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Abstract

Background: Different levels of brain arousal can be delineated not only during
sleep but also during wakefulness. Electroencephalography (EEG) is the gold standard to
assess different levels of brain arousal. A novel EEG- and electrooculography (EOG)-based
tool, the Vigilance Algorithm Leipzig (VIGALL 2.0), allows determining the level of
EEG-vigilance (indicating brain arousal). Considering the frequency patterns and
LORETA-based cortical distribution of electroencephalic activity, VIGALL 2.0 automatically
attributes one out of seven vigilance stages to each EEG segment (1-sec EEG segments
by default), ranging from high alertness (stage 0), to relaxed wakefulness (stage A1 to A3),
to drowsiness (stage B1 to B2/3) up to sleep onset (stage C). Building on the time series
of these seven vigilance stages across 20 min, two parameterizations of the
temporal dynamic (brain arousal regulation) are calculated: the lability score and
the slope index.

Methods: 27 healthy participants (age = 22.93 ± 3.44 years, 18 females) underwent two
sessions (7 days apart) of a twenty-minute eyes-closed resting EEG paradigm.

Results: The test-retest reliability coefficients for the EEG-vigilance stages were between
rho = .53 and .86 (all p < .01). For the temporal dynamic of the stages across
20 min, the test-retest reliability coefficients were rho = .70 (lability score, p < .001)
and .71 (slope index, p < .001).

Conclusions: This study demonstrated some trait aspects of brain arousal regulation by
confirming the stability of temporal dynamic of EEG-vigilance stages as assessed
with VIGALL 2.0. Considering the “first day in lab” effect identified in the present
study, more adaptation to the lab surrounding and a stricter control of other state
factors should be taken into account, which might improve reliability. Additionally, in a
clinical context, a broader range of brain arousal regulation patterns might be
found, possibly leading to higher test-retest reliability than was found in this
homogenous healthy sample. This would be desirable, as parameters of brain
arousal regulation are promising diagnostic and prognostic biomarkers for diseases with
arousal disturbances, such as affective disorders, ADHD and fatigue.
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Background
Brain arousal influences all human behaviours (Pfaff et al. 2008). Arousal regulation de-

notes the adaptation of brain arousal to situational requirements, which is of most im-

portance for efficient human behavior. For example, arousal must be heightened in

case of potential danger, maintained during cognitive tasks and reduced at bedtime.

Recently, the Research Domain Criteria (RDoC) project of the National Institute of

Mental Health has implemented arousal as a fundamental dimension of psychopath-

ology (Cuthbert and Insel 2013).

Different levels of brain arousal can be delineated not only during sleep (e.g. Iber

et al. 2008; Rechtschaffen and Kales 1969) but also during wakefulness (see below).

Electroencephalography (EEG) is the gold standard to assess different levels of brain

arousal. By taking into account the frequency patterns as well as the Low Resolution

Electromagnetic Tomography (LORETA)-based cortical distribution of EEG activity,

different EEG-vigilance stages (indicating brain arousal states) can be distinguished

during the transition from high alertness to relaxed wakefulness, to drowsiness up

to sleep onset.

Under eyes-closed resting conditions without external stimulation, interindividual differ-

ences concerning arousal regulation occur (Hegerl and Hensch 2014): Most subjects show

progressive declines to lower EEG-vigilance stages indicating slowly-declining arousal regu-

lation, while some subjects display an unstable arousal regulation with rapid declines to low

EEG-vigilance stages after only a few seconds. Yet others exhibit a hyperstable arousal regu-

lation without such declines to lower EEG-vigilance stages even after recording periods of

20 min - the EEG recording period following the standard operating procedures of VIGALL

(available at http://research.uni-leipzig.de/vigall/) and the Multiple Sleep Latency Test

(MSLT; Carskadon and Dement 1977). Brain arousal regulation can be considered a state

modulated trait, because sleep deficits or drugs with arousal stabilizing properties (e.g. caf-

feine, nicotine) are likely to exert state dependent influences.

