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Test-Quality/Cost Optimization Using
Output-Deviation-Based Reordering
of Test Patterns
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Abstract—At-speed functional testing, delay testing, and
n-detection test sets are being used today to detect deep submi-
crometer defects. However, the resulting test data volumes are
too high; the 2005 International Roadmap for Semiconductors
predicts that test-application times will be 30 times larger in 2010
than they are today. In addition, many new types of defects cannot
be accurately modeled using existing fault models. Therefore,
there is a need to model the quality of test patterns such that
they can be quickly assessed for defect screening. Test selection is
required to choose the most effective pattern sequences from large
test sets. Current industry practice for test selection is based on
fault grading, which is computationally expensive and must also
be repeated for every fault model. Moreover, although efficient
methods exist today, for fault-oriented test generation, there is a
lack of understanding on how best to combine the test sets thus
obtained, i.e., derive the most effective union of the individual test
sets without simply taking all the patterns for each fault model.
This paper presents the use of the output deviation as a surrogate
coverage-metric for pattern modeling and test grading. A flexible,
but general, probabilistic-fault model is used to generate a prob-
ability map for the circuit, which can subsequently be used for
test-pattern reordering. The output deviations resulting from the
probability map(s) are used as a coverage-metric to model test
patterns; the higher the deviation, the better the quality of the
test pattern. We show that, for the ISCAS benchmark circuits and
as compared to other reordering methods, the proposed method
provides “steeper’ coverage curves for different fault models.

Index Terms—Abort-on-first-fail, defect coverage,
application time, test-pattern grading, test selection.

test-

I. INTRODUCTION

NUMBER of fault models, such as stuck-at, transition
delay, and shorts/opens, are typically used today to get

high defect coverage [1], [2]. As a result, the test data volumes
for today’s integrated circuits are prohibitively high. For exam-
ple, the test-data volume for transition-delay faults is 2-5 times
higher than that for stuck-at faults [3], and it has been demon-
strated recently that test patterns for such sequence- and timing-
dependent faults are more important for newer technologies [4].
Moreover, due to shrinking-process technologies, the physical
limits of photolithographic processing, and new materials such
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as copper interconnects, many new types of manufacturing
defects cannot be accurately modeled using known fault models
[5]. Although efficient methods exist today for fault-model-
oriented test generation [6], [7], there is a lack of understanding
on how best to combine the test sets thus obtained, i.e., derive
the most effective union of the individual test sets, without
increasing the test-data volume excessively by simply using
all the patterns for each fault model. As a result, the 2005
International Roadmap for Semiconductors (ITRS) document
predicts that the test-data volume and test-application time for
integrated circuits will be as much as 30 times larger in 2010
than they are today [8].

Test-pattern-reordering methods, which rank test patterns
and place most effective test patterns at the top of the reordered
test sequence, promise reductions in both testing time and test-
data volume [9], [10]. Applying the most effective patterns first
during volume ramp-up increases the likelihood of detecting
manufacturing defects in less time. If highly effective test pat-
terns are applied first in a reordered test set, defective chips will
fail earlier, reducing test-application time in an abort-at-first-
fail environment. Test-pattern reordering is also important for
time-constrained and wafer-sort environments that have strict
test data budgets: The reordered test set can be simply truncated
to fit the test-data volume and test-time budgets. Moreover, the
truncated test sets can be augmented with a small number of
top-off patterns to reach mandated coverage levels for modeled
faults.

This paper uses the “output deviation” [11] as a surrogate
coverage-metric and a test-pattern-grading method for pattern
reordering. A flexible, but general, probabilistic-fault model
[12] is used to generate a probability map for the circuit, which
can subsequently be used for pattern reordering. We show
that such reordered test sets provide “steeper” coverage curves
for different fault models as compared with other reordering
methods.

It has been shown that m-detection test sets, where each
stuck-at fault is targeted by n > 1 different patterns, are effec-
tive in detecting unmodeled defects [13]-[16]. As the number
of unique detections for each fault increases, the defect cov-
erage usually improves as compared with other test-generation
methods. An advantage of this approach is that, even when n is
very large, n-detection test sets can be generated using existing
single stuck-at automatic test pattern generation (ATPG) tools
with reasonable computation time. Therefore, in this paper, we
choose a set of n-detect test patterns as a repository test set and
apply the proposed pattern-reordering technique to it.

0278-0070/$25.00 © 2008 IEEE
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The remainder of this paper is organized as follows.
Section II discusses some related prior work. Section III
introduces the probabilistic-fault model and the theory of output
deviations. The design of experiments and experimental results
are reported in Section VI. Section VII concludes this paper and
outlines directions for future work.

II. RELATED PRIOR WORK

In this section, we provide an overview of related work on
defect screening. In [17], the MPG-D model was used to predict
the “defective-part level” using information on the number of
times that fault sites are observed and the probability of exciting
undetected defects when those observations are made. The
MPG-D model was shown to outperform the Williams—Brown
model [18] that relies solely on measures of fault coverage.
The DO-RE-ME test-generation technique was also used in
improving defect coverage by maximizing the deterministic
observation of defect sites in the circuit. Experimental results in
[17] show that a DO-RE-ME test set achieves higher coverage
for wired-AND/OR bridging faults and lower defect level for
commercial production chips than a single stuck-at test set.

In [9], a test-pattern selection strategy based on integer
linear programming (ILP) was proposed to select a subset of
test patterns from a large n-detection test set. The weighted
MPG-D model was used as the objective function for the ILP
model to select patterns. However, an ILP-based method suffers
from high computational complexity; it does not scale for large
test sets. The experimental results reported in [9] also failed to
demonstrate any significant improvement in fault coverage.

Adaptive test methods are discussed in [19]. These methods
can increase test quality and decrease test cost based on pre-
dicted or measured defect and the parametric behavior of the
silicon being tested. Predictive data can be obtained from other
data sources or from a subset of patterns from the same test
set. Such predictive data can also be used to select parameters
for the probabilistic-fault model described in this paper, thereby
resulting in more effective selection of test patterns.

In [20], an incremental ATPG flow was presented that targets
different fault models in an n-detect manner. The initial fault
list includes path-delay, transition, and stuck-at faults. First,
LBIST is used to drop easy-to-detect faults. Since path-delay
test patterns also detect many transition faults and stuck-at
faults, n-detect path-delay fault ATPG is first performed for
all the remaining faults not detected in the LBIST session.
Similarly, transition-fault ATPG is then performed to detect
transition and stuck-at faults not detected by the path-delay
patterns. Finally, stuck-at fault ATPG is run, targeting all the
remaining stuck-at faults. Using the incremental ATPG flow,
up to 20% reduction in the total pattern count was reported
in [20], as compared with the basic ATPG flow that simply
combines all test patterns for the different fault models. Since
the incremental ATPG flow first targets all delay faults and then
targets remaining stuck-at faults, its test-generation time may be
prohibitively long. Test generation for delay faults (particularly
path-delay faults) is significantly more complex than that for
stuck-at faults.

