
Test Prioritization for Pairwise Interaction Coverage

Renée C. Bryce and Charles J. Colbourn
Computer Science and Engineering

Arizona State University
Tempe, Arizona 85287-8809

{rcbryce,colbourn}@asu.edu

ABSTRACT
Interaction testing is widely used in screening for faults. In
software testing, it provides a natural mechanism for test-
ing systems to be deployed on a variety of hardware and
software configurations. Several algorithms published in the
literature are used as tools to automatically generate these
test suites; AETG is a well known example of a family of
greedy algorithms that generate one test at a time. In many
applications where interaction testing is needed, the entire
test suite is not run as a result of time or cost constraints.
In these situations, it is essential to prioritize the tests. Here
we adapt a “one-test-at-a-time” greedy method to take im-
portance of pairs into account. The method can be used to
generate a set of tests in order, so that when run to com-
pletion all pairwise interactions are tested, but when termi-
nated after any intermediate number of tests, those deemed
most important are tested. Computational results on the
method are reported.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Algorithms, Measurement, Experimentation

Keywords
Biased covering arrays, covering arrays, greedy algorithm,
mixed-level covering arrays, pairwise interaction coverage,
software interaction testing

1. INTRODUCTION
Software testing is an expensive and time consuming ac-

tivity that is often restricted by limited project budgets.
Accordingly, the National Institute for Standards and Tech-
nology (NIST) reports that software defects cost the U.S.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
A-MOST’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-115-5/00/0004 ...$5.00.

economy close to $60 billion a year [28]. They suggest that
approximately $22 billion can be saved through more effec-
tive testing. There is a need for advanced software testing
techniques that offer a solid cost-benefit ratio in identifying
defects. Interaction testing is one such method that may
offer a benefit when used to complement current testing
methods [11, 14]. Interaction testing implements a model
based testing approach using combinatorial design. In this
approach, all t-tuples of interactions in a system are incor-
porated into a test suite. This testing method has been
applied in numerous examples including [3, 2, 4, 14, 15, 25,
26, 27, 34, 37]

The need for prioritization arises in many different phases
of the software testing process [17, 19, 20, 21, 30, 31, 36].
For instance, requirements need to be prioritized; tasks on
schedules need to prioritized; and testers may have to pri-
oritize the tests that they run.

A prioritized interaction test suite may be particularly
useful to testers who want to test key areas of concern first,
or for those that wish to run their tests in order of im-
portance until they exhaust their available resources. For
instance, a tester may request a complete test suite and at-
tempt to run as many tests as they can budget. In this
context, it is important to test the most important items
first. An example in testing web services is described in
[13]. In order to construct these test suites, biased covering
arrays are proposed here.

This paper is organized as follows: Section 2 presents def-
initions and background. Section 3 describes a method for
constructing biased covering arrays. Section 4 provides ini-
tial computational results.

2. COVERING ARRAYS

2.1 Definitions and Background
A covering array, CAλ(N ; t, k, v), is an N × k array. In

every N × t subarray, each t-tuple occurs at least λ times.
In our application, t is the strength of the coverage of in-
teractions, k is the number of factors (degree), and v is the
number of symbols for each factor (order). We treat only
the case when λ = 1, i.e. that every t-tuple must be covered
at least once.

This combinatorial object is fundamental when all fac-
tors have an equal number of levels. However, software sys-
tems are typically not composed of components (factors)
that each have exactly the same number of parameters (lev-
els). Then the mixed-level covering array can be used.

A mixed level covering array, MCAλ(N ; t, k, (v1, . . . , vk)),

1

1. start with empty test suite
2. while uncovered pairs remain do
3. for each factor
4. compute factor interaction weights
5. initialize new test with all factors not fixed
6. while a factor remains whose value is not fixed
7. select such a factor f that has the largest factor interaction weight,
8. using a factor tie-breaking rule
9. compute factor-level interaction weights for each level of factor f
10. select a level � for f which offers the largest increase in weighted density
11. using a level tie-breaking rule
12. fix factor f to level �
13. end while
14. add test to test suite
15. end while

Figure 1: Pseudocode for a greedy algorithm to generate biased covering arrays

is an N ×k array. Let {i1, . . . , it} ⊆ {1, . . . , k}, and consider
the subarray of size N × t obtained by selecting columns
i1, . . . , it of the MCA. There are

∏t
i=1 vi distinct t-tuples

that could appear as rows, and an MCA requires that each
appear at least once.

