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Abstract: Functional connectivity analysis has become a powerful tool for probing the human brain
function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting-state
paradigm to examine functional connectivity networks in the brain, thanks to its low demand and
high tolerance that are essential for clinical studies. However, the test–retest reliability of resting-state
connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand,
naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high eco-
logical validity, could potentially improve the reliability of functional connectivity measures. To test
this hypothesis, we characterized the test–retest reliability of functional connectivity measures during a
natural viewing condition, and benchmarked it against resting-state connectivity measures acquired
within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of
connectivity and graph theoretical measures of brain networks is significantly improved during natural
viewing conditions over resting-state conditions, with an average increase of almost 50% across various
connectivity measures. Not only sensory networks for audio–visual processing become more reliable,
higher order brain networks, such as default mode and attention networks, but also appear to show
higher reliability during natural viewing. Our results support the use of natural viewing paradigms in
estimating functional connectivity of brain networks, and have important implications for clinical
application of fMRI. Hum Brain Mapp 38:2226–2241, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Clinical and cognitive neuroscience communities have
increasingly recognized the essential role of large-scale
communications or connections between distributed brain
regions in brain function [Biswal et al., 1995; Fox and Grei-
cius, 2010; Fox et al., 2005; Friston, 2011; Greicius et al.,
2003]. Noninvasive functional neuroimaging techniques
offer a powerful approach to map these large-scale connec-
tions, estimated by the statistical dependencies between
signal fluctuations. The mapping of functional connectivity
is now widely used to delineate brain functions in healthy
subjects and characterize pathological changes in neuro-
psychiatric disorders [Albert and Barab�asi, 2002; Biswal
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et al., 1995; Buckner et al., 2013; Fox and Greicius, 2010;
Fox et al., 2005; Friston, 1994, 2011; Greicius, 2008; Greicius
et al., 2003; Jafri et al., 2008; Newton et al., 2011; Van Den
Heuvel and Pol, 2010; Vatansever et al., 2015]. In addition
to the estimate of basic correlations, graph theory is
applied to quantify higher level network features in the
brain [Barthelemy, 2004; Bullmore and Sporns, 2009; Bull-
more and Bassett, 2011; Dai et al., 2014; Guye et al., 2010;
Hayasaka and Laurienti, 2010; He and Evans, 2010; van
den Heuvel et al., 2008; Zuo et al., 2012]. Graph theoretical
metrics such as degree centrality, clustering coefficient,
efficiency, and modularity are commonly used to define
the local and global organization of functional connectivity
networks.

The majority of research on functional connectivity net-
works has been conducted with resting-state functional
magnetic resonance imaging (fMRI) paradigms. With low
performance demand and high compliance, resting-state
fMRI hence minimizes behavioral confounds normally pre-
senting during task conditions. These practical features of
resting-state fMRI make it particularly suitable for clinical
studies where participants are usually challenged by task
demand [Greicius, 2008]; over the last two decades,
resting-state fMRI paradigm has become increasing popu-
lar in studies involving clinical patients. However, resting-
state fMRI suffers from some drawbacks due to its uncon-
strained nature: it is difficult to control unwanted behav-
ioral confounds such as head movement and sleep
[Tagliazucchi and Laufs, 2014; Van Dijk et al., 2012; Van-
derwal et al., 2015]. Furthermore, test–retest reliability of
resting state connectivity measures has been shown to
range between moderate to good with optimal processing,
but not yet met the standard for clinical use [Braun et al.,
2012; Cao et al., 2014; Guijt et al., 2007; Guo et al., 2012; Li
et al., 2012; Patriat et al., 2013; Telesford et al., 2010; Wang
et al., 2011].