The proposed deviation-based test-pattern selection method
can be combined with the ATPG flow in [20] for better test

quality and reduced pattern count. For example, for each fault
model, we can first generate a larger n’-detect set (n’ > n) from
which high-deviation test patterns can be selected to form an
n-detect set. Moreover, once the ATPG tool generates a test
cube for a target fault, it usually randomly fills the don’t-cares
in it to get a test pattern. Therefore, we can obtain multiple test
patterns from one test cube and select the patterns that have the
highest output deviations.

Butler and Saxena [21] analyzed the impact of test ordering
on the tester efficiency. They showed that it is useful to place
a low-detection-latency test, such as a short burst of functional
patterns, early in the tester program, even if the defect detection
per pattern is lower than for some other test types, such as an
I DDQ test.

III. PROBABILISTIC-FAULT MODEL AND
THEORY OF OUTPUT DEVIATIONS

In this section, we develop the concept of output deviations
in assessing test patterns.

A. Modeling of Gate Confidence Level (CL)

We first define the “CL” of a logic gate and show how it can
be determined using transistor-level schematics.

The CL of a single-output gate encompasses all the different
input combinations of the gate, and for a given input combina-
tion, it provides the probability that the gate output is correct
for the corresponding input combination. The probability that
a gate output is correct can be different for the various input
combinations.

Definition 1: The CL R; of a gate GG; with m inputs and

a single output is a vector with 2 components, defined as
follows: R; — (7”1(00"”’OO)T,EOO’M’ODT,EOO""JO), N .,rfu"”"ll)),
where each component of R; denotes the probability that the
gate output is correct for the corresponding input combination.
For example, ’I’EOO) is the probability that the output of a two-
input G; is correct under input 00. If m = 2 for a logic gate,
we have R; = (r§0°>r§0”r§1°>r§”>).

A more general definition of CL can be stated for a subcircuit
(or “supergate”) with m inputs and k£ > 1 outputs. The CL
vector for this supergate is a set of k vectors, where each
component of this set denotes the CL of the corresponding
output. Alternatively, each component of R; in Definition 1 can
be viewed as a k-tuple corresponding to the k outputs.

The above gate-level CL vectors can be generated from sim-
ple transistor-level failure probabilities. Consider the two-input
NAND and NOR gates shown in Fig. 1. Suppose each transistor
can be stuck-open due to a defect, i.e., it cannot be switched
on, with probability «. Similarly, suppose each transistor can
be stuck-on due to a defect, i.e., it cannot be switched off,
with probability (3. Next, let us consider input combination
122 = 00. If only stuck-open faults are considered, the NAND
gate produces the correct output for this combination with
probability 1 — o2, because the gate produces an incorrect
output only if both p-transistors are stuck-open (the absence
of a second pull-up path affects the pull-up time for this input
combination, but this issue is ignored since worst-case pull-up
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Fig. 1. Two-input NAND and NOR gates in static ratioless CMOS technology.
TABLE I
CLs OF THE NAND AND NOR GATES EXPRESSED IN TERMS OF
TRANSISTOR STUCK-OPEN AND STUCK-ON PROBABILITIES

(a)
zize | RVAND (51,25, 0) | RVAND (41, %3, 8)
00 1—a? 1— 32
01 1-—a 1-5
10 1—a 1-0
1 (1—a)? (1)
(b)
T1w2 | Ry OR (7], 49, ) R OR (71,49, 0)
00 (1-a)? (1—3)?
01 11—« 1-8
10 11—« 1-8
11 1—a? 1- 2

TABLE 1II
RELATIONSHIP BETWEEN STUCK-AT FAULTS AND THE CL VECTORS

Stuck-at fault in two-input
NAND gate

Corresponding CL vector for
the NAND gate

Input 21 s-a-0

Input 271 s-a-1 (1011
Input 29 s-a-0 (1110
Input 2 s-a-1 (1101
Output z s-a-0 0001
Output z s-a-1 1110

T110)

times consider only one pull-up path). Likewise, if we only
consider stuck-on faults, the probability that the NAND gate
produces the correct output for input 00 is 1 — 32.

Table I presents the CL vectors of the NAND and NOR gates
for stuck-open and stuck-on failure modes (RYANP (27, 7, o)
and RYAND (g7, 75, 3), respectively) for different input com-
binations. Note that 7 and x5 refer to input combinations,
e.g., RYAND(0,0, «) refers to the probability that input 00
produces the correct output when the stuck-open probability for
a transistor is «. If the stuck-open or stuck-on probabilities for
the different transistors are unequal, e.g., due to different device
dimensions, the actual values can be easily used to calculate the
CLs in Table I (we assume that the gate output is in error if both
pull-up and pull-down paths are active).

Note that classical faults, e.g., single stuck-at faults, can also
be expressed in terms of CL vectors. Consider a two-input
NAND gate with inputs ordered as z; and z2 and output z.
Stuck-at faults on x1, x2, and z can be modeled as shown in
Table II.

Let R(2, 42, a, 3) be the gate reliability for input combi-
nation (Z1,22) when any number of stuck-open and stuck-
on faults can simultaneously occur. It can be easily shown

that R(fl, T, Q, 6) = Rl(fl, To, Oé) . Rg(fl, To, ﬁ) The re-
sult follows from the fact that, for any input combination, the set
of transistors that affects the output under stuck-on conditions is
disjoint from the set of transistors that affects the output under
stuck-open conditions.

In this paper, we limit ourselves to basic gates with one or
two inputs. Extension of the theory of output deviations to gates
with larger fan-out is straightforward. In this paper, gates with
larger fan-out are first expanded to a network of basic gates.

The gate-level CL vectors can also be generated in other
ways, e.g., using layout information, inductive-fault analysis
[22], and failure-data analysis. Our objective here is not to
develop new techniques for determining CL vectors but rather
to use these as inputs for the computation of output deviation.
Therefore, in this paper, we use two arbitrarily chosen sets
of CL vectors for our experiments. These vectors are defined
separately for each gate type. For example, for a two-input
NAND gate, we use as follows:

1) low CL: RNAND2 — (0 8(00) . 8(01) .8(10) (. 7(11));
2) high CL: RNAND2=(0.95(0%), 0.95(°D), 0.95(10), 0.85(1)).