Some interactions are more important to cover than are
others; the covering array does not distinguish this, as it
assumes that all rows will be run as tests. When only some
rows are to be used as tests, certain tests are more desirable
than others.

Call the factors f1, . . . , fk. Suppose that, for each i, fi

has �i possible values ci,1, . . . , ci,�i . For each ci,j , we assume
that a numerical value between 0 and 1 is available as a
measure of importance, with 1 as most important and 0
as unimportant. Every value τ for fi has an importance
ti,τ . A test consists of an assignment to each factor fi of
a value τi with 1 ≤ τi ≤ �i. The first task is to quantify
the preference among the possible tests. In order to capture
important interactions among pairs of choices, importance
of pairs is defined by a weight which can take on values of
0 to 1, where 1 is the strongest weight. Specifically, the
importance of choosing τi for fi and τj for fj together is
ti,τi tj,τj .

The benefit of a test (in isolation) is
∑k

i=1

∑k
j=i+1 ti,τitj,τj .

Every pair covered by the test contributes to the total
benefit, according to the importance of the selections for
the two values. However in general we are prepared to run
many tests. Then rather than adding the benefits of each
test in the suite, we must account a benefit only when a
pair of selections has not been treated in another test. Let
us make this precise. Each of the pairs (τi, τj) covered in a
test of the test suite may be covered for the first time by this
test, or can have been covered by an earlier test as well. Its
incremental benefit is ti,τi tj,τj in the first case, and zero in
the second. Then the incremental benefit of the test is the
sum of the incremental benefits of the pairs that it contains.

The total benefit of a test suite is the sum, over all tests
in the suite, of the incremental benefit of the test.

A �-biased covering array is a covering array CA(N ; 2, k, v)
in which the first � rows form tests whose total benefit is as
large as possible. That is, no CA(N ′; 2, k, v) has � rows that
provide larger total benefit.

Although precise, this definition should be seen as a goal
rather than a requirement. Finding an �-biased covering
array is NP-hard, even when all benefits for pairs are equal
[12]. Worse yet, the value of � is rarely known in advance.
For these reasons, we use the term biased covering array to
mean a covering array in which the tests are ordered, and
for every �, the first � tests yield a “large” total benefit.

Covering arrays have been extensively studied [11]. Specif-
ically, techniques have been introduced in the areas of com-
binatorial constructions [5, 16, 22, 23, 35], heuristic search
[9, 10, 29], and greedy algorithms [1, 6, 7, 8, 12, 32, 33].
The overriding criteria for evaluation of these techniques
has been the size of the test suites and the execution time
for such constructions. Further consideration has been given
to other practical concerns such as permitting seeds, or user
specified tests, and blocking constraints of combinations that
are not permitted. Recently, prioritized ordering of tests [13]
has also been considered. The concept is straightforward –
testers may have priorities that they assign to different levels
for factors. The inclusion of the highest importance levels
should occur as early as possible in a test suite. The al-
gorithm presented here constructs pair-wise covering arrays
while covering the most important values early. This work
may be extended to t-way coverage.

3. THE ALGORITHM
We consider the construction of a test suite with k factors,

adapting the Deterministic Density Algorithm [12]. For fac-

tors i and j, the total benefit βij is
∑�i

a=1

∑�j

b=1 ti,atj,b, while
the remaining benefit ρij is the same sum, but of the incre-
mental benefits. Define the local density to be δi,j =

ρi,j

βij
.

In essence, δi,j indicates the fraction of benefit that remains
available to accumulate in tests to be selected. We define
the global density to be δ =

∑
1≤i<j≤k δi,j . At each stage,

we endeavor to find a test whose incremental benefit is at
least δ.