Recently, the use of naturalistic stimuli, such as movies
and music, is gaining increasing traction in cognitive neu-
roscience [Hasson and Honey, 2012; Spiers and Maguire,
2007]. These naturalistic paradigms have provided novel
insights on how human brain functions in real-life context,
which is more dynamic and complex than what can be
studied using abstract tasks designed for laboratory setting
[Bartels and Zeki, 2004a,b; Bartels et al., 2008; Betti et al.,
2013; Felsen and Dan, 2005; Golland et al., 2007; Lahna-
koski et al., 2012; Malinen et al., 2007]. From a clinical
point of view, naturalistic paradigms offer several advan-
tages over existing fMRI paradigms. Naturalistic para-
digms share similar advantages in participant compliance
as resting state, but exert implicit behavioral constraint
that enables targeted investigations of brain dysfunction.
In challenging populations such as children or cognitively
impaired patients, naturalistic paradigms could greatly
alleviate anxiety related to in-scanner performance as well
as head motion [Vanderwal et al., 2015]. A series of inno-
vative studies have recently revealed altered brain

dynamics and connectivity during natural movie viewing
in autism, major depressive disorder, and altered states of
consciousness [Guo et al., 2015; Hasson et al., 2009; Hyett
et al., 2015; Naci et al., 2014]. Therefore, naturalistic para-
digms could provide a promising condition for mapping
connectivity changes in neuropsychiatric disorders.

To further develop the clinical potential of naturalistic
paradigms, in particular for tracking longitudinal changes,
rigorous evaluation is needed to establish the test–retest
reliability of functional brain measures derived from natu-
ralistic paradigms. In this study, we provided the first
such evaluation that examines the test–retest reliability of
functional connectivity and graph theoretical measures
derived from naturalistic fMRI data. To benchmark the
reliability of natural viewing data, we compared these
results with the test–retest reliability of resting state con-
nectivity measures. Here, healthy participants underwent
repeated fMRI sessions 3 months apart which contained a
resting-state paradigm followed by a movie viewing para-
digm: the same movie was used in both sessions. We
focused on long-term reliability instead of short-term reli-
ability (within session), as it is often more useful to moni-
tor brain function over period of months and years in the
clinic [Guo et al., 2012]. For a comprehensive investigation,
several different preprocessing and analytical strategies
were used to derive the whole brain functional connectivi-
ty measures, and test–retest reliability was assessed at
both individual unit-wise and scan-wise levels [Guo et al.,
2012].

MATERIALS AND METHODS

Participants

Twenty right-handed participants (11 females, 9 males;
aged between 21 and 31 years; mean age 27 6 2.7 years)
participated in the study. The participants were recruited
from the University of Queensland and provided written
informed consent. Participants received a small monetary
compensation ($50) for their participation in the study.
The study was approved by the human ethics research
committee of the University of Queensland and was con-
ducted according to National Health and Medical Research
Council guidelines.

Experimental Paradigm

The experiment comprised two scanning sessions. For
each session, participants underwent an 8-min resting-state
fMRI exam with eyes closed, and then freely viewed a 20-
min short movie “The Butterfly Circus.” Resting state condi-
tion was always acquired first to avoid potential effect of
movie viewing experience on resting-state brain activity,
and also to reduce the likelihood of fatigue and sleep dur-
ing resting state. The Butterfly Circus is a short film that
depicts an intense, emotionally evocative story of a man
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born without limbs who is encouraged by the showman of
a renowned circus to reach his own potential. The movie
is live action, color, and shot in high definition. It was
selected based on the following criteria: (1) produced with-
in the last decade; (2) a critically acclaimed, award win-
ning film; (3) rated >7.5 out of 10 by >1000 people on
IMDb (Internet Movie Database, the biggest online enter-
tainment database); (4) short duration (<25 mins). Criteria
1–3 are to ensure high production quality and popularity
of selected movies; criterion 4 allows the entire movie to
be fitted into a single imaging session without clipping or
editing, so that the full storyline can be appreciated. Addi-
tional details of the experiment were previously reported
[Nguyen et al., 2016b].

Three months after the first scan session (Session A),
participants returned for the second imaging session (Ses-
sion B) involving an identical protocol of resting state and
movie viewing paradigms. All participants reported that
they had not previously seen the movie and were asked
not to watch it outside the scan sessions before the conclu-
sion of this study. The movie stimulus was presented
using the Presentation software (NeuroBehavioral Systems,
USA) and displayed via an MRI-compatible monitor locat-
ed at the rear of the scanner. The sound track of the movie
was delivered through an MRI-compatible audio head-
phone (Nordic NeuroLab, Norway).