The above CL vectors are chosen to reflect the fact that,
when both inputs are noncontrolling, the probability for the
gate to produce the correct output is lower than other input
combinations. Since both sets of CL vectors yield similar
results for test-pattern ordering, we only report results obtained
using the “high CL” set.

B. Computation of Signal Probabilities

Next, we associate signal probabilities p; ¢ and p; 1 with each
line 4 in the circuit, where p; ¢ and p;; are the probabilities
for line 7 to be at logic 0 and 1, respectively. Obviously, we
have p; o + pi,1 = 1. The calculation of the signal probabilities
is along the same lines as introduced in [23] and used later
in [24]. To reduce the amount of computation as in [23] and
[24], signal correlations due to reconvergent fan-out are not
considered here.

Let 4 be the output of a two-input gate G. Let j and &k denote
the input lines for this gate. If G is a NAND gate, we have

11 00
Di,0 :pj,lpk,ln( ) + Pj,0Pk,0 (1 — 7’1( )>

+ Pj,0Pk,1 (1 - 7",(01)) + Dj,1Pk,0 (1 - 7“1(10))

(01)

00
) 4 Dj,0Pk1T;

Pija ij,opk,org

erj,lpk,OTZ(lO) + Pj1Pk1 (1 - r§”)) .

The above definition of the signal probabilities can be easily
extended to the case of more than two inputs. It can also be eas-
ily verified that p; o + pi,1 = pjoPk,0 + Pj,0Pk,1 + Pj,1Pk0 +
PjaPea = 1.

Let GG be a gate with two inputs j and k, controlling value
¢, and inversion value v. Let ¢ be the complement of the
controlling value c. The signal probabilities for the output ¢ of
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Fig. 2. Illustrative example.

TABLE III
SIGNAL PROBABILITIES FOR DIFFERENT INPUT COMBINATIONS

Input patiern, 2 | peo | Pe,t | Pro | Pr1 | Pzo | Pz
0000, 0 0.1 0.9 0.2 0.8 0.886 | 0.114
0101, O 0.1 0.9 0.9 0.1 0.837 | 0.163
1111, 1 0.8 0.2 0.9 0.1 0.396 | 0.604

such a gate can be easily expressed as follows:

DPi,cov :pj,cpk’,c"’l(w) +pj,cpk,ET§CC)

+ pjaprery ) + piabh (1 - 7“1@))

Pizov = Pj.cPh,c (1 - rE‘”)) + DjcPke (1 - n@)

+ PjePk,c (1 - TZ(CC)) + pjaprars -

Next, consider a gate without a controlling value, e.g., XOR
and XNOR. For the XOR gate, the signal probabilities can be
expressed as follows (the formulas for the XNOR gate are
similar):

00 01
Di,0 :pj,opk,on( ) + Dj,0Dk,1 (1 — T’E ))

(10)

+ Dj1Pk,0 (1 -7 )

) +Pj,1pk,17"§

Di,1 =Pj,0Pk,0 (1 — 7‘500)) +pj,opk,17“501)

10 1
+pj,1pk,07“§ ) + Dj1Dk,1 (1 — Tfl )) .

Fig. 2 shows a simple circuit consisting of three gates G,
Gs, and G with CL vectors (0.9 0.9 0.9 0.8), (0.8 0.9 0.9
0.9), and (0.8 0.9 0.9 0.9), respectively. For the three different
deterministic input vectors 0000, 0101, and 1111, the signal
probabilities are determined and presented in Table III. The
fault-free values at the output z are also listed in the first column
of Table III.

C. Output Deviations, Fault Model, and Deviation-Based Test
Patterns

For any logic gate (or primary output, PO) ¢ in a circuit,
let its fault-free output value for any given input pattern t;
be d, d € {0,1}. The output deviation A, ; of g for input
pattern ¢; is defined as Py a where d is the complement of d.
Intuitively, the deviation for an input pattern is a measure of
the likelihood that the gate output is incorrect for that input
pattern. The output deviations for the three patterns in Table III
are highlighted. Output deviations can be determined without

TABLE 1V
FAULT EVENTS FOR THE CIRCUIT OF FIG. 2
UNDER INPUT PATTERN abcd = 0000

Fault Fault event description Event probability Output
event value
&o G'1, G2, G'3 fault-free 9% .8x.9=.648 0

&1 G, Go fault-free, G faulty | .9 X .8 x .1 =.072

1
Eo G, G fault-free, G'o faulty 9 x .2x.9=.162 0
Es Glo, G3 fault-free, G faulty | .1 X .8 X .9 =.072 0
Eq G, G faulty, G3 fault-free 1 x.2x.8=.016 1
Es G, G3 faulty, Gg fault-free | .1 X .8 x .1 =.008 1
Es Go, Gy faulty, G fault-free | .9 x .2 x .1 =.018 1
Er G, G3, G1 faulty A x.2x.2=.004 0

explicit fault grading; hence, the computation is feasible for
large circuits and large test sets.

Next, we formally define the probabilistic-fault model for a
combinational circuit C.

Definition 2: A combinational circuit C is defined as C =
{G,PI,Z2,R}, where G = {G;1,G2,...,GN} is the set of
logic gates in C, PZ and Z are the sets of primary inputs and
outputs, respectively, and R = { Ry, Ra, ..., Ry} is the set of
CL vectors of the gates in G.

Definition 3: A probabilistic-fault model F for circuit C is
defined as follows: 1) Each gate G; can fail independently of
other gates and 2) the fault behavior of C is defined by R;.

Under this fault model, the expected output values of the
circuit in response to an input pattern is no longer deterministic.
Rather, it is given by the signal probabilities at POs. Note
that the circuit behavior is assumed to be deterministic after
manufacturing; the probabilistic-fault model is only used during
test development for pattern grading.

Consider the simple circuit shown in Fig. 2. According to
JF, this circuit can fail in a number of ways, each of which
is termed a fault event. Table IV lists the various fault events
&1, &, ...,& and the event &, corresponding to the fault-
free case. It also lists the probability associated with each fault
event and the corresponding circuit output, for input pattern
abed = 0000. Only the events &1, &, &, and & are detected
by the given input pattern. Let £ be the event that the pattern
0000 detects a fault in the circuit. It can be easily seen that

piel=Pla|JalJE &l
= P[&1] + P[&4] + P[E5] + P[E6]
=0.114

since the fault events are mutually exclusive. Note from
Table III that A, for input pattern 0000 is also 0.114.