To select such a test, we repeatedly fix a value for each
factor, and update the local and global density values. At
each stage, some factors are fixed to a specific value, while
others remain free to take on any of the possible values.
When all factors are fixed, we have succeeded in choosing
the next test. Otherwise, select a free factor fs. We have

2

δ =
∑

1≤i<j≤k δi,j , which we separate into two terms:

δ =
∑

1≤i<j≤k
i,j �=s

δi,j +
∑

1≤i≤k
i�=s

δi,s.

Whatever level is selected for factor fs, the first summation
is not affected, so we focus on the second.

Write ρi,s,σ for the ratio of the sum of incremental benefits
of those pairs involving some level of factor fi, and level σ
of factor fs to the sum of (usual) benefits of the same set of
pairs. Then rewrite the second summation as

∑

1≤i≤k
i�=s

δi,s =
1

�s

�s∑

σ=1

∑

1≤i≤k
i�=s

ρi,s,σ.

We choose σ to maximize
∑

1≤i≤k
i�=s

ρi,s,σ. It follows that
∑

1≤i≤k
i�=s

ρi,s,σ ≥ ∑
1≤i≤k

i�=s
δi,s. We then fix factor fs to have

value σ, set vs = 1, and update the local densities setting
δi,s to be ρi,s,σ. In the process, the density has not been
decreased (despite some possible – indeed necessary – de-
creases in some local densities).

We iterate this process until every factor is fixed. The
factors could be fixed in any order at all, and the final test
has density at least δ. Of course it is possible to be greedy
in the order in which factors are fixed.

This method ensures that each test selected furnishes at
least the average incremental benefit. This may seem to be
a modest goal, and that one should instead select the test
with maximum incremental benefit. However, even when all
importance values are equal, it is NP-hard to select such a
test (see [12]).

Next we illustrate the operation of the method, before
reporting experimental results.

3.1 Algorithm Walk-through
The overall goal in constructing a covering array is to cre-

ate a 2-dimensional array in which all t-tuples are covered.
The secondary constraint is that as much weight be incor-
porated into the test suite as early as possible. In our im-
plementation, each level for every factor is assigned a weight
value between 0 and 1, where 1 is the highest importance.

Using a greedy approach (see Figure 1), this collection
is built one row at a time by fixing each factor with a level
(value). A test consists of an assignment to each factor fi of a
value τi with 1 ≤ τi ≤ �i, where �i is the number of levels (or
values) associated with a factor. The order in which factors
are assigned values is based on factor interaction weights.
Levels are selected based on a weighted density formula that
calculates a likelihood of covering as much uncovered weight
as possible for a row. Once all t-tuples have been covered,
the covering array is complete.

An example of building a row
Consider the input in Table 1 with three factors. The first
factor (f0) has four levels, the second (f1) has three levels,
and the third (f2) has two levels. Each level value is la-
belled in Table 1 with a unique ID, and a weight for each in
parenthesis.

Step 1 - Identify the order to assign levels to fac-
tors

To construct a row in the biased covering array, factors are
assigned values one at a time in order of decreasing factor
interaction weights. Factors that have been assigned values

Factor v0 v1 v2 v3

f0 0 (.2) 1 (.1) 2 (.1) 3 (.1)
f1 4 (.2) 5 (.3) 6 (.3) -
f2 7 (.1) 8 (.9) - -

Table 1: Input of three factors and their levels and
weights

Factor f0 f1 f2 Total
Interaction Weight
Weight
f0 - .4 .5 .9
f1 .4 - .8 1.2
f2 .5 .8 - 1.3

Table 2: Factor interaction weights

are fixed while those that have not been assigned values
are called free. Factor interaction weights are calculated
between two factors by multiplying the weights between all
levels of the two factors. The maximum weight is denoted
as wmax.

Table 2 shows the factor interaction weights for the input
from Table 1. The algorithm assigns levels for factors in
decreasing order of their factor interaction weights: f2, f1,
and f0.

