for each control point is disjoint. If control¬point 1 is
activated for the pattern 101110, it enables fault¬1 and
fault¬3 to be detected. Ifcontrol¬point¬2 is activatedfor the
samepattern, 101110, it enables fault¬2 to be detected.
However, if both control¬point¬1 and control¬point¬2 are
activatedfor the same pattern, then it is possible that there
would be a conflict such that oneof the faults would not be
detected. So in order to avoid that, control¬point¬2 can be
activated for the pattern011100 instead.

Control Point 1 Control Point 2 Control Point 3
Fault 1 1 0 1 1 1 0, 110101, 001110, ...
Fault 2 101110,0 1 1 1 0 0, 110110, ... 000110, 000111, 001111, ...
Fault 3 1 0 1 1 1 0, 010110, 010011, ... 011010, 011011, 011111, ...
Fault 4 0 0 1 0 1 0, 110111, 111001, ...
Fault 5 1 1 0 0 1 1, 011010, 011001, ...

On-Set { 101110, 001010} {0111000} {110011}

Figure 1 1 . Example: Selecting On-Sets for 3 Control Points

Table 1 . Results for Test Point Insertion in Benchmark Circuits

Circuit Num Num Coverage Coverage Num Num Decode No Condensation With Condensation
Name Faults Red Before TPI After TPI Con Obs Gates Gates Scan Elem Gates Scan Elem

 s420 215 0 90.2% 100% 2 0 2 4 0 4 0
 s641 346 0 97.6% 100% 1 1 2 3 1 3 1
 s713 405 38 88.3% 100% 1 1 2 3 1 3 1
s838 667 0 93.8% 100% 2 0 6 7 0 7 0
s1196 968 0 99.6% 100% 1 0 1 2 0 2 0
s1238 1063 67 93.5% 100% 6 5 18 24 5 31 2
C2670 1881 92 91.3% 99%

100%
4
7

3
18

6
8

10
15

3
18

15
55

1
2

C2670.s 1717 0 96.7% 100% 2 2 4 6 2 9 1
C7552 5101 133 94.4% 99%

100%
4
19

6
61

9
24

13
43

6
61

23
183

2
5

C7552.s 4830 0 97.3% 100% 6 8 12 18 8 33 2

Table 2 . Comparison of Number of Test Points and Fault Coverage

Circuit [Briers 86] [Youssef 93] [Seiss 91] Path Tracing
Name Con Obs Cov Con Obs Cov Con Obs Cov Con Obs Cov

 s420 NA NA NA 2 0 100% NA NA NA 2 0 100%
 s641 NA NA NA 2 1 100% NA NA NA 1 1 100%
 s713 NA NA NA 2 1 97.8% NA NA NA 1 1 100%
 s838 NA NA NA 3 12 98.5% NA NA NA 2 0 100%
 s1238 NA NA NA 9 13 98.8% NA NA NA 6 5 100%
 C2670 7 46 99.9% 1 10 96.1% NA NA NA 4

7
3
18

99%
100%

 C2670.s NA NA NA NA NA NA 3 7 100% 2 2 100%
 C7552 38 55 99.9% 11 5 98.9% NA NA NA 4

19
6
61

99%
100%

 C7552.s NA NA NA NA NA NA 18 2 100% 6 8 100%

7. Exper imental Results
The method described in this paper was used toinsert test

points in some of the ISCAS 85 [Brglez 85] and ISCAS 89
[Brglez¬89] benchmark ci rcui ts that contain
random-pattern-resistantfaults. LFSR's were used to apply
32,000 pseudo-random test patterns to each circuit. It was
assumed that the flip-flops in the ISCAS 89 circuits were
configured as part of the LFSR during testing so that the
circuitsare tested like combinational circuits. The number
of stages in the LFSR for each circuit was equal to the
number of primary inputs plus the number of flip-flops.

The procedure described in this paper was used to insert
test points into each circuit so that all single stuck-at faults
were detected for the set of 32,000 pseudo-random test
patterns. The results are shown in Table 1. The total
number of faults is shown followed by the number of
redundant faults. The redundant faults are made testable by
the test point insertion procedure. Simplified versions of
the circuits C2670 and C7552 were made by removing the
redundant logic; these circuits are labeled C2670.s and
C7552.s. The fault coverage before test point insertion and
after test point insertion is shown. The fault coverage is for
all faults including redundant faults. The number of control
points (Num Con) and the number of observation points
(Num Obs) that were inserted are shown. The amount of
pattern decoding logic that was needed to drive the control
points is shown. It is measured in gate equivalents (GE's)