The above example shows that the probability that ¢; will
produce an observable error at z; for fault model F is di-
rectly proportional to A, ;. The goal of testing is to apply
those vectors to C that produce large deviations at the output.
Therefore, the concept of output deviations offers a promising
method for modeling pattern quality. From now on, we only
consider output deviations at outputs and use the terms “output
deviation” and “deviation” interchangeably.

Note that the deviations at circuit outputs reflect the ob-
servability of errors at these nodes. The more the deviation,
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1: Perform single-detect fault simulation with single-detect pattern set
Ty for all faults;

2: Save all faults detected by single-detect fault simulation with pattern
set 17 in list F';

: Set the number of detections n;

: for K =1 to (n-1) do

Perform multiple-detect fault simulation with pattern sets 7' to

Ty for faults in list F7;

Save faults detected K times in F'x;

Target faults in F'x and perform single-detect ATPG to increase

the number of detections by one;

8: Save the patterns to Tk {13

9: end for

[V N

o

Fig. 3. n-detect ATPG algorithm.

the higher is the likelihood that an error is observed at the
corresponding output.

D. Recent Work on Applications of Output Deviations

The concept of output deviations was first introduced in [12].
To show that output deviations can be used as a simple criterion
to rank test patterns in terms of their effectiveness, preliminary
experiments were conducted in which a set of random test
patterns are split into two sets, referred to as Thign and Tiow,
respectively, according to their output deviations. For any given
pattern, if there exists one output pin whose deviation is larger
than a predefined threshold, this pattern is put into Thigl, (Tiow,
otherwise). Experimental results for the International Sympo-
sium on Circuits And Systems (ISCAS) benchmark circuits
show that T,;g1, leads to higher fault coverage for single stuck-at
and bridging faults.

The output deviation metric was used in [11] to select ef-
fective test patterns from a large repository n-detect test set. If
highly effective test patterns are applied first in a reordered test
set, defective chips will fail earlier, reducing test-application
time in an abort-at-first-fail environment. Experimental results
in [11] show that, for the same test length, test patterns selected
using output deviations are consistently more effective than
patterns selected using other methods, in terms of the fault
coverage for resistive shorts, wired-AND and wired-OR bridging
faults, and several gate-exhaustive metrics [25].

More recently, it has been shown that output deviations can
be used to select seeds for test compression based on linear-
feedback shift-register (LFSR) reseeding [26]. Compared to
seeds selected using other methods, these seeds provide higher
coverage for a variety of fault models.

IV. TEST-PATTERN REORDERING

In this section, we reorder the test patterns in a large
n-detect test set, referred to as 75,44, such that the most effective
patterns appear in the front of the reordered test sequence.
In this section, we use the term “test sequence” to denote a
reordered test set.

The n-detect test set Ti,¢ is generated using the procedure
described in Fig. 3 (derived from [27, Fig. 1]), which uses n
iterations to generate an n-detect test set. In each iteration 1,
first, a new set of test cubes is generated for the faults that
are not detected ¢ times, ¢ = 1,2, ...,n. Next, the ATPG tool

Require: 7': test set
Ensure: 7T': reordered test sequence

1: reorder test patterns by deviations at each PO and PPO, obtain X;
2: while || < |T'| do

3: for j =1 to M do

4 for i =1 to |7| do

5 if X[¢][j] ¢ T’ then
6: add X[i][7] to T";
7 break;

8: end if

9 end for

10 end for

11: end while

Fig. 4. Reorder test patterns according to output deviations.

Pattern | Output deviations Port A|Port B|Port C
ID |Port A|Port B|Port C 4 15 ts
t 0.9 0.2 0.7 t, t 13
[2) 0.8 0.3 0.4 ts ts t
43 0.6 0.7 0.8 t t, 4
1y 0.2 0.6 0.5 ts 4 s
15 0.7 0.4 0.9 ty t ts
ts 0.3 0.1 0.2
(a) (b)

Fig. 5.

p [0 Ho HoHx] _sn [1fo[1 1 ool
@

Example of reordering test patterns based on output deviations.

(b)

Fig. 6. Applying a test-pattern pair using LOS and LOC schemes.

performs fault simulation to update the detection count for each
fault. Faults that have been detected n times are dropped. After
n iterations, an n-detect set of test patterns is obtained. Once
the n-detect test cubes are generated, they are randomly filled
to obtain a set of n-detect test patterns.

We propose to use output deviation as a metric to reorder
test patterns, such that test patterns with high deviations can be
selected earlier than test patterns with low deviations. As shown
in Fig. 4, for each PO and pseudo-PO, all test patterns in 7" are
reordered in descending order based on their output deviations.
The result is stored in a matrix X with M columns and |T|
rows, where M is the number of POs (line 1). The element in
the ¢th row and the jth column of X is the test pattern that
has the ith highest output deviation at the jth PO. Fig. 5 shows
this reordering procedure. From matrix X, a new ordered test
set 7" can be obtained. For the example in Fig. 5, the resulting
reordered test sequence is 77 = {t1, 3,15, t2, 4,6 }-

To evaluate the effectiveness of the reordered test sequence
for defect screening, we consider its fault coverage for different
fault models, including stuck-at, stuck-open, and transition
faults. To detect sequence-dependent transition and stuck-open
faults, we use the launch-on-shift (LOS) and launch-on-capture
(LOC) schemes to apply a test-pattern pair (p1, p2) to the circuit
under test (CUT). These methods are also referred to as skewed-
load and broadside-testing [1], respectively.

Fig. 6 provides an example. Let the test pattern from the re-
ordered test sequence be pg. In the LOS scheme, p- is obtained
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by shifting p; by one clock cycle. Since errors are captured by
p2, we should apply pg as the second test pattern for improved
fault coverage and use p, to compute output deviations. Hence,
as shown in Fig. 6(a), p; is obtained by shifting the first L — 1
bits of pg (L is the length of the scan chain), and p- is identical
to po. In the LOC scheme, as shown in Fig. 6(b), p; is identical
to po, and po is obtained by capturing the responses of p;.

For the LOS scheme, output deviations are computed directly
using po. The resulting reordered test sequence is referred to
as Sgev1. For the LOC scheme, we first obtain the responses
of the test patterns in Tgie and, then, compute output devia-
tions using these responses. We also assume that the combi-
national primary inputs remain unchanged for p; and py. The
resulting reordered test sequence is referred to as Sqev2-

Besides Sgev1 and Sgeva, for comparison purposes, we also
generate three other seed sets, referred to as Siand, Sgreedys
and Sjn.. The set S;anq is obtained by randomly ordering
Torig- Sgreedy 15 generated by reordering test patterns in 75,4
by the number of hard stuck-at faults that they detect. Hard
faults are ones that are not detected by a certain number
(ranges from 128 to 256 for the different benchmarks in this
paper) of pseudorandom test patterns. The detection count
is obtained using fault simulation without fault dropping.
The set Sy is generated as described in [10], whereby pat-
terns are reordered to provide the steepest curve for stuck-at
faults.