EEG parameters of brain arousal regulation (i.e. the temporal dynamic of EEG-vigilance

stages) can be considered converging biomarkers reflecting influences of various wakeful-

ness and sleep promoting neurochemical systems (e.g. the noradrenergic, histaminergic, se-

rotonergic and orexinergic system). These biomarkers are not only of interest as

neurobiological correlates of arousal regulation but also as indicators of pathogenetic as-

pects in affective disorders and attention-deficit/hyperactivity disorder (ADHD) (Geissler

et al. 2014; Hegerl and Hensch 2014).

According to the classification by Rechtschaffen and Kales (1969) and the scoring

manual of the American Academy of Sleep Medicine (Iber et al. 2008), brain arousal

has traditionally been classified into 3 stages: relaxed wakefulness, non-rapid eye

movement sleep (NREM) and rapid eye movement sleep (REM). However, these

traditional classifications do not distinguish sub-stages preceding sleep onset,

although such sub-stages during transition from wakefulness to sleep onset have

been described for decades (Bente 1964; Loomis et al. 1937; Roth 1961; Benca et al.

1999; Cantero et al. 2002; Corsi-Cabrera et al. 2000; De Gennaro et al. 2001, 2004,

2005; De Gennaro and Ferrara 2003; Kaida et al. 2006; Marzano et al. 2007;

Strijkstra et al. 2003; Tsuno et al. 2002). Building on this research, a novel EEG-

based algorithm for automatic classification of EEG-vigilance stages has recently

been introduced by Hegerl and colleagues (Sander et al. in press).

http://research.uni-leipzig.de/vigall/
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The Vigilance Algorithm Leipzig (VIGALL) 2.0 is an EEG- and electrooculography

(EOG)-based algorithm which allows to objectively determine the level of EEG-vigilance

and its dynamics within EEG recordings (Hegerl et al. 2014; Hegerl and Hensch 2014;

Olbrich et al. 2012; Sander et al. in press). The algorithm considers the frequency patterns

as well as the cortical distribution of EEG activity, using EEG source localisation approaches

(LORETA; Pascual-Marqui et al. 1994; Pascual-Marqui et al. 2002). VIGALL 2.0 automatic-

ally attributes one out of seven EEG-vigilance stages (Table 1) to each EEG segment (1-sec

EEG segments by default). Building on the time series of these seven EEG-vigilance stages

across 20 min, two parameterizations of the temporal dynamic are calculated: the lability

score and the slope index (as described below).

Because of the high inter-individual variability in electroencephalic frequency patterns

and power, VIGALL 2.0 has adaptive features concerning individual alpha peaks and amp-

litude levels. VIGALL 2.0 should not be used for EEGs showing alpha variant rhythms or

major modifications due to drugs (e.g. anticholinergic drugs) or certain diseases (e.g. se-

vere Alzheimer’s disease). Additionally, VIGALL 2.0 is not indicated for EEGs from chil-

dren younger than ten years (or older children in case of delayed maturation). VIGALL

2.0 is implemented as an add-in in the Brain Vision Analyzer 2.0 software (Brain Products,

Gilching, Germany). The VIGALL 2.0 add-in as well as the user manual including the

standard operating procedures (SOPs) can freely be downloaded from http://

research.uni-leipzig.de/vigall/.

VIGALL 2.0 is a refinement of an earlier version of the algorithm, which has been

validated using simultaneous EEG-fMRI (Olbrich et al. 2009) as well as simultan-

eous EEG-FDG-PET-studies (Günther et al. 2011) and by relating the EEG-vigilance

stages to different autonomic parameters (Olbrich et al. 2011b). Moreover, VIGALL

has already been applied in clinical studies. In line with the arousal regulation theory of

affective disorders and ADHD (Hegerl and Hensch 2014; Geissler et al. 2014), a hyperstable

arousal regulation has been shown in depressive patients compared with controls (Hegerl

et al. 2012; Olbrich et al. 2012), and, in contrast, an unstable arousal regulation has been

shown in ADHD (Olbrich et al. 2013; Sander et al. 2010).

