
Test Program Generation for Functional Verification
of PowerPC Processors in IBM

Aharon Aharon, Dave Goodman, Moshe Levinger, Yossi Lichtenstein,
Yossi Malka, Charlotte Metzger, Moshe Molcho, Gil Shurek

IBM Israel – Haifa Research Lab
IBM AS/400 Division, Rochester, Minnesota

yossi@haifasc3.vnet.ibm.com

Abstract

A new methodology and test program generator have been
used for the functional verification of six IBM PowerPC pro-
cessors. The generator contains a formal model of the Pow-
erPC architecture and a heuristic data-base of testing expertise.
It has been used on daily basis for two years by about a hun-
dred designers and testing engineers in four IBM sites. The
new methodology reduced significantly the functional verifi-
cation period and time to market of the PowerPC processors.
Despite the complexity of the PowerPC architecture, the three
processors verified so far had fully functional first silicon.

1 Introduction

A new methodology and tool for functional test program gen-
eration has been used for several IBM PowerPC processors.
The functional verification period and the processors time to
market were reduced. Only one fifth of the simulation cycles
needed to verify a RISC System/6000 processor with a pre-
vious generator was needed with the new methodology for a
PowerPC processor.

The new generator is an expert system that contains a for-
mal model of a processor architecture and a heuristic data base
of testing knowledge. The heuristic data-base allows testing
engineers to add knowledge to the tool throughout the veri-
fication process. The formal architectural model enables test
program generation for different processor architectures and
gives the generator its name – Model Based Test Generator.

IBM has invested about three million dollars in developing
the methodology. About two milliondollars went into testing-
knowledge acquisition and development; the rest was put in
developing the test program generator itself.

Automatic test program generators for functional verifica-
tion of processors were previously reported ([1], [5], [3], [4],
[2]). The assumption behind these tools is that only a small
subset of possible tests are simulated during functional ver-
ification. These tests are run through the design simulation
model (the HDL model), and the results are compared with
those predicted by the architecture specification represented
by a behavioral simulator. Namely, processor functional ver-
ification consists of two steps: 1) Generation of tests – for
complex processors, this is done by automatic test genera-
tors which supply better productivity and quality than manual
tests. 2) Comparison between results computed by the two
levels of simulation – both simulators are provided with the
generated tests as stimuli, and the simulators final states are
compared.

The rest of this paper is organized as follows. We describe
the problematic aspects of functional test program generators
and the motivation for the new approach (section 2). Then,
the new test program generation system (section 3) and its
generation scheme (section 4) are described. The results of
using the methodology (section 5) and a brief description of
further work to be done (section 6) conclude this paper.

2 Motivation

The goal of functional verification is to achieve a first logically
operational silicon. The direct cost of silicon realization of
a processor design is between $150K to $1M depending on
the number of chips and technology. On top of that, the costs
of bringing up the hardware and debugging it are also high.
For complex processors and manual tests, first operational

1



silicon was a practical impossibility. With automatic test
generation, this goal is still difficult to achieve. For example,
the verification of a RISC System/6000 processor necessitated
fifteen billion simulation cycles, large engineering teams and
hundreds of computers during a year. The first motivation of
the new methodology is to produce better quality tests. Better
quality will allow smaller test sets, lower simulation costs and
shorter verification periods.

In order to generate better quality tests, it is needed to
capture test engineers expertise in the test generator. The
second motivation is to allow test engineers to add knowledge
in a visible and systematic way to the test generator. This
will allow immediate usage of the testing expertise developed
during the verification process. Furthermore, it will allow
re-usage of this knowledge for future designs of the same
architecture. Previous functional test generators did include
testing knowledge. However, it was usually coded by the
tool’s developers as part of the generator; it lagged after the
test engineers expertise, and was difficult to re-use.

The third motivation is to re-use functional test genera-
tors across different architectures. Previous generators were
custom made for specific architectures and cost millions of
dollars per tool. Separating the architectural details from the
architecture independent generation will allow re-usage of the
generation core for different architectures. It will reduce the
tool development costs, and allow its easy update when the
architecture evolves during the verification process.

The fourth and last motivation is to reduce the complexity
of functional test generators. Previous tools incorporated the
architecture, testing knowledge, generation procedures and
behavioral simulator in one software system. Separating these
components and generalizing the generation procedures to
operate on different architectures and testing knowledge will
reduce the overall complexity of the generator. It will also
make architecture and testing knowledge more visible and
allow easier tool adjustment when they change.