V. ANALYSIS OF SIGNAL CORRELATION

The computation of signal probabilities in this paper does
not account for signal correlations due to reconvergent fan-
outs, i.e., all signals are assumed to be mutually indepen-
dent. This assumption is motivated by practical considerations;
however, it can introduce errors in the values determined for
the signal probabilities and output deviations. Accurate sig-
nal probabilities can be computed using probabilistic-transfer
matrices (PTMs) and tensor products [28]. However, the com-
putation method in [28] is expensive, since all correlated
signals must be tensored. In this section, we use PTMs to
compute accurate output deviations for some small circuits,
and we show that the error is negligible if we ignore signal
correlations.

In the PTM framework, the probabilistic behavior of a gate
is described by a matrix M, referred to as PTM, where
the (j,k)th entry represents the probability that output sig-
nals O = 0y, 01, ..., 0, have value k, given that input signals
I =1ip,i1,...,1, have value j. This is denoted as p(k|j).
Here, the row and column indexes j and k are bit vec-
tors, whose entries represent the values of the signals that
form the input and output. For instance, p(1, 1|1, 0) represents
the probability that the two output variables {o4,01} have
value {1,1} given that the two input variables {ig,¢;} have
value {1, 0}.

A fault-free circuit has an ideal transfer matrix, i.e., the
correct value of the output occurs with probability of one.
Similarly, an input vector v is a row vector representing the joint
probability distribution of the input signals. The ith entry of v,
denoted by v(¢), gives the probability that the input signals have

Fig. 7. Small ISCAS-85 circuit c17.
values represented by the bit vector <. The output probability
distribution, after input vector v is evaluated on gate g with
PTM P, is given by v x Pyg.

By definition, the PTM for a single gate is equivalent to
its CL vector. For example, the PTM for a two-input NAND
gate with the CL vector R = (7(00) (01 1(10) ,-(11)) can be
written as

1 p(00)  (00)

1—pOD 1)

M=1,_,00 a0
CEV R N CE)

If the input pins for this gate (5 and k) are independent, then
the input vector is v = (p;,0Pk,0,Pj,0Pk,1,Pj1Pk,0, Pj,1Pk,1)-
The output vector for this NAND gate can be easily obtained
and is identical to the signal probabilities as described in
Section III-B. Hence, for a single gate, if the input signals are
mutually independent, the computation of signal probabilities
is equivalent to PTM multiplication.

We can therefore derive output deviations from the out-
put vector of a circuit. Since the PTM framework accounts
for signal correlation using tensor products and the output
vector denotes the joint-output probability distribution, the
output deviation thus obtained is more accurate; we refer
to it as ODpry. Output deviations defined in Section III-C
are less accurate, and they are referred to as ODy,,, in this
section.

If we denote the CPU times for ODpry and ODp,1 com-
putation as tpry and tp1, respectively, then tpry = tprob +
teorr, Where t.op 18 the CPU time needed to handle correlated
signals. As shown in [28, Fig. 4], because matrix multiplica-
tions, tensor products, and gate-input/output permutations must
be done for correlated signals, t.o,r grows quadratically with
the number of correlated signals.

For the small ISCAS-85 circuit c17 in Fig. 7, Table V
lists the computation of output vectors and ODy,1, using the
high- and low-CL vectors. We assume that all six NAND gates
have identical CL vectors (and, hence, PTMs). Column “Error”
reports the error defined as ODp,1, — ODpr. Take the first
row of Table V(a) as an example. Under the input pattern
{abdce} = {00011}, the correct output response is {jk} =
{11}; the joint probabilities for the output being 00, 01, 10,
and 11 is 0.0528, 0.1416, 0.0504, and 0.7552, respectively; the
ODpr at port k is 0.0528 + 0.0504 = 0.1032; the error at k
is 0.0789 — 0.1032 = —0.0243.

In Table V(a) and (b), the error is noticeable only for eight
out of the 32 input combinations. Even in these eight cases,
the percentage error is quite low. Since the output deviations
are being used here as a metric for classifying test patterns,
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TABLE

v

DIFFERENCE BETWEEN ODpryy; AND ODp,o1, FOR ¢17. (a) USING THE HIGH CL. (b) USING THE Low CL

(a)
Input Pattern | Output Output Vector (using PTM) oD, oD prob Error Error%

ID | {abdce} | {jk} 00 01 10 11 Portj | Portk | Portj | Portk | Portj | Portk | Portj | Portk
1 | 00000 00 06234 | 0.1486 | 0.1486 | 0.0794 | 0.2280 | 0.2280 | 0.2280 | 0.2280 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2 | 00001 01 0.1556 | 0.6164 | 0.0388 | 0.1892 | 0.2280 | 0.1944 | 0.2280 | 0.1944 | 0.0000 | 0.0000 | 0.0000 | 0.0000
3 | 00010 11 0.1267 | 0.0677 | 0.0677 | 0.7379 | 0.1944 | 0.1944 | 0.1944 | 0.1944 | 0.0000 | 0.0000 | 0.0000 | 0.0000
4 | 00011 11 0.0528 | 0.1416 | 0.0504 | 0.7552 | 0.1944 | 0.1032 | 0.1944 | 0.0789 | 0.0000 | -0.0243 | 0.00% |-23.57%
5 | 00100 00 06234 | 0.1436 | 0.1486 | 0.0794 | 0.2280 | 0.2280 | 0.2280 | 0.2280 | 0.0000 | 0.0000 | 0.00% | 0.00%
6 | 00101 01 0.1556 | 0.6164 | 0.0388 | 0.1892 | 0.2280 | 0.1944 | 0.2280 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%
7 | 00110 11 0.1267 | 0.0677 | 0.0677 | 0.7379 | 0.1944 | 0.1944 | 0.1944 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%
8 00111 11 0.0528 | 0.1416 | 0.0504 | 0.7552 | 0.1944 | 0.1032 | 0.1944 | 0.0789 | 0.0000 | -0.0243 | 0.00% |-23.57%
9 | 01000 00 06234 | 0.1436 | 0.1486 | 0.0794 | 0.2280 | 0.2280 | 0.2280 | 0.2280 | 0.0000 | 0.0000 | 0.00% | 0.00%
10 | 01001 01 0.1556 | 0.6164 | 0.0388 | 0.1892 | 0.2280 | 0.1944 | 0.2280 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%
11 | 01010 11 0.1267 | 0.0677 | 0.0677 | 0.7379 | 0.1944 | 0.1944 | 0.1944 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%
12 | o1011 11 00528 | 0.1416 | 0.0504 | 0.7552 | 0.1944 | 0.1032 | 0.1944 | 0.0789 | 0.0000 | -0.0243 | 0.00% |-23.57%
13 | 01100 00 06234 | 0.1436 | 0.1486 | 0.0794 | 0.2280 | 0.2280 | 0.2280 | 0.2280 | 0.0000 | 0.0000 | 0.00% | 0.00%
14 | 01101 00 05495 | 0.2225 | 0.1313 | 0.0967 | 0.2280 | 03192 | 0.2280 | 0.3192 | 0.0000 | 0.0000 | 0.00% | 0.00%
15 | 01110 00 0.5450 | 0.1358 | 0.1358 | 0.1834 | 0.3192 | 03192 | 03192 | 03192 | 0.0000 | 0.0000 | 0.00% | 0.00%
16 | 01111 00 05333 | 0.1475 | 0.1331 | 0.1861 | 0.3192 | 03336 | 0.3192 | 0.3989 | 0.0000 | 0.0653 | 0.00% | 19.57%
17 | 10000 00 06234 | 0.14% | 0.1486 | 0.0794 | 0.2280 | 0.2280 | 0.2280 | 0.2280 | 0.0000 | 0.0000 | 0.00% | 0.00%
18 | 10001 01 0.1556 | 0.6164 | 0.0388 | 0.1892 | 0.2280 | 0.1944 | 0.2280 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%
19 | 10010 11 0.1267 | 0.0677 | 0.0677 | 0.7379 | 0.1944 | 0.1944 | 0.1944 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%