Three participants were excluded from the reliability
analysis: one was due to technical problems during data
recordings and the other two did not return for the second
session. Hence, functional connectivity measures were
derived from the 18 and 17 participants for sessions A and
B, respectively; test–retest reliability analyses were per-
formed on data from the 17 participants who finished both
scan sessions.

Functional Image Acquisition and Preprocessing

Functional and structural images were acquired from a
whole-body 3-T Siemens Trio MRI scanner equipped with a
12-channel head coil (Siemens Medical System, Germany).
Functional images were acquired using a single-shot gradi-
ent-echo echo planar-imaging (EPI) sequence with the fol-
lowing parameters: repetition time (TR) 2200 ms, echo time
(TE) 30 ms, flip angle (FA) 798, field of view (FOV)
192 3 192 mm, pixel bandwidth 2003 Hz, a 64 3 64 acquisi-
tion matrix, 44 axial slices, and 3 3 3 3 3 mm3 voxel resolu-
tion. A high-resolution T1-weighted MPRAGE structural
image covering the entire brain was also collected for each
participant with the following parameters: TE 5 2.89 ms,
TR 5 4000 ms, FA 5 98, FOV 5 240 3 256 mm, and voxel size
1 3 1 3 1 mm3.

Functional images were preprocessed using Statistical
Parametric Mapping toolbox (SPM12, Welcome Depart-
ment of Imaging Neuroscience, Institute of Neurology,
London) and the Data Processing Assistant for resting-
state fMRI software (DPARSF, [Yan and Zang, 2010])

implemented in Matlab (Mathworks, USA). The first five
volumes of each EPI sequence were discarded to allow
scanner equilibrium to be achieved. The remaining func-
tional images were slice-time corrected and realigned to
the first image using a six-parameter linear transformation,
and subsequently co-registered to the T1 structural image
of each individual subject. The structural images were seg-
mented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) using the Segment algorithm
implemented in the voxel-based morphometry toolbox.
The functional images were subsequently normalized to
the Montreal Neurological Institute (MNI) space using Dif-
feomorphic Anatomical Registration Through Exponenti-
ated Lie algebra (DARTEL) [Ashburner, 2007] without
additional smoothing. The images were further regressed
out of nuisance signals, bandpass filtered (0.0083–0.15 Hz)
and detrended. Nuisance signals include principle compo-
nents of WM and CSF signals (first five principle compo-
nents were selected; WM and CSF signals were derived
from common WM and CSF masks provided by DPARSF)
using the CompCor method [Behzadi et al., 2007] and
Friston-24 motion parameters (6 movement parameters of
the current volume, 6 parameters of the preceding vol-
umes, and the square of each parameter [Yan et al., 2013]).
To examine the robustness of our results to preprocessing
methods, we repeated our analyses with two additional
noise regression strategies: (1) the mean signals of WM
and CSF voxels and (2) regression of global signals in
addition to the WM and CSF signals.

ROI-Based Functional Connectivity Analyses

Functional connectivity analyses were first performed on
region of interest (ROI) atlases that cover the whole brain.
Two previous established atlases were used: the 200 ROI
atlas based on Craddock 2012 parcellation [Craddock
et al., 2012] and the 17 ROI atlas proposed by Yeo et al.
[Yeo et al., 2011]. As the two atlases yielded similar
results, results based on the Craddock 200 ROI atlas are
presented in the main text, and the results based on the
Yeo 17 template are presented in Supporting Information.

ROIs’ time series were extracted from preprocessed
fMRI data, by taking the mean across all voxels within
each ROI. Pearson correlation was computed between each
pair of ROIs’ time series separately for each condition in
each session, resulting in four 200 3 200 connectivity
matrices for each subject (two for resting state and two for
natural viewing). For each matrix, the correlation coeffi-
cients were transformed to z-scores using Fisher’s transfor-
mation, averaged across all subjects for each condition,
and then reverted to Pearson’s r values to derive group-
level connectivity matrices, following previous method
[Vanderwal et al., 2015]. To quantitatively evaluate the dif-
ferences between connectivity matrices under different
conditions, we performed paired t-test on the connectivity
matrices between the two conditions within the same
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session. The results were thresholded using an FDR-
corrected P< 0.05.