3 The System

The Model Based Test Generator comprises an architectural
model, a testing knowledge data-base, a behavioral simula-
tor, architecture independent generator and a Graphical User
Interface (figure 1). The generator and GUI have been imple-
mented in C, spanning about 75,000 lines of code.

The architectural model contains a specification of instruc-
tions, resources and data types as described in section 4.1. The
heuristic knowledge base includes generation and validation
functions implemented in C (section 4.3). Both architectural
specification and testing knowledge are stored in an object
oriented data-base; its class hierarchy is given in figure 2.

Test Programs

User

Interface

Test

Generator

Architecture

Simulator

Architecture Model

       and

Testing Knowledge

Figure 1: System components and interrelations

INSTRUCTION_DOMAIN()

OPERAND(data_type,address,length,resource,alignment,sub_operands,

         
generation_functions)

generation_functions)

FIELD(mnemonics,data_type)

EXCEPTION(validation_functions,generation_functions)

DATA_DOMAIN(length,alignment,bounds,values,validation_functions,
generation_functions)

ADDRESS()

SCALAR()

RESOURCE_DOMAIN(size)

REGISTER(name,type,array_bounds,bit_bounds,synonyms)

MEMORY(address_ranges)

FUNCTIONS_DOMAIN(prototype,source_code)

GENERATION(input_parameters,output_parameters)

VALIDATION()

, 

INSTRUCTION(opcode,format,operands,cond_codes,exceptions,restrictions,

ROOT()

Figure 2: A class hierarchy skeleton



The population of the architectural model is carried out
by an engineer familiar with the architecture books and the
test program generation methodology. The heuristic testing
knowledge is populated by test experts. The testing knowl-
edge accumulated during the verification of the first Pow-
erPC design includes about a 1,000 generation and validation
functions (see 4.3) totalling 120,000 lines of C code. All
subsequent PowerPC processors have been verified using this
knowledge, avoiding duplication of effort and reducing costs.

The system employs a separate architecture simulator
which is built to allow operating system development before
the processor is available in hardware. A PowerPC behavioral
simulator spans about 40,000 of C++ code.

The Motif based GUI offers extensive control over the
generation process. Apart from the ability to determine the
number of instructions in each test and to initialize resources,
the user can direct the generation at three levels: 1) Global
selections pertain to the generation process as a whole. 2)
Local selections apply to every instance of a particular in-
struction whenever it is generated. 3) Specific selections bear
on particular instances of generated instructions. The gener-
ator interprets many user directives as selection of generation
functions which reside on the testing knowledge base.

The system is used on a daily basis by more than a hundred
designers and test engineers in four IBM sites. It is used
under different verification methodologies: from massive test
program generation and simulation with little user direction
to specific test generation directed carefully to cover detailed
test plans.

4 Modelling and Generation

This section describes by example the architectural model,
the testing knowledge base and the generation scheme. The
expert-system perspective of the Model Based Test Generator
are detailed in [6].

4.1 Architectural Model

Instructions are modeled as trees at the semantic level of the
processor architecture. Generation of instruction instances is
done by traversing the instruction tree. An instruction tree in-
cludes a format and a semantic procedure at the root, operands
and sub-operands as internal nodes and length, address and
data expressions as leaves. The expressions use the instruc-
tion’s format as alphabet and represent the static relations be-
tween operands. These relations do not change; they are the
same before and after the execution of an instruction. Thus,
they are central to the automatic generation of tests and are

modelled declaratively. Address expressions denote immedi-
ate fields, registers, and memory storage in various addressing
modes. Length expressions denote the size of storage used by
the operand. Data expressions are just literals denoting data-
types. Declarative modelling of the full semantics would have
made automatic generation too complex to be practical. The
approach employed here gives enough power to generate use-
ful and revealing test programs whilst keeping the complexity
of the generator and the model reasonable. Moreover, the
time needed for generation is kept within acceptable limits.

4.2 Example: An Add Word Instruction Tree

Although the Add Word is not a PowerPC instruction, it
is given as an example because it refers to both memory
and register resources and has clear semantics. Informally,
Add Word adds the second operand to the first one and place
the sum at the first operand’s location. The first operand is
both a source and a target; it resides in a memory storage
and is pointed to by a base register and displacement. The
second operand is used only as a source and is the contents
of a word register. The instruction tree is depicted by figure
3. The resources assumed are a main memory, base-registers
and word-registers.