20 | 10011 11 0.0528 | 0.1416 | 0.0504 | 0.7552 | 0.1944 | 0.1032 | 0.1944 | 0.0789 | 0.0000 | -0.0243 | 0.00% |-23.57%

21 | 10100 00 0.6234 | 0.1436 | 0.1486 | 0.0794 | 0.2280 | 0.2280 | 0.2280 | 0.2280 | 0.0000 | 0.0000 | 0.00% | 0.00%

22 | 10101 01 0.1556 | 0.6164 | 0.0388 | 0.1892 | 0.2280 | 0.1944 | 0.2280 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%

23 | 10110 11 0.1267 | 0.0677 | 0.0677 | 0.7379 | 0.1944 | 0.1944 | 0.1944 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%

24 | 10111 11 00528 | 0.1416 | 0.0504 | 0.7552 | 0.1944 | 0.1032 | 0.1944 | 0.0789 | 0.0000 | -0.0243 | 0.00% |-23.57%

25 | 11000 10 0.1309 | 0.0331 | 0.6411 | 0.1949 | 0.1640 | 0.2280 | 0.1640 | 02280 | 0.0000 | 0.0000 | 0.00% | 0.00%

26 | 11001 11 0.0327 | 0.1313 | 0.1617 | 0.6743 | 0.1640 | 0.1944 | 0.1640 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%

27 | 11010 11 0.0282 | 0.0446 | 0.1662 | 0.7610 | 0.0728 | 0.1944 | 0.0728 | 0.1944 | 0.0000 | 0.0000 | 0.00% | 0.00%

28 | 11011 11 0.0127 | 0.0601 | 0.0905 | 0.8367 | 0.0728 | 0.1032 | 0.0728 | 0.0789 | 0.0000 | -0.0243 | 0.00% |-23.57%

29 | 11100 10 0.1309 | 0.0331 | 0.6411 | 0.1949 | 0.1640 | 0.2280 | 0.1640 | 02280 | 0.0000 | 0.0000 | 0.00% | 0.00%

30 | 11101 10 0.1154 | 0.0486 | 0.5654 | 0.2706 | 0.1640 | 03192 | 0.1640 | 0.3192 | 0.0000 | 0.0000 | 0.00% | 0.00%

31| 11110 10 0.1147 | 0.0349 | 0.5661 | 0.2843 | 0.1496 | 03192 | 0.1496 | 03192 | 0.0000 | 0.0000 | 0.00% | 0.00%

32| 11111 10 01123 | 00373 | 0.5541 | 0.2963 | 0.1496 | 0.3336 | 0.1496 | 0.3989 | 0.0000 | 0.0653 | 0.00% | 19.57%

(b)

Input Pattern | Output Output Vector (using PTM) oD, OD,,,.,I, Error Frror%

ID | {abdce} | {jk} 00 01 10 11 Portj | Portk | Portj | Portk | Portj | Portk | Portj | Portk
1 00000 00 02960 | 0.2240 | 0.2240 | 0.2560 | 0.4800 | 0.4800 | 0.4800 | 04800 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2 | 00001 01 02000 | 0.3200 | 0.1600 | 0.3200 | 0.4800 | 0.3600 | 0.4800 | 0.3600 | 0.0000 | 0.0000 | 0.0000 | 0.0000
3 | 00010 11 0.1680 | 0.1920 | 0.1920 | 0.4480 | 0.3600 | 0.3600 | 0.3600 | 0.3600 | 0.0000 | 0.0000 | 0.0000 | 0.0000
4 | 00011 11 0.1320 | 0.2280 | 0.1680 | 04720 | 0.3600 | 03000 | 0.3600 | 0.2800 | 0.0000 | -0.0200 | 0.00% | -6.67%
5| 00100 00 02960 | 0.2240 | 0.2240 | 0.2560 | 0.4800 | 0.4800 | 0.4800 | 0.4800 | 0.0000 | 0.0000 | 0.00% | 0.00%
6 | 00101 01 02000 | 0.3200 | 0.1600 | 0.3200 | 0.4800 | 0.3600 | 0.4800 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
7 | 00110 11 0.1680 | 0.1920 | 0.1920 | 0.4480 | 0.3600 | 0.3600 | 0.3600 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
8 | 00111 11 0.1320 | 0.2280 | 0.1680 | 0.4720 | 0.3600 | 0.3000 | 0.3600 | 0.2800 | 0.0000 | -0.0200 | 0.00% | -6.67%
9 | 01000 00 02960 | 0.2240 | 0.2240 | 0.2560 | 0.4800 | 0.4800 | 0.4800 | 0.4800 | 0.0000 | 0.0000 | 0.00% | 0.00%
10 | 01001 01 02000 | 0.3200 | 0.1600 | 0.3200 | 0.4800 | 0.3600 | 0.4800 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
11 | 01010 11 0.1680 | 0.1920 | 0.1920 | 0.4480 | 0.3600 | 0.3600 | 0.3600 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
12 | 01011 11 0.1320 | 0.2280 | 0.1680 | 04720 | 0.3600 | 0.3000 | 0.3600 | 0.2800 | 0.0000 | -0.0200 | 0.00% | -6.67%
13 | 01100 00 02960 | 0.2240 | 0.2240 | 0.2560 | 0.4800 | 0.4800 | 0.4800 | 0.4800 | 0.0000 | 0.0000 | 0.00% | 0.00%
14 | 01101 00 02600 | 0.2600 | 0.2000 | 0.2800 | 0.4800 | 0.5400 | 0.4800 | 0.5400 | 0.0000 | 0.0000 | 0.00% | 0.00%
15 | 01110 00 02480 | 0.2120 | 0.2120 | 0.3280 | 0.5400 | 0.5400 | 0.5400 | 0.5400 | 0.0000 | 0.0000 | 0.00% | 0.00%
16 | 01111 00 02345 | 0.2255 | 0.2030 | 0.3370 | 0.5400 | 0.5625 | 0.5400 | 0.5888 | 0.0000 | 0.0263 | 0.00% | 4.67%
17 | 10000 00 02960 | 0.2240 | 0.2240 | 0.2560 | 0.4800 | 0.4800 | 0.4800 | 0.4800 | 0.0000 | 0.0000 | 0.00% | 0.00%
18 | 10001 01 02000 | 0.3200 | 0.1600 | 0.3200 | 0.4800 | 03600 | 0.4800 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
19 | 10010 11 0.1680 | 0.1920 | 0.1920 | 0.4480 | 0.3600 | 0.3600 | 0.3600 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%