that reflect a static CMOS technology: (0.5)(n) GE’s for an
n-input NAND or NOR, and (2.5)(n-1) GE’s for an n-input
XOR. The total hardware overhead added to each circuit is
shown for two cases. The first case is where no
condensation network is used to combine the observation
points; each observation point is fed into an extra scan
element. The number of extra gate equivalents and extra
scan elements added to the circuit are shown for this case.
The extra gates are due to the pattern decodinglogic plus the
control gate for eachcontrol point. There is one extra scan
element for each observation point. The second case that is
shown is where the observation points are combinedthrough
a condensation network which is constructed using the
techniques in [Fox¬77] to ensure that no aliasing occurs.
The condensation network adds more gates, but reduces the
number of extra scan elements. As can be seen, very few
gates are required for the pattern decoding logic.The average
number of gate equivalents for thepattern decoding logic for
each control point is less than 2 GE's. The fault coverage
after test point insertion is 100% of all faults including
those in the pattern decoding logic.

In Table 2, the results for the path tracing method
described in this paper are compared with the published
results for the test point insertion methods in [Briers 86],
[Seiss 91], and [Youssef 93]. The number of control points
(Con) and observation points (Obs) that were inserted by
each method is shown along with the resulting fault

coverage (Cov). As can be seen, the path tracing method
uses significantly fewer test points to achieve the same or
better fault coverage than the other methods.

8. Conclusions
This paper presented two innovations for test point

insertion: (1) a path tracing method for test point placement
of both control and observation points, and (2) the use of
pattern decoding logic to activate controlpoints. These two
innovations greatly improve the effectiveness of control
points thereby reducing the total number of test points that
are required to provide a desired fault coverage.Experimental
results indicate asignificant reduction in the number of test
points comparedwith previous methods. Fewer test points
means less area and performance overhead for BIST.
Furthermore, unlike other test point insertion methods, the
method described in this paper is not based on signal
probabilities or fault detection probabilities, so it can be
used to increase fault coverage for any set of test patterns,
not just pseudo-random test patterns.

The methoddescribed in this paper can be extended to
minimize the performance impact of inserting test points.
Critical timing paths in the circuit can be identified, and
then when the matrix of test point solutions is formed (as
described in Sec.¬5), the columns that correspond to control
points on a critical timing path can be removed. The set
covering procedure willthen select a set of test points to
satisfy the fault coverage requirement without adding any
delay to the critical timing paths. This technique is
currently being investigated as a way to achieve complete
fault coverage during BIST with no performance degradation.

Acknowledgments
This work was supported in partby the Ballistic Missile

Defense Organization, Innovative Science and Technology
(BMDO/IST) Directorate and administered through the
Department of the Navy, Office of Naval Research under
Grant No. N00014-92-J-1782, by the National Science
Foundation under Grant No. MIP-9107760, and by the
Advanced ResearchProjects Agency under prime contract
No. DABT63-94-C-0045.

References
[Abramovici 84] Abramovici, M., P.R. Menon, and D.T. Miller, “Critical

Path Tracing: An Alternative to Fault Simulation,” IEEE Design &
Test of Computers, Vol. 1, pp. 89-93, Feb.¬1984.

[Briers 86] Briers, A.J., and K.A.E. Totton, “Random Pattern Testability
by Fast Fault Simulation,”Proc. of Int. Test Conf., pp. 274-281, 1986.

[Brglez 84] Brglez, F., “On Testability of Combinational Networks,”
Proc. of Int. Symposium on Circuits and Systems, pp. 221-225, 1984.

[Brglez 85] Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator in
Fortan,”Proc. of Int. Symp. on Circuits and Sys., pp. 663-698, 1985.

[Brglez 89] Brglez, F., D. Bryan, and K. Kozminski, “Combinational
Profiles of Sequential Benchmark Circuits,” Proc. of International
Symposium on Circuits and Systems, pp.¬1929-1934, 1989.

[Chatterjee 95a] Chatterjee, M., and D.K. Pradhan, “A Novel Pattern
Generator for Near-Perfect Fault-Coverage,”Proc. of VLSI Test
Symposium, pp. 417-425, 1995.

[Chatterjee95b] Chatterjee, M., D.K. Pradhan, and W. Kunz, “LOT:
Logic Optimization with Testability - New Transformations using
Recursive Learning,” Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 318-325, 1995.

[Chiang 94] Chiang, C.-H., and S.K. Gupta, “Random Pattern Testable
Logic Synthesis,” Proc. of International Conference on
Computer-Aided Design (ICCAD), pp. 125-128, 1994.

[Cheng 95] Cheng, K.-T., and C.J. Lin, “Timing-Driven Test Point
Insertion for Full-Scan and Partial-Scan BIST,” Proc. of International
Test Conference, pp.¬506-514, 1995.