Step 2 - Assign levels for each factor
To select a value for f2, either of its two levels v0 or v1

may be selected. The first level, v0, has a value of 7 in Table
1, while the second (v1) has a value of 8. According to the
level selection criteria, the one with the largest factor-level
interaction weight is chosen. There are two scenarios to
calculate the weighted density for level selection. If a level
is being selected in relation to a factor that has already been
fixed, then the contributing weight of selecting the new level
is 0.0 if no new weight is covered; otherwise the contributing
weight is the product of the current level under evaluation’s
weight and the fixed level’s weight. However, when selecting
a level value in relation to factors that have not yet been
assigned values, weighted density is calculated as the factor-
level interaction weight. Factor-level interaction weight is
calculated for a level, �, and a factor i that has a number of

levels called vmax, as:
∑vmax

j=1 (
wfij

∗w�

wmax
),

For instance, the factor-level interaction weights used to
select a value for f2 are:

f2v0
= (.05/1.3)+(.08/1.3) = .1

f2v1
= (.45/1.3)+(.72/1.3) = .9

Since the second level has a larger factor-level interaction
weight, the level v1 (8) is selected for factor f2.

The second factor to receive a value is f1 since it has the
second largest factor interaction weight. Factor f1 has three
levels to choose from. For each of these levels, weighted den-
sity is calculated in relation to the other factors. Since f2

has already been fixed with a value, density is increased by
the product of the weight of f2’s fixed level and the weight
of the level being evaluated for selection. Factor f0 on the
other hand has not yet been fixed with a level so weighted
density is increased by the formula that includes the likeli-
hood of covering weight with this factor in the future.

f1v0
= (.1/1.3)+(.2*.9) = .2569

f1v1
= (.15/1.3)+(.3*.9) = .38538

3

Row Number f0 f1 f2

1 0 5 8
2 1 6 8
3 2 4 8
4 3 5 8
5 0 6 7
6 0 4 7
7 1 5 7
8 2 5 7
9 3 6 7
10 2 6 7
11 1 4 7
12 3 4 7

Table 3: Output of the prioritized greedy algorithm
for the case study example

Row Unweighted Weighted
Number Density Density
1 4.71% 30.00%
2 4.12% 22.94%
3 4.12% 17.06%
4 17.06% 7.06%
5 30.00% 6.47%
6 22.94% 3.53%
7 6.47% 4.12%
8 2.35% 2.35%
9 3.53% 2.35%
10 1.18% 1.76%
11 1.76% 1.18%
12 1.76% 1.18%

Table 4: Weight covered in each row using Un-
weighted and Weighted density

f1v2
= (.15/1.3)+(.3*.9) = .38538

In this case, there is a tie between v1 and v2, broken by
taking the lexicographically first, v1.

Finally, the third factor to fix is f0. The weighted density
for f0’s levels is straightforward as it is the increase of weight
offered in relation to the other fixed factors.

f0v0
= (.2*.3)+(.2*.9) = .24

f0v1
= (.1*.3)+(.1*.9) = .12

f0v2
= (.1*.3)+(.1*.9) = .12

f0v3
= (.1*.3)+(.1*.9) = .12

Since v0 offers the largest increase in weight, it is selected
as the level for f0 in this test.

The generation of this one row demonstrates each type
of decision made in this algorithm for ordering factors and
assigning levels to factors. When the algorithm is given the
opportunity to complete, the output is shown in Table 3.

4. EMPIRICAL RESULTS
The weighted density algorithm generates test suites that

order rows in decreasing order of importance. Two algo-
rithms are compared using the data in Table 1. The first
utilizes unweighted density, and the second uses weighted
density to construct a biased covering array. The amount of
weight covered in each row is shown in Table 4. Weighted

Weight Covered using

Weighted and Non-Weighted Density Algorithms

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12

Test Number

C
u

m
u

la
ti

v
e

 W
e

ig
h

t
C

o
v

e
re

d

Weighted

Non-weighted

Figure 2: Cumulative weight covered using Un-
weighted and Weighted density

density covers more weight earlier. Figure 2 shows the dif-
ference in cumulative weight covered after each row.