20 | 10011 11 0.1320 | 0.2280 | 0.1680 | 0.4720 | 0.3600 | 0.3000 | 0.3600 | 0.2800 | 0.0000 | -0.0200 | 0.00% | -6.67%
21 | 10100 00 02960 | 0.2240 | 0.2240 | 0.2560 | 0.4800 | 0.4800 | 0.4800 | 0.4800 | 0.0000 | 0.0000 | 0.00% | 0.00%
22 | 10101 01 02000 | 0.3200 | 0.1600 | 0.3200 | 0.4800 | 03600 | 0.4800 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
23 | 10110 11 0.1680 | 0.1920 | 0.1920 | 0.4480 | 0.3600 | 03600 | 0.3600 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
24 | 10111 11 0.1320 | 0.2280 | 0.1680 | 0.4720 | 0.3600 | 0.3000 | 0.3600 | 0.2800 | 0.0000 | -0.0200 | 0.00% | -6.67%
25 | 11000 10 0.1760 | 0.1440 | 0.3440 | 0.3360 | 0.3200 | 0.4800 | 0.3200 | 0.4800 | 0.0000 | 0.0000 | 0.00% | 0.00%
26 | 11001 11 0.1200 | 0.2000 | 0.2400 | 0.4400 | 0.3200 | 0.3600 | 0.3200 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
27 | 11010 11 0.1080 | 0.1520 | 0.2520 | 0.4880 | 0.2600 | 0.3600 | 0.2600 | 0.3600 | 0.0000 | 0.0000 | 0.00% | 0.00%
28 | 11011 11 0.0870 | 0.1730 | 0.2130 | 0.5270 | 0.2600 | 0.3000 | 0.2600 | 0.2800 | 0.0000 | -0.0200 | 0.00% | -6.67%
29 | 11100 10 0.1760 | 0.1440 | 0.3440 | 0.3360 | 0.3200 | 0.4800 | 0.3200 | 04800 | 0.0000 | 0.0000 | 0.00% | 0.00%
30 | 11101 10 0.1550 | 0.1650 | 0.3050 | 0.3750 | 0.3200 | 0.5400 | 0.3200 | 0.5400 | 0.0000 | 0.0000 | 0.00% | 0.00%
31| 11110 10 0.1505 | 0.1470 | 0.3095 | 0.3930 | 0.2975 | 0.5400 | 0.2975 | 0.5400 | 0.0000 | 0.0000 | 0.00% | 0.00%
32| 11111 10 0.1426 | 0.1549 | 0.2949 | 04076 | 0.2975 | 0.5625 | 0.2975 | 0.5888 | 0.0000 | 0.0263 | 0.00% | 4.67%
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Fig. 8. Fragment of the 74181 ALU.

such errors are acceptable if pattern modeling based on output
deviations leads to effective pattern selection.

As shown in Table V, the error at port j is always zero. This
is because the input cone of j has only one fan-out stem, and
this stem is at the primary input b. Since signal probabilities at
primary inputs only take values of zero and one, the accuracy
is not affected by the assumption that fan-out branches at a
primary input are independent. The input cone of k, however,
has a fan-out stem that is not at a primary input. Hence, the error
at k is not always zero for c17.

Table V also shows that the low-CL set results in smaller
error between OD,,,o;, and ODpry. Since both sets of CL
vectors yield similar results for test-pattern ordering, in the
remaining part of this section, we only use the low-CL values
to compute OD,;01, and ODpy.

We also considered a fragment of the 74181 ALU [29], as
shown in Fig. 8. The fragment that we take only involves the
inputs So—S3, M, CN, and the least significant bits of A and B,
ie.,, AOB and BOB. Fig. 9(a) and (b) shows OD,,., and
ODpr\ for all the 256 possible input patterns at output ports
F, and FY, respectively. We conclude that, although the differ-
ences between ODy,1, and ODpry are noticeable, the curve
for ODy,,1, approximately tracks the shape of the curve for
ODprm. Fig. 9 implies that, if a sufficiently large number of
patterns are selected, ODp;o1, Will yield similar results as that
obtained using ODpry. Since we are only interested in the
reordering of a large number of test patterns, such differences
are acceptable.

To justify the above conclusion, we use the test-pattern-
reordering procedure described in Section IV to reorder all the
256 patterns of the fragment, using both ODpry and ODp0n
as the metric, to obtain two reordered test sequences. If only
the first k patterns in each reordered sequence are considered,
we can find ¢(k) common test patterns that belong to both
sequences. Table VI lists some pairs of k and c(k). As shown,
the number of common test patterns ¢(k) is sufficiently high
to show that we can use OD,,,1, as a practical alternative to
ODp for test-pattern reordering.