Having in mind the potential use of EEG parameters of brain arousal regulation as

diagnostic or predictive biomarkers, the aim of this study was to assess the test-

retest reliability of lability score, slope index, EEG-vigilance stages and mean EEG-

vigilance level as assessed by VIGALL in healthy subjects.
Table 1 Arousal states and EEG descriptions of EEG-vigilance stages

VIGALL arousal state EEG

0 high alertness low amplitude EEG with high beta (12–25 Hz) power without
horizontal slow eye movements

A1 relaxed wakefulness dominant high alpha (8–12 Hz) in occipital regions of interest

A2 dominant high alpha (8–12 Hz) in parietal or temporal regions
of interest

A3 dominant high alpha (8–12 Hz) in frontal regions of interest

B1 low amplitude EEG with high beta (12–25 Hz) power with
horizontal slow eye movements

B2/3 drowsiness high delta (2–4 Hz) or theta (4–8 Hz) power

C sleep onset K-complexes or sleep spindles

Vigilance Algorithm Leipzig (VIGALL)

http://research.uni-leipzig.de/vigall/
http://research.uni-leipzig.de/vigall/
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Methods
Participants

Participants were recruited via local and online advertisements. They gave written in-

formed consent and received an expense allowance. The study was approved by the

local ethics committee of the University of Leipzig (075-13-11032013). Participants

were requested to participate in two EEG measures with the average interval of 7.15

(±1.29; range: 4–11) days between both. 27 participants (18 females; age = 22.93 ±

3.44 years) had two EEG recordings (T1 and T2) available and met the following inclu-

sion criteria: no pathological sleepiness (defined as score above 14 of Epworth Sleepi-

ness Scale; see Johns 1992), which may artificially increase retest reliability, no

extensive sleep duration difference between both nights prior to each session (i.e. more

than 2 hours as assessed by sleep protocol) and no reported history of psychiatric or

neurological disorders or current consumption of psychotropic medication. Participants

were allowed to drink caffeinated beverages and to smoke as usual prior to the EEG re-

cording at T1 and T2.
EEG recording

During EEG preparation participants were asked to fill in questionnaires including a sleep

protocol, which contained questions about last night’s sleep, a substance consumption scale,

the Epworth Sleepiness Scale (ESS, German version available at http://www.charite.de/

dgsm/dgsm/fachinformationen_frageboegen_epworth.php) and the Karolinska Sleepiness

Scale (KSS; Akerstedt and Gillberg 1990). EEG was recorded within a timeslot between 1

and 4 p.m. depending on time arrangement with the participants. Daytime of EEG

assessment was kept constant for each participant across both sessions. The recording

booth was a light dimmed and sound attenuated room with a maintained temperature be-

neath 25 ° C. The participants lay comfortably on a lounger with closed eyes and were

instructed to relax and not to try staying awake in case of drowsiness. Rather, they

were explicitly allowed to follow their natural course of arousal. EEG assessment

started with a Berger Maneuver (i.e. alternating opening and closing of the eyes).

The resting EEG recording in each session lasted for 20 min.

The EEG was recorded by 40 channel QuickAmp amplifiers (Brain Products GmbH,

Gilching, Germany) from 32 electrode sites and no online filter was applied. Electrodes

were arranged according to the extended international 10–20 system using EasyCap

(EASYCAP Brain Products GmbH, Gilching, Germany), and referenced against com-

mon average. Impedances were kept below 10 kΩ and sampling rate was 1000 Hz.