Sub−
Operand

 (3)

Sub−
Operand

  (8)

Sub−
Operand

  (12)

Sub−
Operand

  (16)

Operand 1

   (2)

Instruction

   (1)

Operand 2

   (7)

L
(9)

L
(4)

A D A D L A D L A D
(5) (6) (10) (11) (17) (18) (19)(13) (14) (15)

Figure 3: Add-Word

� Instruction: Semantic procedure: Add-Word().
Format: AW-OPCODE W1, D2, B2. Where the fields are:
< AW-OPCODE, (AW), No-Resource >,
< W1, (0,1,2, : : : ,E,F), Word-Register >,
< D2, (00,01,02,, : : :,FE,FF), No-Resource >, and
< B2, (0,1,2, : : : ,E,F), Base-Register >.

� First operand (represents the register used both as a
source and target):



Sub-operand: Length: 4; Address: register(W1); Data:
Signed-Binary.

� Second operand (represents the memory storage,
base register and displacement comprising the source
operand):
Sub-operand: Length:
4; Address: contents(register(B2))+value(D2); Data:
Signed-Binary.
Sub-operand: Length: 2; Address: in-field(D2); Data:
Displacement-Data-Type.
Sub-operand: Length: 6; Address: register(B2); Data:
Address-Data-Type.

4.3 Testing Knowledge

The heuristic testing knowledge is represented by generation
and validation functions coded in C by test engineers. The
functions are invoked while the generator traverses an in-
struction tree. Traversing a node involves invoking all the
generation functions associated with it. The outputs of these
functions are used to generate the instances of the current
sub-tree. Generation functions serve various purposes:

� Modelling Condition Codes (inter-operand verification
tasks):
An instruction execution may result in the setting of
conditioncode bits. This effect is part of the instruction’s
specification and is modelled by the semantic procedure.
Moreover, the conditioncodes partition the input domain
of the instruction. As it is a common testing knowledge
to use this input partitioning, a generation function may
bias the data of operands to exercise all condition codes.
Program Exceptions are modeled in the same manner.

� Modelling Procedural Aspects of Resources (inter-
instruction):
Address translation and cache mechanisms are common
in computer architectures and are not directly modelled
in the instruction trees. Generation functions are used to
incorporate inputs which test these mechanisms into test
programs.

� Data Type Special Values (within operand):
The domain of (typed) data instances may also be parti-
tioned. Again, it is common to require that representa-
tives of all data-type partitions be tested.

� Modelling Design Implementation:
Various aspects of the hardware design are usually taken
into consideration in the verification process. Although
these aspects are not considered part of the architecture,
their testing is considered essential.

Validation functions are also used by the generation
scheme. After generating a sub-instance-tree, the validation
functions associated with the corresponding sub-instruction-
tree are invoked. If any of them returns a REJECT answer, the
generation results of the sub-tree are retracted and the sub-tree
is traversed again. Validation functions serve different pur-
poses: 1) Imposing restrictions that are not modeled by the
length, address and data expressions on instruction instances.
2) Preventing instruction instances from causing program ex-
ceptions (when they are not desired). 3) Validating typed data
instances. Validation functions allow to use relatively simple
generation functions; their cost, in terms of REJECT answers
and backtracking, has been acceptable.

The fact that generation functions are allowed to produce
only simple data-types (i.e., length-instance, address-instance,
data-instance), enables a knowledge engineer to express his
(or her) testing knowledge in a natural and local manner. Yet,
the ability to generate sets of such instances and to associate
functions with instructions, operands and sub-operands gives
these functions the desired expressiveness. Had generation
functions been allowed to create full instruction-instances,
they would have been too complex to be written by users.
Their simplicity allows openness and make it possible to
model the evolving testing knowledge.

4.4 Example: Add Word Generation Func-
tions

TheAdd Word instruction tree is augmented with generation
functions. This should illustrate the various objectives which
may be achieved by generation functions; for example:

L A D

I

O O

S

L A D L A D L A D

S S S

GenerateUnsignedBinExtremes

GenerateHitMiss

CheckHalfWordAdders

GenerateEffective−
AddressOverflow

GenerateSumZeroForAW

Figure 4: Generation Functions for Add-Word

� Modelling Condition Codes:
The execution of ADD WORD sets the condition code to



SUM IS ZERO, SUM IS LESS THAN ZERO or SUM IS GREATER

THAN ZERO. The function GENERATE SUM ZERO FOR

AW is associated with the root of the instruction tree. It
generates two (as random as possible) data-instances for
the appropriate sub-operands, such that their sum is zero.