Initially, one may have thought that the prioritization
would result in a significant increase in the number of tests.
For instance, in one example we ran 78 with half of the fac-
tors assigned the highest priority and the other half a low
priority. This resulted in 85 tests as opposed to 77 when
everything was weighted equally. Remarkably, though, the
example of unequal weights in Table 1 did not adversely af-
fect the overall size of the test suite. We explore this further,
considering several schemes for assigning weights.

Consider the input 2021023100 (this is a shorthand for 2
factors of 20 values each, 2 of 10 each, and 100 of 3 each),
with four different weight distributions:

• Distribution 1 (Equal weights)- All levels have the
same weight,

• Distribution 2 (50
50

split)- Half of the weights for
each factor are set to .9 and the other half to .1,

• Distribution 3 ((1
vmax

)2 split)- All weights of levels

for a factor are equal to (1
vmax

)2, where vmax is the
number of levels associated with the factor,

• Distribution 4 (Random)- Weights are randomly
distributed

The rate of cumulative weight coverage for an input dif-
fers depending on the associated weight distribution. Figure
3 shows the percentage of cumulative weight covered in the
first 20 tests for each of the four examples of different dis-
tributions. When all weights are equal (Distribution 1), the
result is a (non-biased) covering array. This exhibits the
slowest growth of weight coverage early on. However, when
there is more of a difference in the distribution of weights, a
biased covering array can often move more weight to occur
in the earliest rows.

For instance, the 50
50

split shows the most rapid coverage
of growth earliest. This may be expected because half of the
levels with a weight of .9 comprise the majority of the weight

and are quickly covered in the early rows. The 1
vmax

2
split

and Random are similar to each other, and intermediate
between the two other two extremes considered.

4

Cumulative Weight Covered Using

 Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Number

C
u

m
u

la
ti

v
e

 W
e

ig
h

t
C

o
v

e
re

d

Distribution 1

Distribution 2

Distribution 3

Distribution 4

Figure 3: Cumulative weight covered in the first 20
test using input 2021023100

In addition to the rate of cumulative weight coverage, the
size of the test suites generated vary:

• Distribution 1 (Equal weights)- 401 rows

• Distribution 2 (50
50

split)- 400 rows

• Distribution 3 ((1
vmax

)2 split)- 416 rows

• Distribution 4 (Random)- 405 rows

Distribution 3 has the effect of emphasizing the impor-
tance of pairs involving factors with few levels, and in this
example yields a larger covering array than unweighted den-
sity. In a more extreme example, we distributed weight as
(1

vmax
)10, producing a result of 433 rows.

The evidence from this scenario is that weighted density
does generate tests of greater weight early, and that the
weights themselves cause substantial variation in the size of
covering array produced. We consider several more scenar-
ios to examine this further. Table 5 shows the results in
seven cases: three have all factors with the same number of
levels and four are mixed level. Unweighted density usually
produces the smallest sized covering array. Figures 4, 5, 6,
and 7 show results of the cumulative weight distribution for
each weight distributions. Naturally, in a typical applica-
tion we cannot specify the weights, and hence these figures
merely illustrate the algorithm’s ability to accumulate large
weight early. For instance, the first half of tests using any of
the four weight distributions for 3100, over 90% of the weight
is covered; the first half of tests using any of the four weight
distributions for 101918171615141312111 covers between 75%
to 99% of the total weight; and in 350250, the first half of
tests covers over 95% of the total weight. When simply gen-
erating a covering array, we can control the weights used to
minimize the size of covering array generated. The variation
in sizes is reported in Table 5.