Electrodes for horizontal EOG (hEOG) were placed lateral of the left and right eye,

electrodes for vertical EOG (vEOG) were placed above and beneath the right eye.
EEG preprocessing and vigilance classification

EEG data were processed using Brain Vision Analyzer 2.0 software (Brain Products GmbH,

Gilching, Germany). EEG raw data was filtered offline (highpass at .5 Hz, lowpass at 70 Hz,

notch-filter at 50 Hz (±5 Hz). EOG raw data was filtered the same way as EEG raw data but

without a highpass filter. The 20 min resting EEG was subdivided into 1200 consecutive

1-sec segments. Following a visual artifact screening, an independent component analysis

(ICA) was performed. Eye movement and continuous muscle artifacts were removed by

http://www.charite.de/dgsm/dgsm/fachinformationen_frageboegen_epworth.php
http://www.charite.de/dgsm/dgsm/fachinformationen_frageboegen_epworth.php
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extracting independent components clearly containing artifact-related information (Olbrich

et al. 2011a). Afterwards, the EEG segments were visually screened again for remaining

muscle, swallow, eye movement and sweating artifacts. To keep the time sequence intact,

artifact-containing segments were not removed but marked manually and discarded from

further classification. EEG recordings with more than 90 % of artifacts free segments were

included in the analysis. This criterion was achieved by all subjects: There were 1173.30

(±25.53, range: 1087–1199) and 1172.22 (±19.00, range: 1127–1196) artifact free EEG seg-

ments at T1 and T2, respectively.

Subsequently, all segments were classified into seven different vigilance stages using VIG-

ALL 2.0 (for detailed descriptions of the scoring algorithm see the VIGALL 2.0 Manual

(available at http://research.uni-leipzig.de/vigall/). Classification of vigilance stage C relies

on the occurrence of graph elements indicating sleep onset (i.e. K-complex or sleep

spindles). Therefore, all EEGs had visually been screened for such graph elements

and the respective EEG segments had been marked.
EEG-vigilance parameterizations

For each recording, results of the VIGALL classification via VIGALL 2.0 are written

into an output text file which was then imported into a customized Excel template with

Visual Basic for Applications (VBA) macros (Microsoft), and used to calculate different

parameterizations of brain arousal and its dynamics.
a) Amount of EEG-vigilance stages: Over the whole recording period, the relative

amount of segments attributed to the respective EEG-vigilance stages (stage 0, A, B

and C, sub-stages A1, A2, A3, B1, B2/3) was determined (amount*100/total number

of non-artifact segments).

b) Mean EEG-vigilance level: As a parameterization of the overall EEG-vigilance level, each

EEG-vigilance stage was assigned with a number ranging from 7 (highest vigilance

stage 0) to 1 (lowest vigilance stage C). Based on that, a mean EEG-vigilance level

was calculated by averaging the vigilance scores of all non-artifact segments. In

order to assess the temporal dynamics of the EEG-vigilance level, the 20 min resting

EEG was subdivided into four consecutive blocks (block 1: minute 1–5; block 2: minute

6–10; block 3: minute 11–15; block 4: minute 16–20) and the mean EEG-vigilance level

was computed for each block.

c) Lability score: To quantify the speed and extend of vigilance decline, a so called

“lability score” was determined for each individual vigilance time course (see

Table 2). To this end, epochs of 1 min duration (i.e. 60 1-sec segments) were

analyzed (epoch 1: segments 1–60, epoch 2: segments 2-61…). For each epoch,

it was tested if one of the following conditions applied (in ascending order

according to lability): (I) occurrence of at least 1 C-stage; (II) at least 1/3 of

segments classified as B2/3-stage; (III) at least 1/3 of all segments classified as

B-stages (B1 + B2/3); (IV) at least 2/3 of all segments classified as 0/A- or 0/

A1-stages. If within the whole EEG data only criterion IV was fulfilled, a

lability score of 1 or 2 was given. If one of the other criteria was fulfilled in

at least one epoch, we determined the EEG part in which the lowest vigilance stage was

reached for the first time and gave the respective “lability score” (as seen in Table 2).

http://research.uni-leipzig.de/vigall/


Table 2 Lability score correspond to certain EEG-vigilance stage in the respective EEG block
(20 min EEG recording separated in 4 blocks of 5 min duration)