� Modelling Procedural Aspects of Resources:
An address-instance may either be resident in the cache
(HIT) or not (MISS). Likewise, the address and length
instances of a sub-operand instance may render its least-
significant byte as either HIT or MISS. The function GEN-
ERATE HIT MISS includes knowledge about the cache
mechanism and is associated with the memory address
of the second operand. It generates address and length
instances which randomly exercise one of the hit/miss
combinations.

4.5 Generation

The generation scheme traverses the instruction tree in a depth
first order and generates instruction instances. The recursive
procedure GENERATE accepts two inputs: the current node to
be traversed (NODE) and instances already generated (KEPT-
OUTPUTS). At the root and internal nodes generation and
validation functions are invoked to produce length address
and data instances for the corresponding subtrees. At the
leaves, length, address and data instances are either already
set by previous selections or are produced using generation
and validation functions. This scheme ensures consistency
of the generated instruction instances – namely, the values
selected for fields and resources that are shared by several
sub-operands are identical.

Tests are generated by the procedure GENERATE-TEST; it
accepts the required number of instruction instances (N) as
input and activates the instruction tree traversal. It also inter-
leaves instruction generation with instruction execution: the
intermediate processor state is checked after the new instruc-
tion instance has been executed and a decision is taken if to
include the new instance in the test.

A resource manager exists in the background of the gen-
eration process. It manages the processor’s state which is
essential for the dynamic GENERATE-TEST algorithm. It is
also essential in GENERATE-TEST for resolving address ex-
pressions. Generation and validation functions query the re-
source manager about the allocation and contents of resources.
This information is used to select resources and validate the
instruction tree expressions.

Great importance is attributed to the efficiency of automatic
test generation. Constraint solvers have been introduced to
avoid superfluous backtracking, due to violation of relations
between values of leaves in the instruction tree (as specified
by length and address expressions). A solver is activated

Initialize the minimal processor state
WHILE Number-of-instructions < N
Select an instruction
Denote its model by Instruction-Tree
GEN:
Instance = Generate(Instruction-Tree,Empty)
Simulate Instance by its Semantic-Procedure
IF Instance is executable

THEN
Write it to the test file
Increment number-of-instructions
ELSE
Retract Instance
Restore the processor’s previous state
IF retry-limit not exceeded

THEN go-to GEN
ELSE Abort

Return Success

Figure 5: Generate-Test(N)

at internal nodes of the instruction tree and simultaneously
assigns values to the leaves such that the relations are not
violated.

4.6 Example: An Add Word Instruction In-
stance

The instruction tree (given in section 4.2) is traversed in depth
first order; the node labels of figure 3 denote this generation
order. An instance of this Add Word instruction is depicted
by figure 7.

This instruction instance sets both the syntax and the se-
mantic entities of the Add Word instruction. The syntax is a
format instance (AW 7, 0100, 9). The semantic domain
includes the contents of word register number 7 (5F93A16B),
the contents of base register number 9, (000010008000),
and the contents of the main memory word 000010008100
(15EA917C).

5 Results

The Model Based Test Generator has been used in the func-
tional verification of six designs for different derivatives of the
PowerPC architecture. Three additional, Complex Instruction
Set Computers have been modelled. Table 1 summarizes the
current verification experience.



Table 1: Results

System Processor Bits Bugs Stage

1 AS/400 PowerPC 1 64 450 First silicon fully functional
2 AS/400 PowerPC 2 64 480 First silicon fully functional
3 AS/400 PowerPC 3 64 600 First silicon fully functional
4 S/6000 PowerPC 3 64 – Verification in process
5 PC PowerPC 4 32 – Verification in process
6 403 PowerPC 5 32 – Verification in process
7 X86 CISC 32 – Verification in process
8 S/390 FPU – – Modelling only
9 AS/400 CISC – – Modelling only

Invoke Node’s generation functions
Add their outputs to Kept-Outputs

IF Node is internal
THEN
FOR each of Node’s immediate descendants
Generate(Descendant, Kept-Outputs)
IF Reject is returned
THEN
Restore Kept-Outputs
IF retry limit not exceeded
THEN
Generate(Descendant, Kept-Outputs)
ELSE Return Reject
ELSE Return Accept

ELSE (Node is a leaf)
Select one of Node’s Kept-Outputs
IF there is no such output
THEN
Select randomly an instance from
the Node’s expression semantics
IF the instance does not

satisfy this expression
THEN Return Reject
ELSE Return Accept

Invoke Node’s validation functions
IF any of them returns Reject
THEN Return Reject
ELSE Return Accept

Figure 6: Generate(Node, Kept-Outputs)

4 7

5F93A16B

4

000010008100

15EA917C

2 − 0100 6 9

000010008000

L A D L A D L A D L A D

I

O O

S S S S

Figure 7: Add-Word Instance

The Bugs and Stage columns indicate the actual results.
The number of design bugs is a very rough measure of the
complexity of the design and its functional verification. The
ultimate measure of success is the number of silicon realiza-
tions needed to achieve a fully functional processor. For the
three verification processes which have been already com-
pleted, the first silicon realizations are fully operational.