Graph Theoretical Analysis on ROI Matrices

We further derived graph theoretical measures from the
ROI connectivity matrices. The fully connected ROI matri-
ces were thresholded to determine the presence or absence
of connections (edges) between ROIs (nodes). Weighted
adjacency matrices were hence generated where each
suprathreshold edge retained its correlation coefficient
denoting edge weights, whereas subthreshold edges were
assigned values of 0. To ensure robustness of the threshold
chosen, we repeated our analyses using a serial of thresh-
olds (Tr 5 0.1, 0.3, and 0.5). Additional analyses using
sparsity thresholding method are presented in Supporting
Information.

Using Brain Connectivity Toolbox [Rubinov et al., 2009]
and GRETNA Toolbox [Wang et al., 2015], graph metrics
were derived from the weighted adjacency matrices,
including degree centrality, clustering coefficient, efficien-
cy, betweenness centrality, and an alternative centrality
metric, eigenvector centrality [Zuo et al., 2012]. Degree
centrality measures the connectedness of each node, com-
puted as the weighted sum of all the edges connected to
the node. Clustering coefficient measures the likelihood of
the nodes tending to cluster together, calculated as the
fraction that the number of edges actually exist to the
number of all edges possibly exist. Efficiency represents
the efficiency of information transfer, which is reciprocal
to path length (the minimal number of edges necessary to
traverse from one node to another). Betweenness centrality
signifies the centrality of a node in the network, defined as
the ratio of shortest paths in the whole graph that threads
a certain node [Bullmore and Sporns, 2009]. Eigenvector
centrality denotes the importance of a node (if the neigh-
bors of a node are central within the network itself, the
node is of high eigenvector centrality, namely of high
importance), defined as the first eigenvector of the adja-
cent matrix [Lohmann et al., 2010; Zuo et al., 2012].

Voxel-Based Degree Centrality

We further employed a voxel-based strategy to examine
functional connectivity across the whole brain. We com-
puted the degree centrality of a connectivity graph that
contains every voxel in the GM [Liao et al., 2013]. We first
generated a group GM mask, which encompassed all GM
voxels, both cortical and subcortical, across all subjects in
our fMRI data. Then, we constructed a voxel-based func-
tional connectivity network for each subject, where func-
tional connections (edges) between each pair of voxels
(nodes) were estimated using the Pearson’s correlation
coefficient between their BOLD signals. The ensuing fully
connected functional graphs were thresholded to deter-
mine the presence or absence of connections between

voxels. To generate weighted adjacency matrices, each
suprathreshold edge retained its correlation coefficient as
its edge weight, whereas subthreshold edges were
assigned values of 0. To ensure robustness to the threshold
chosen, we studied a broad range of thresholds (Tr 5 0.1,
0.3, and 0.5). Finally, voxel-based degree maps were gener-
ated for each subject by computing the degree centrality of
each voxel, that is, the sum of weights over all suprathres-
hold edges for that voxel. Degree centrality map of each
individual was spatially smoothed using a Gaussian
smoothing kernel (full-width at half-maximum 5 6 mm)
before test–retest reliability analysis [Zuo et al., 2012].

Test–Retest Reliability

In this article, we assessed test–retest reliability using
intraclass correlation coefficient (ICC) [Caceres et al., 2009;
Mcgraw and Wong, 1996; Shrout and Fleiss, 1979]. A one-
way ANOVA was applied to the measures of the two scan
sessions across subjects, to calculate between-subject mean
square (MSb) and within-subject mean square (MSw). ICC
values were then calculated as:

ICC5
MSb2MSw

MSb1 d21ð ÞMSw

where d is the number of observations per subject. For
every functional connectivity measure, we assessed reli-
ability at both individual unit-wise and scan-wise levels.
Unit-wise reliability is commonly reported in the literature
[Birn et al., 2013; Braun et al., 2012; Guo et al., 2012; Liao
et al., 2013; Schwarz and McGonigle, 2011; Shehzad et al.,
2009; Wang et al., 2011; Zuo et al., 2012]. Here, one ICC
value was calculated for each measurement unit, such as
the connectivity score of each ROI pair (edge), or graph
metric of each ROI or voxel (node). The ICC values for all
measurement units were then averaged across the network
to represent unit-wise level reliability. Additionally, we
reported scan-wise reliability, which estimates the reliabili-
ty of one connectivity score derived from the entire scan
session [Guo et al., 2012]. Here, a single ICC value was
calculated for the mean connectivity scores or graph met-
ric averaged across all edges or nodes of the network.
Note that for the graph metric, efficiency, the scan-wise
reliability was computed directly from global efficiency
while the unit-wise reliability was based on local efficiency
of each ROI.

The reliability results are referred as excellent (ICC> 0.8),
good (0.79> ICC> 0.6), moderate (0.59> ICC> 0.4), fair
(0.39> ICC> 0.2), and poor (ICC< 0.2) [Guo et al., 2012].

Statistical Analysis for ICCs

The statistical significances of ICC and differences in
ICC between conditions were assessed using nonparamet-
ric permutation tests [Termenon et al., 2016]. To identify
the significance of ICCs, we randomly shuffled the order
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of subjects in session B to disrupt the subject correspon-
dence between two sessions [Termenon et al., 2016], and
computed ICCs between two scanning sessions. This pro-
cess was repeated 5,000 times to generate the null distribu-
tion of ICCs. One-tailed tests were performed to compare
the observed ICCs to the null distribution. A 95% confi-
dence interval was formulated for each permutation test
as the highest value with P> 0.05 [Ernst, 2004; Lamotte
and Volaufova, 1999].

To assess whether ICCs were significantly different
between resting state and natural viewing, we performed
a paired nonparametric permutation test under the null
hypothesis that the difference of resting and natural view-
ing ICCs is drawn from a distribution with zero mean.
First, we created two surrogate conditions for session A by
concatenating randomly selected images from the resting
state and natural viewing data. Then, two surrogate condi-
tions were created for session B using the corresponding
segments as selected in session A. We then computed the
ICCs for these two surrogate conditions, and the ICC dif-
ference between them. This process was repeated 5,000
times to generate the null distribution of ICC differences.
Two-tailed tests were performed to compare the true dif-
ferences in ICC values with this null distribution. 95% con-
fidence intervals of the paired permutation tests were
formulated as the lowest and highest value with P> 0.025
[Ernst, 2004; Lamotte and Volaufova, 1999].

For voxelwise analyses, as permutation tests are time
consuming with large number of voxels, we sampled func-
tional images to 6 3 6 3 6 mm3 voxel resolution to
improve the computational efficiency, and conducted
paired permutation test at only Tr 5 0.1.

Test–Retest Reliability During Different Movie

Segments

To assess whether the level of reliability varies during
the natural viewing conditions, we further performed
time-varying reliability analysis on different movie seg-
ments. We divided the movie into a serial of segments of
215 TRs (about 8 min), matching the duration of resting-
state paradigm, moving forward with a 10-TR step. Then
we computed test–retest reliability of functional connectiv-
ity and degree centrality based on ROI connectivity matri-
ces at both individual unit-wise and scan-wise levels for
each segment. Tr 5 0.1 was used as the threshold to calcu-
late degree centrality.

Head Motion

We also examined the profiles of head motion during
resting state and natural viewing, using framewise dis-
placement proposed by Power et al. [2012]. Framewise
displacement is a scalar quantity defined as FDi5jDdixj1
jDdiyj1jDdizj1jDaij1jDbij1jDgij, where dix, diy, and diz are
translational displacements along X, Y, and Z axes,

respectively; ai, bi, and gi are rotational angles of pitch,
yaw, and roll, respectively; Ddix5d i21ð Þx1dix, Ddiy5

d i21ð Þy1diy, Ddiz5d i21ð Þz1diz, Dai5a i21ð Þ1ai, Dbi5b i21ð Þ1bi,
Dgi5g i21ð Þ1gi. Rotation displacements were converted
from degrees to millimeters of distance on a sphere sur-
face (radius: 50 mm, assumed to be the radius of a head).
One spike was counted when FDi was >0.3 mm [Vander-
wal et al., 2015; Yan et al., 2013]. Considering the differ-
ence in the durations of resting-state and natural viewing
paradigms, we calculated the frequency of spikes as the
number of spikes per volume and compared it between
the two paradigms using paired t-test.