Lability Score Lability level (criterion) EEG block Operational definition

1 level 1: less than 1/3 of all segments not
classified as 0/A- or 0/A1-stages

1-4 rigidity, unique appearance of 0 and A1

2 1-4 rigidity, unique appearance of 0 and A

3 level 2: at least 1/3 of all segments
classified as B (B1 + B2/3)-stages

4 stage B emerged in minute 16-20

4 3 stage B emerged in minute 11-15

5 2 stage B emerged in minute 6-10

6 1 stage B emerged in minute 1-5

7 Level 3: at least 1/3 of segments
classified as B2/3-stages

4 stage B2/3 emerged in minute 16-20

8 3 stage B2/3 emerged in minute 11-15

9 2 stage B2/3 emerged in minute 6-10

10 1 stage B2/3 emerged in minute 1-5

11 Level 4: occurrence of at least 1 C-stage 4 stage C emerged in minute 16-20

12 3 stage C emerged in minute 11-15

13 2 stage C emerged in minute 6-10

14 1 stage C emerged in minute 1-5
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d) Slope Index: In order to measure the degree of arousal instability, we set up

functional equations n f xð Þ ¼ m
ffiffiffiffiffiffiffi
lnx

p þ n
� �

, which take into account the initial

mean EEG-vigilance level observed in minute one (n, with 1 ≤ n ≤ 7) and its

square rooted logarithmic decline to the mean level in each of the subsequent

minutes two to twenty (m
ffiffiffiffiffiffiffi
lnx

p
with x representing the count of the respective

minute; 2 ≤ x ≤ 20). Arousal instability was defined as the slope (m) with the

lowest value (reflecting the steepest decline) as derived from the nineteen

possible functional equations. The square rooted logarithmic relation enables an

objective and adequate weighting of immediate drops to moderate EEG-vigilance

levels relative to delayed drops to low EEG-vigilance levels. Within an independent

sample comprising 1079 healthy participants of the Leipzig Health Care Study (556

males, age = 65.6 years), regression analyses revealed a linear negative relation between

mean EEG-vigilance level during minute one and m (b = −.33, t =−10.875, p < .001). To

compensate floor effects within participants exhibiting low initial EEG-vigilance levels,

individual slopes were adjusted by adding a linear correction factor (−0.33 ∗(7−n)).
Statistics

Paired two samples Wilcoxon signed ranks tests were carried out to determine whether

scores of T1 and T2 differed significantly from each other. For all correlational analyses

nonparametric Spearman rank correlation rho was calculated, since the data were

either ordinal scaled (lability score and slope index) or not normally distributed

(amount of vigilance stages with exception of stage A1 and B2/3).
Results
Test-retest reliability of EEG-vigilance stages

EEG-vigilance stages (in % of all artifact free 1-sec EEG segments) at T1 and T2 are

presented in Table 3. Except higher amounts of stage 0 (Z = −2.30, p = .022) and lower



Table 3 EEG-vigilance stages (in % of all artifact free 1-sec segments across 20 min of EEG recording).
Mean differences between T1 and T2 and respective Spearman correlation confidents (N = 27)

EEG-vigilance
stages

T1 T2 Z (p) rho (p)

proportion (SD) range proportion (SD) range

stage 0 5.61 (8.81) .00-33.73 3.04 (5.63) .00-23.99 −2.30 (.022) .529 (.005)

stage A 49.23 (25.83) 1.51-94.43 44.23 (31.54) 2.17-97.46 −1.97 (.049) .855 (.000)

sub-stage A1 32.08 (17.02) .50-66.97 30.07 (23.80) .42-96.10 −1.07 (.285) .680 (.000)

sub-stage A2 12.56 (14.70) .17-48.12 10.48 (14.70) .17-66.16 −1.38 (.167) .700 (.000)

sub-stage A3 4.59 (8.54) .00-39.10 3.68 (8.08) .00-38.43 −1.09 (.276) .776 (.000)

stage B 36.52 (18.69) 3.51-76.45 40.76 (23.42) 2.20-83.69 −1.39 (.163) .569 (.002)

sub-stage B1 18.62 (15.28) .67-50.88 17.15 (16.37) .34-54.49 −1.09 (.313) .590 (.001)

sub-stage B23 17.89 (14.12) .09-48.28 23.61 (17.30) .00-57.18 −2.15 (.032) .657 (.000)