5. CONCLUSIONS
Previous algorithms used in tools to generate software in-

teraction test suites have been evaluated on criteria of accu-
racy, execution time, consistency, and adaptability to seed-
ing and constraints. This paper discussed a further impor-

Cumulative Weight Covered Using

Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Test Number

C
u

m
u

la
ti

v
e
 W

e
ig

h
t

C
o

v
e
re

d

Distribution 1

Distribution 2

Distribution 3

Distribution 4

Figure 4: Cumulative weight covered in the first 10
test using input 1019181716151413121

Cumulative Weight Covered Using

Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10

Test Number

W
e
ig

h
t

Distribution 1

Distribution 2

Distribution 3

Distribution 4

Figure 5: Cumulative weight covered in the first 10
test using input 82726224

Cumulative Weight Covered Using

Four Weight Distributions

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10

Test Number

C
u

m
u

la
ti

v
e
 W

e
ig

h
t

C
o

v
e
re

d

Distribution 1

Distribution 2

Distribution 3

Distribution 4

Figure 6: Cumulative weight covered in the first 10
test using input 350250

5

Weighting Equal 1
vmax

2 50
50

Split Random

34 9 13 9 13
1020 206 314 225 223
3100 32 38 31 32

1019181 94 125 98 101
716151

413121

82726224 70 98 77 81
151105514 175 238 185 188

350250 28 35 28 28

Table 5: Sizes of biased covering arrays with differ-
ent weight distributions

Cumulative Weight Covered using

Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Test Number

C
u

m
u

la
ti

v
e
 W

e
ig

h
t

C
o

v
e
re

d

Distribution 1

Distribution 2

Distribution 3

Distribution 4

Figure 7: Cumulative weight covered in the first 10
test using input 3100

tant criterion: prioritization based on user specified impor-
tance. An algorithm was described. Computational results
suggest that the method provides a useful, and simple, mech-
anism for generating prioritized test suites. Greedy methods
for constructing biased covering arrays can be useful when
testers desire a prioritized ordering of tests.

Acknowledgements
Research is supported by the Consortium for Embedded and
Internetworking Technologies and by ARO grant DAAD 19-
1-01-0406.

6. REFERENCES
[1] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A

framework of greedy methods for constructing
interaction test suites. In Proc. 27th International
Conference on Software Engineering (ICSE2005),
page to appear, May 2005.

[2] R. F. Berry. Computer bench mark evaluation and
design of experiments a case study. In Proc. IEEE
Wireless Communications Networking Conference
(WCNC03), 41(10):1279-1289, 1992.

[3] T. Berling and P. Runeson. Efficient Evaluation of
Multifactor Dependent System Performance Using
Fractional Factorial Design. IEEE Transactions on
Software Engineering, 29(9):769-781, 2003.

[4] K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation,
and code coverage. Proceedings of the Intl. Conf. on
Software Testing Analysis and Review, pages 503–513,
October 1998.

[5] C. Cheng, A. Dumitrescu, and P. Schroeder.
Generating small combinatorial test suites to cover
input-output relationships. Proceedings of the Third
International Conference on Quality Software (QSIC
’03), pages 76–82, 2003.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–44, October 1997.

[7] D. M. Cohen, S. R. Dalal, M.L.Fredman, and
G. Patton. Method and system for automatically
generating efficient test cases for systems having
interacting elements. United States Patent, Number
5,542,043, 1996.

[8] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to
automatic test generation. IEEE Software,
13(5):82–88, October 1996.

[9] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and
W. B. Mugridge. Constructing test suites for
interaction testing. Proc. Intl. Conf. on Software
Engineering (ICSE 2003), pages 38–48, 2003.

[10] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling.
Constructing strength three covering arrays with
augmented annealing. Discrete Mathematics, to
appear.

[11] C. J. Colbourn. Combinatorial aspects of covering
arrays. Le Matematiche (Catania), to appear.

[12] C. J. Colbourn, M. B. Cohen, and R. C. Turban. A
deterministic density algorithm for pairwise
interaction coverage. Proc. of the IASTED Intl.
Conference on Software Engineering, pages 242–252,
February 2004.

[13] C. J. Colbourn, Y. Chen, W.-T. Tsai. Progressive
Ranking and Composition of Web Services Using
Covering Arrays. Tenth IEEE International Workshop
of Object-oriented Real-time Dependable Systems
(WORDS2005), to appear.

[14] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton,
C.M. Lott, G.C. Patton, B.M. Horowitz. Model-based
testing in practice. Proc. Intl. Conf. on Software
Engineering (ICSE ’99), pages 285–294, May 1999.