To compute ODpty; for the circuit shown in Fig. 8, we
must tensor the input signals and PTMs for all the logic gates,
except the three one-input gates (two inverters and one buffer).
For example, for gate Mg, its input signals M3 and M, are
correlated with My, M7, and M,. These five signals must be
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Fig. 9. ODpopb and ODpry for the fragment of 74181, as shown in Fig. 8.
(a) At port F. (b) At port Fy.

stored in a tensored form, i.e., a 1 x 32 vector. The PTM for
Mg should also be tensored with an 8 x 8 identity matrix,
resulting in a 32 x 16 matrix. The output of Mg is therefore
a 1 x 16 vector that stores signals My, M7, M, and Ms.
Hence, the computation of ODpry is much expensive than the
computation of ODp;,1,, and it also requires more memory.
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TABLE VI
COMMON TEST PATTERNS SELECTED USING ODprai AND ODppo

k| ck) | ck)/k (%)
50 | 28 56.00
75| 42 56.00
100 | 70 70.00
125 | 96 76.80
150 | 123 82.00
175 | 139 79.43
200 | 171 85.50
256 | 256 100

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the pro-
posed pattern-reordering method for the ISCAS-89 circuits.
For each benchmark, we first obtain an n-detect set of test
patterns and, then, reorder this test set using different reordering
methods.

We do not run ATPG separately for different fault models.
ATPG is only done once for n-detection of stuck-at faults. We
use different reordering methods to rank these n-detect test
patterns. Next, we run fault simulation for the four fault models
using the reordered test patterns.

The program to compute output deviations was implemented
using C++. On a 64-b Linux server with a 2.4G AMD Opteron
250 processor and 4-GB memory, it takes approximately
15 s to compute the deviations for the 851 n-detect patterns
and reorder them for the full-scan version of s38584. This
program is an unoptimized prototype. Event-driven techniques
can be used to decrease computation time; for consecutive
patterns, only the gates whose outputs are changed need to be
evaluated.

The fault simulators that we use are not industrial-strength;
they are unoptimized academic prototypes that simply use
event-driven single-pattern-parallel-fault simulation, hence the
fault-simulation times are high. For the 851 five-detect patterns
for s38584, the stuck-open fault simulation takes 22 s, and the
transition-fault simulation takes 16.9 s. Nevertheless, repeated
use of different fault simulators for various fault models is time-
consuming for large circuits, even if industry-strength tools
are used.

For each circuit, four different cases are considered corre-
sponding to four fault models: 1) stuck-at faults; 2) stuck-
open faults detected using the LOS scheme; 3) transition faults
detected using the LOS scheme; and 4) transition faults detected
using the LOC scheme. The fault coverage for these fault mod-
els are obtained using the different reordered test sequences.

The LOC transition-fault simulator assumes two constraints:
1) primary inputs remain unchanged during the two capture
cycles and 2) POs are not probed to detect faults. This is
because, for at-speed testing, low-speed testers usually cannot
drive or probe pins at the functional frequency, which is much
faster than the test frequency [30]. The LOS fault simulators do
not assume these constraints.

To eliminate any bias in the comparison of different methods
for test-set reordering, we use two arbitrarily chosen sets of
CL vectors for our experiments. These vectors are defined
separately for each gate type. For example, for a two-input
NAND gate, we use as follows: 1) “low-CL” vector: RNAND2 _

A Stuck—open (low CL)
[J Stuck—open (high CL)
e Transition (low CL)
@ Transition (high CL)

Fault coverage
~J
=

138 207 276 345 414 483 552 621 689

Number of patterns

(a)

0 69

Fault coverage
o
O

Stuck—open (low CL)
O Stuck—open (high CL)
e Transition (low CL)
€ Transition (high CL)

340 425 510 595
Number of patterns

(b)

Fig. 10. Coverage for stuck-open and transition faults obtained using high and
low CLs, for s38417 and s38584.

0 8 170 255 680 765 851

(0.8(0) 0.80D) 0.8(10) 0.7(11)) and 2) “high-CL” vector:
RNAND2 — (0 95(00) ,95(00) '0.95(19) 0.85(1D)). Fig. 10(a)
and (b) shows the coverage for stuck-open (LOS) and transition
(LOS) faults obtained using test sequences that are reordered
using both high and low CLs. As shown, both sets of CL vectors
yield similar results. This is because both CL vectors are chosen
to reflect the fact that, when both inputs are noncontrolling,
the probability for the gate to produce the correct output is
lower than other input combinations. This observation also
shows that the deviation-based reordering technique is less
sensitive to the absolute values of CL vectors, as long as the
CL vectors can reflect basic attributes of the layout and/or
process. It is also expected that more accurate CL vectors that
carry more information can yield better results. How to derive
those CL vectors is an important topic for ongoing research.
In this section, we only report results obtained using the
“high-CL” set.

Figs. 11-13 show the fault coverage obtained for various
test lengths for different fault models for several ISCAS-89
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benchmark circuits, using five-detect test cubes. For stuck-
open and transition faults, the deviation-based reordering ap-
proach appears to be the most promising. The patterns selected
using the proposed approach provide higher defect coverage
with a smaller number of test patterns. For stuck-at faults,
Sinc outperforms other reordering methods. This is expected
because Sj,. is tailored to obtain the steepest stuck-at fault
coverage.

It can be seen from all cases that, by first apply-
ing test patterns selected by the deviation-based method,
we can cover most easy-to-detect stuck-open and transi-
tion faults using the first few test patterns (40%-50% for
most benchmark circuits). In case 4, the fault coverage
for the complete set of patterns is relatively low, because
the second test pattern po is not directly generated by the
n-detect ATPG tool. These observations suggest that, in order
to obtain high defect coverage with a small number of test
patterns, we should only apply a subset of the n-detect test
patterns (reordered by the deviation-based method) and, then,
add top-off ATPG patterns targeting the remaining hard-to-
detect faults.

For the coverage for stuck-open faults and transition faults,
test sets reordered using the deviation-based method (Sqey1 and
Sdev2) outperform test sets reordered by the other methods.
For stuck-at fault coverage Sy, which is specifically tuned for
stuck-at fault coverage, outperforms Sqey1 and Sqeyv2- However,
Sinc 1s only optimized for one fault model. Since our goal is to
improve the defect coverage, it is inefficient to consider only
one fault model for pattern ordering.

VII. CONCLUSION

We have presented a probabilistic fault model as a technique
to grade test patterns for defects that cannot be modeled us-
ing compact fault models. We have shown that output devi-
ations offer an effective surrogate coverage metric to model
the quality of test patterns. Pattern ranking based on output
deviations offers a useful method for test-pattern reordering
during high-volume and time-constrained production testing.
Experimental results show that test sequences reordered us-
ing output deviations are consistently more effective than se-
quences returned by other methods. We have evaluated pattern
grading using the fault coverage for stuck-open and transition
faults.
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