stage C 8.65 (12.18) .00-41.05 11.97 (17.23) .00-56.06 −1.24 (.215) .859 (.000)
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amounts of B2/3 at T1 compared with T2 (Z = −2.15, p = .032), EEG-vigilance stages

did not show any statistically significant differences between T1 and T2. Notice that

the significant difference was also obtained for entire A (Z = −1.97, p = .049) but not for

the comparisons between sub-stage A1, A2 and A3 (all p > .05). The test-retest correl-

ation coefficients were all significant (all p < .01; see Table 3).
Test-retest reliability of mean EEG-vigilance level

Mean EEG-vigilance level for 20 min (overall) and the 5–minutes blocks are shown

in Table 4. The overall EEG-vigilance level was significantly lower in T2 (Z = −2.35,
p = .019). A significant difference was also found for mean EEG-vigilance level of

the first block (minute 1–5) (Z = −2.22, p = .026). The effect size between T1 and

T2, as presented in Table 4, for overall and mean EEG-vigilance level in correspond-

ing time blocks varied between .19 and .49, which indicated a small to medium

effect based on Cohen’s criterion (Cohen 1988). The correlation coefficients are

also illustrated in Table 4. With exception of the first block (minute 1–5), all mean vigi-

lance levels demonstrated temporal stability with correlation coefficients of rho ≥ .659
(all p < .001; see Table 4).
Test-retest reliability of temporal dynamic: lability score

The cumulative frequency distribution and scatter plot of the lability scores in T1

and T2 are illustrated respective in Figs. 1 and 2. The test-retest correlation of labil-

ity score was rho = .704 (p < .001).
Table 4 Mean EEG-vigilance level for 20 min (overall) and the 5–minutes blocks. Differences
between T1 and T2 and respective Spearman correlation coefficients (N = 27)

Time block T1 (SD) T2 (SD) effect size d Z (p) rho (p)

overall 4.13 (0.95) 3.80 (1.17) .31 −2.35 (.019) 0.700 (.000)

1 5.26 (0.66) 4.83 (1.05) .49 −2.22 (.026) 0.377 (.052)

2 4.35 (1.09) 4.01 (1.37) .27 −1.71 (.088) 0.758 (.000)

3 3.68 (1.31) 3.39 (1.43) .21 −1.44 (.149) 0.692 (.000)

4 3.23 (1.49) 2.95 (1.46) .19 −1.23 (.220) 0.659 (.000)



Fig. 1 Cumulative frequency distribution of lability score in T1 and T2 (N = 27). Dots illustrated the cumulative
frequency in the corresponding lability score. The line with black dots represented the cumulative
frequency distribution in T1, while the line with grey dots represented the cumulative distribution in T2

Huang et al. Neuropsychiatric Electrophysiology  (2015) 1:13 Page 8 of 13
Test-retest reliability of temporal dynamic: slope index

The slope indices for T1 and T2 are represented as scatter plot in Fig. 3. The test-

retest correlation of logarithmic slope index to the corrected sample size was

rho = .714 (p < .001).
Discussion
The current study analyzed for the first time test-retest reliability of EEG parameters of brain

arousal regulation in a sample of young individuals. The nonparametric test-retest correl-

ation coefficients for single EEG-vigilance stages varied from .53 to .86 (all p < .01), those for

mean EEG-vigilance levels with exception of block 1 between .66 and .76 (all p < .001), and
Fig. 2 Scatter plot of lability score at T1 vs. T2 (N = 27). The horizontal axis illustrated the lability score in T1
while the vertical axis represented the lability score in T2. Double circles indicate two subjects with the same
lability score. Note that nonparametric correlations were calculated due to the ordinal level of the lability score.
The linear regression line is presented only for illustration purpose



Fig. 3 Scatter plot of slope indices at T1 vs. T2 (N = 27). The horizontal axis illustrated the slope index in T1
while the vertical axis illustrated the slope index in T2. The axis values are represented reversely. Note that
nonparametric correlations were calculated due to the ordinal level of the lability score. The linear regression line is
presented only for illustration purpose
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those for parameterization of the temporal dynamic (lability score and slope index)

were .70 and .71, respectively (all p < .001). Thus, the EEG parameters, as classified

with VIGALL 2.0, turned out to be temporally stable, confirming some trait aspects of

brain arousal regulation.