[15] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Iannino. Applying design of
experiments to software testing. Proc. Intl. Conf. on
Software Engineering (ICSE ’97), pages 205–215,
October 1997.

[16] A. Dumitrescu. Efficient algorithms for generation of
combinatorial covering suites. Proc. 14-th Annual Intl.
Symp. Algorithms and Computation (ISAAC ’03),
Lecture Notes in Computer Science, pages 300–308,
2003.

[17] S. Elbaum, D. Gable, and G. Rothermel.
Understanding and measuring the sources of variation
in the prioritization of regression test suites. In
Proceedings of the 7th International Software Metrics
Symposium, pages 169–179 Apr. 2001.

6

[18] S. Elbaum, A. Malishevsky, and G. Rothermel. Using
fault estimation to improve test case prioritization.
Technical Report 99-60-13, Oregon State University,
Corvallis, OR, Feb. 2000.

[19] S. Elbaum, A. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In Proceedings of the 23rd
International Conference on Software Engineering,
pages 329–338, May 2001.

[20] S. Elbaum, A. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In
Proceedings of the International Symposium on
Software Testing and Analysis, pages 102–112, Aug.
2001.

[21] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies.
IEEE Transactions on Software Engineering,
18(2):159–182, Feb. 2002.

[22] A. Hartman. Software and hardware testing using
combinatorial covering suites. Haifa Workshop on
Interdisciplinary Applications of Graph Theory,
Combinatorics, and Algorithms, June 2002.

[23] A. Hartman and L. Raskin. Problems and algorithms
for covering arrays. Discrete Math., 284:149–156, 2004.

[24] N. Kobayashi, T. Tsuchiya, and T. Kikuno. A new
method for constructing pairwise covering designs for
software testing. Information Processing Letters,
81:85–91, 2002.

[25] D. Kuhn and M. Reilly. An investigation of the
applicability of design of experiments to software
testing. Proc. 27th Annual NASA Goddard/IEEE
Software Engineering Workshop, pages 91–95, October
2002.

[26] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software
testing. IEEE Trans. Software Engineering,
30(6):418–421, October 2004.

[27] R. Mandl. Orthogonal latin squares an application of
experiment design to compiler testing.
Communications of the ACM, 28(10):1054-1058, 1985.

[28] National Institute of Standards and Technology. The
Economic Impacts of Inadequate Infrastructure for
Software Testing. U.S. Department of Commerce, May
2002.

[29] K. Nurmela. Upper bounds for covering arrays by
tabu search. Discrete Applied Math., 138(9):143–152,
March 2004.

[30] G. Rothermel, S. Elbaum, A. G. Malishevsky,
P. Kallakuri, and X. Qiu. On test suite composition
and cost-effective regression testing. ACM
Transactions on Software Engineering and
Methodology, 13(3):277-331, July 2004.

[31] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Test case prioritization: An empirical study.
In Proceedings of the International Conference on
Software Maintenance, pages 179–188, Sept. 1999.

[32] K. Tai and L.Yu. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28:109–111, 2002.

[33] Y. Tung and W. Aldiwan. Automating test case
generation for the new generation mission software
system. IEEE Aerospace Conf., pages 431–37, 2000.

[34] L. White and H. Almezen. Generating test cases for
GUI responsibilities using complete interaction
sequences. In Proc. of the Interactional Symposium on
Software Reliability Engineering,pp.110-121, 2000.

[35] A. W. Williams and R. L. Probert. A measure for
component interaction test coverage. Proc. ACS/IEEE
Intl. Conf. on Computer Systems and Applications,
pages 301–311, October 2001.

[36] W. E. Wong, J. R. Horgan, S. London, and
H. Agrawal. A study of effective regression testing in
practice. In Proceedings of the Eighth International
Symposium on Software Reliability Engineering., pages
230–238, Nov. 1997.

[37] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. Intl. Symp. on Software Testing
and Analysis, pages 45–54, July 2004.

7