An analysis of the return on investment of the new method-
ology is yet to be performed. However, preliminary results
indicate that it reduces the functional verification costs. Fig-
ure 8 provides the bug distributions for two designs during
the functional verification of the processors. One verifica-
tion process used a previous test program generation technol-
ogy (Processor-A) and the other utilized the new generator
(Processor-B).

The number of design bugs is plotted against the number of



Figure 8: Bug Distribution

billions of simulation cycles which correspond to the number
and size of generated tests. Processor-B is a high-end 64-bit
PowerPC processor (number 3 in table 1); Processor-A is one
of the RISC System/6000 earlier 32-bit processors. The func-
tional verification of Processor-A required five times as much
simulation cycles as needed for Processor-B. The simulation
period has been reduced from fifteen months (Processor-A)
to six months (Processor-B). These factors translate into cost:
simulation of a huge number of cycles requires hundreds of
computers running continuously; tieing design and testing
teams for long periods is expensive.

The above numbers and graph indicate that testing knowl-
edge usage gives better quality tests; fewer simulation cycles
are then needed to uncover the design bugs. The verification of
Processor-A used a close generation system, modelling only
some testing knowledge. It relied heavily on random test pro-
gram generation and giga-cycles of simulation. In contrast,
the possibility to direct the generation by user-defined test-
ing knowledge emphasized quality throughout the functional
verification of Processor-B.

An additional benefit of the new methodology is the re-
duction of the effort required to adapt the tool to a new ar-
chitecture. In case of close architectures, the cost was two
man-months: Moving from the 64-bit AS/400 PowerPC pro-
cessor to the 403 32 bit PowerPC micro-controller entailed
updating the data bases only. Enhancing the generator to sup-
port X86 CISC architectures took five calendar months; it is
considerably less then building a new generator.

A major weakness of the new tool is its performance. A
previous generator produces about 50 instructions per second
on an S/6000 workstation. The new test program generator
produces about 10 instructions per second in similar condi-

tions. We feel that this slow-down factor is compensated for
by the better quality of the tests.

To conclude, the available indications show that the new
test generation methodology obtain better quality and reduce
time to market.

6 Further Work

We are conducting a broad bug classification work across dif-
ferent architectures, design process and verification method-
ologies. We hope that new testing knowledge will be acquired
through this work and better quality tests will be achieved. In
particular, we study the nature of instruction sequences in-
volved in uncovering bugs.

Coverage achieved by automatically generated test cases is
also studied. We are investigating different coverage criteria
over the architectural specification and the HDL implemen-
tation. We hope to use architectural coverage measures as
basis to architectural conformance test sets. We are investi-
gating a hierarchy of criteria that will allow to label different
levels of testing quality from low level sets used for frequent
regression testing to high quality tests used for full functional
verification.

References

[1] A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M.; Lei-
bowitz, and V. Schwatzburd. Verification of the Ibm Risc sys-
tem/6000 by a dynamic biased pseudo-randomtest program gen-
erator. IBM Systems Journal, 30(4), April 1991.

[2] A. M. Ahi, G. D. Burroughs, A. B. Gore, S. W. LaMar, C. R.; Lin,
and Wiemann A. L. Design verification of the hp 9000 series 700
pa-risc workstations. Hewlett-Packard Journal, 14(8), August
1992.

[3] J. I. Alter. Dacct – dynamic access testing of ibm large systems.
In International Conferenceon Computer Design (ICCD), 1992.

[4] W. Anderson. Logical verification of the nvax cpu chip design.
In International Conferenceon Computer Design (ICCD), 1992.

[5] A. Chandra and V. Iyengar. Constraint solving for test case
generation – a technique of high level design verification. In
IEEE International Conference on Computer Design (ICCD),
1992.

[6] Y. Lichtenstein, Y. Malka, and A. Aharon. Model-based test
generation for processor design verification. In Innovative Ap-
plications of Artificial Intelligence (IAAI). AAAI Press, 1994.