The obtained reliabilities in the present study are well suited for applications on

group level, but should further be improved for clinical purposes, for example by more

strictly considering influencing factors as discussed below. In this context it should also

be noted that we analyzed a homogenous healthy sample and excluded subjects with

excessive sleepiness. Given this reduction of variance, high reliabilities are difficult to

obtain. One might speculate that in a clinical context, a broader range of brain arousal

regulation patterns will be found, possibly leading to higher test-retest reliabilities than

found in this homogenous healthy sample. This hypothesis is based on the findings in

previous studies that a pronounced instability or hyperstability of arousal has been

found in mania/ADHD and depression, respectively. This disease-related variance

should stay constant, whereas in healthy subject, in contrast, a floor effect, or a gener-

ally reduced variance might reduce correlations.

The parameterization of mean EEG-vigilance levels (in the current study for 20 min

and for 5-min blocks) proved to be reliable. On this basis, entering consecutive blocks

of vigilance into repeated measurement analyses enables to reliably assess group-

dependent differences in the temporal dynamics of mean EEG-vigilance levels. Such an

approach has, for instance, been pursued by Jawinski and colleagues comparing mean

EEG-vigilance levels among participants carrying zero, one or two susceptibility alleles,

respectively, of certain genetic polymorphisms linked to Bipolar Disorder (Jawinski

et al. unpublished). In our study the subjects showed significantly higher amount of

stage 0 (Z = −2.30, p = .022) and stage A (Z = −1.97, p = .049) and lower amount of B2/3

(Z = −2.15, p = .032) at T1 compared to T2, indicating overall higher arousal at T1. In
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line with these results, mean EEG-vigilance level in the first 5-min block at T1 was sig-

nificantly higher (Z = −2.22, p = .026) than that at T2, and the EEG-vigilance level in

the following 5-min blocks showed a tendency in the same direction, again indicating

higher arousal at T1 (effect sizes between .19 to .49). These findings might be a conse-

quence of some “first day in lab” effects, i.e. an increased arousal due to the unfamiliar

surroundings or to anticipatory anxiety. In sleep medicine such a laboratory-induced

effect resulting in impaired sleep quality is known as “first night effect” (Agnew et al.

1966; Tamaki et al. 2005). Consequently, the validity of the parameters provided by

VIGALL 2.0 is supported, however, these findings suggest that such laboratory-induced

factors should be controlled more strictly. Longer adaptation to the lab, repeated as-

sessments or defining more strictly a baseline arousal by a demanding task before start-

ing the quiet rest period might further improve reliability.

Sleep duration can be another severe confounder in vigilance assessment (Rosenthal

et al. 1993a, Rosenthal et al. 1993b), especially in samples of young subjects who display

large variability in night sleep (Lo et al. 2014). In the current study, information about

sleep was derived by self-reports and no information about validity of this assessment

is available. In future studies objective assessments of sleep-wake-behavior or quality of

sleep prior to the EEG should be included, which could be achieved using actigraphy or

polysomnography. In addition, in the current study the subjects had not been asked

about recent stressors (e.g. examinations), which are considered as an important reason

for disturbed sleep or arousal (Sanford et al. 2014; Winzeler et al. 2014). Considering

such state effects more rigorously could further improve reliability. Another possible

confounder is the consumption of arousal modulating drugs, such as caffeine and nico-

tine (Jaehne et al. 2012; Johnson et al. 1990). This might be especially the case in clin-

ical populations, where not only smoking is highly prevalent (Lasser et al. 2000), but

also several arousal-impairing medications come into play (e.g. antidepressants; Hensch

et al. 2015). In the current healthy sample, however, smoking and caffeine was ad libi-

tum and no subject was excluded, as no excessive consume was reported and as we

tried to avoid withdrawal effect. Moreover, we did not control for effects of the men-

strual phase. If we had assessed our female subjects in the same menstrual phase at T1

and T2, we might have increased the reliability. Instead, we tried to keep our subjects

as much as possible in a “real life” condition which might have resulted in a more con-

servative estimation of the effect.