[Christofedes 75] Christofedes, N., and K. Korman, “A Computational
Survey of Methods for the Set Covering Problem,” Management
Science, Vol. 21, No. 5, pp. 591-599, Jan. 1975.

[Eichelberger 83] Eichelberger, E.B., and E. Lindbloom, “Random-
Pattern CoverageEnhancement and Diagnosis for LSSD Logic Self-
Test,” IBM Journal of Research and Development, Vol. 27, No. 3,
pp.¬265-272, May 1983.

[Fox 77] Fox, J.R., “Test-point Condensation in the Diagnosis of Digital
Circuits,” Proc. of the IEE, Vol. 124, No. 2, Feb. 1977, pp. 89-94.

[Hellebrand 95] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman,
andB. Courtois, “Generation of Vector Patterns Through Reseeding
of Multiple-Polynomial Linear Feedback Shift Registers,” IEEE
Transactions on Computers, Vol.¬44, No. 2, pp.¬223-233, Feb.¬1995.

[Iyengar 89] Iyengar, V.S., and D. Brand, “Synthesis of Pseudo-Random
Pattern Testable Designs,” Proc. International Test Conference,
pp.¬501-508, 1989.

[Krishnamurthy 87] Krishnamurthy, B., “A Dynamic Programming
Approach to the Test Point Insertion Problem,” Proc. of the 24th
Design Automation Conference, pp. 695-704, 1987.

[Menon 91] Menon, P., Y. Levendel, and M. Abramovici, "SCRIPT: A
Critical Path Tracing Algorithm for Synchronous Sequential Circuits,"
IEEE Trans. on CAD, Vol. 10, No. 6, pp. 738-747, Jun. 1991.

[Pomeranz 92] Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random
Test Generation Based on aDeterministic Test Set for Combinational
and Sequential Circuits,” IEEE Transactions on Computer-Aided
Design, Vol. 12, No. 7, pp. 1050-1058, Jul. 1993.

[Ramakrishnan 90] Ramakrishnan, T., and L. Kinney, "Extension of the
Critical Path Tracing Algorithm," Proc. of the 27th Design Automation
Conference, pp. 720-723, 1990.

[Savaria 91] Savaria, Y., M. Youssef, B. Kaminska, and M. Koudil,
“Automatic Test Point Insertion for Pseudo-Random Testing,” Proc.of
Int. Symposium on Circuits and Systems, pp. 1960-1963, 1991.

[Schnurmann 75] Schnurmann, H.D., E. Lindbloom, and R.G. Carpenter,
“The Weighted Random Test-Pattern Generator,” IEEE Trans. on
Computers, Vol.¬C-24, No. 7, pp.¬695-700, Jul. 1975.

[Seiss 91] Seiss, B.H., P.M. Trouborst, and M.H. Schulz, “Test Point
Insertion for Scan-Based BIST,” Proc. of European Test Conference,
pp. 253-262, 1991.

[Touba 94] Touba, N.A., and E.J. McCluskey, “Automated Logic
Synthesis of Random Pattern Testable Circuits,” Proc. of International
Test Conference, pp. 174-183, 1994.

[Touba 95a] Touba, N.A., and E.J. McCluskey, “Transformed Pseudo-
Random Patterns for BIST,” Proc. of VLSI Test Symposium,
pp.¬410-416, 1995.

[Touba 95b] Touba, N.A., and E.J. McCluskey, “Synthesis of Mapping
Logic for Generating Transformed Pseudo-Random Patterns for
BIST,” Proc. of International Test Conference, pp.¬674-682, 1995.

[Venkataraman 93] Venkataramann, S., J. Rajski, S. Hellebrand, and S.
Tarnick, “An Efficient BIST Scheme Based on Reseeding of Multiple
Polynomial Linear Feedback Shift Registers,” Proc. of Int. Conf. on
Computer-Aided Design (ICCAD), pp. 572-577, 1993.

[Youssef93] Youssef, M., Y. Savaria, and B. Kaminska, “Methodology
for Efficiently Inserting and Condensing Test Points,” IEE
Proceedings-E, Vol. 140, No. 3, pp. 154-160, May 1993.

[Wunderlich 87] Wunderlich, H.-J., “Self-Test Using Unequiprobable
Random Patterns,” Proc. of FTCS-17, pp. 258-263, 1987.

[Zacharia 95] Zacharia, N., J. Rajski, and J. Tyszer, “Decompression of
Test Data Using Variable-Length Seed LFSRs,” Proc. of VLSI Test
Symposium, pp. 426-433, 1995.