The MSLT (Carskadon and Dement 1977) was so far the only established method to

assess vigilance regulation. The MSLT, however, only assesses EEG-defined sleep onset,

disregarding information about fluctuations of vigilance before sleep onset. The MSLT

has a complex testing protocol, which requires four or five 20-min trials with 2 hours

between each trial and strongly tries to control for several of the mentioned con-

founders: Normally, the subjects arrive at the laboratory on the evening before the

MSLT. Thus, their MSLT testing is done on the second day, which probably reduces

the “first day in lab” effects. Additionally, the MSLT protocol controls factors such as

sleep duration in the preceding night and tobacco use within 30 min before testing.

Furthermore, before testing only light meals are recommended and caffeine and bright

sunlight should be avoided (for more details see Littner et al. 2005). Comparing the test-

retest reliabilities obtained in the current study with those for the MSLT is difficult due to

the dearth of studies. Almost all studies on retest reliability are on clinical groups where
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reliability varies probably in accordance with varying symptomatology: Retest reliability was

non-significant in patients with hypersomnia of different etiology over a mean test-retest

interval of 4.2 years (rho = .17; Trotti et al. 2013), low in insomniacs over eight months (rho

= .44; Roehrs et al. 2011), and good in narcolepsy over an interval of 5–21 days (r = .81;

Folkerts et al. 208). Only one study in healthy subjects is available (Zwyghuizen-Doorenbos

et al. 1988), which reported a high test-retest reliability of MSLT in 14 participants (r = .97,

p < .001). A limitation of this study is certainly the small sample size in combination with

parametric correlations, which are easily inflated by one or very few subjects. Nonetheless,

the study by Zwyghuizen-Doorenbos et al. (1988) is instructive as the authors also calcu-

lated the reliabilities when the number of the MSLT test runs was reduced. The reliabil-

ity was between .65 (p < .01) and .79 (p < .008) when the test was repeated for only

two times (combined test runs 10 a.m. together with 12 p.m., and 2 p.m. with 4 p.m.,

respectively). These reliabilities of the combined scores of two MSLT runs are

numerically comparable to the test-retest reliability in the present study. When only

one single 20 min MSLT run was analyzed, reliability of the MSLT was no longer

significant for all test runs which began at afternoon (12 p.m., 2 p.m. and 4 p.m.)

(Zwyghuizen-Doorenbos et al. 1988). These findings and the current results suggest

that repeated EEG recordings might be important in cases where high reliability is

needed, such as clinical applications.

Another limitation of present study is the short test interval. A period of one week

does not allow clearly separating trait and state aspects of a variable. Arousal regulation

is strongly associated with psychopathological states, such as a depressive or manic epi-

sode, which would both last more than one week. However, in the current sample we

only analyzed healthy subjects probably limiting the influence of permanent mood

states on test retest reliability.
Conclusion
EEG parameters of brain arousal regulation are promising diagnostic and prognostic

biomarkers for diseases with arousal disturbances, such as affective disorders, ADHD

and fatigue (Geissler et al. 2014; Hegerl et al. (2012); Hegerl and Hensch 2014; Kluge

et al. 2013; Olbrich et al. 2012). Here, we demonstrated in healthy subjects that the

temporal dynamics of EEG-vigilance stages across 20 min are relatively stable individual

characteristics when assessed with VIGALL 2.0. These inter-individual differences are

likely to influence results in several cognitive tasks and neurobiological assessments

such as fMRI and FDG-PET (Günther et al. 2011; Olbrich et al. 2009). By a more strict

control of state factors modulating arousal regulation (e.g. preceding sleep, nicotine,

caffeine, adaptation to the study procedure and environment) even higher reliabilities

might be achievable.
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