RESULTS

Seventeen healthy participants underwent repeated scan
sessions of resting state and natural viewing paradigms
approximately 3 months apart. Functional connectivity
measures and their test–retest reliability were derived
from and compared between resting-state and natural
viewing paradigms. To avoid potential influence of scan
duration on reliability measures, most analyses were per-
formed on data of the same duration—the first 8 min of
natural viewing and the full 8 min of resting-state data.

Functional Connectivity During Resting-State

and Natural Viewing Conditions

We first examined and compared functional connectivity
during resting state and natural viewing conditions. To
assess functional connectivity in the whole brain, we
adopted an established parcellation atlas comprising 200
ROIs, which covers the entire cortical and subcortical
regions [Craddock et al., 2012]. ROI connectivity matrices
were generated for resting state and natural viewing con-
ditions for the two scan sessions separately (Fig. 1A). For
visual clarity, the connectivity matrices were organized
into visual, somatosensory, dorsal attention, ventral atten-
tion, limbic, frontoparietal, and default mode networks,
according to the 7-network scheme [Yeo et al., 2011]. ROIs
not included in the 7-network scheme were referred to as
“Other areas,” which cover parts of cerebellum, thalamus,
brainstems, and caudate. In both sessions, resting state
and natural viewing conditions reveal similar functional
connectivity architecture, with high intranetwork connec-
tivity and low internetwork connectivity (Fig. 1A; left and
middle panels). Overall, functional connectivity measures
tend to be higher during resting state than natural viewing
conditions, particularly in somatomotor network (Fig. 1A,
right panel; Fig. 1C; FDR-corrected P< 0.05, paired t-tests,
d.f. 5 17 in session A and d.f. 5 16 in session B). Similar
patterns were observed using mean signal regression strat-
egy (Supporting Information, Sfig. 1A). Functional connec-
tivity matrices after global signal regression show much
lower level of connectivity on average, consistent with
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Figure 1.

ROI connectivity matrix analysis. (A) Group-level connectivity

matrices during resting-state (RS), natural viewing (NV), and the

differences between them for session A (SA; upper panel) and

session B (SB; lower panel). ROI connections with significant dif-

ferences are shown in color (warm color, NV>RS; cool color,

NV<RS; FDR-corrected P< 0.05, paired t-test, d.f. 5 17 in ses-

sion A and d.f. 5 16 in session B). ROIs are organized according

to the 7-network system (Yeo et al.), as labeled on the top of

the figure and to the left of each panel. The mean connectivity

strength of each condition is indicated on the bottom of each

matrix. (B) Unit-wise ICCs of ROI connectivity matrix during

resting state and natural viewing and the differences between

them (green: nonsignificant difference; warm color: NV>RS;

cool color: NV<RS; FDR-corrected P< 0.025, paired permuta-

tion test). Average unit-wise and scan-wise ICC values are indi-

cated below the matrices. (C) Distribution of connectivity

coefficients. Shades signify SEM (standard error of the mean)

across subjects. For visual clarity, only SEM for session A is dis-

played. (D) Distribution of unit-wise functional connectivity

ICCs. [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


previous studies (Supporting Information, Sfig. 2A) [Guo
et al., 2012; Liao et al., 2013].

Test–Retest Reliability of Functional Connectivity

Test–retest reliability of ROI-based connectivity matrix
was previously reported to be fair to moderate at resting
state [Guo et al., 2012; Schwarz and McGonigle, 2011;
Shehzad et al., 2009]. Here, we hypothesized that the reli-
ability of connectivity matrix could be improved during
natural viewing condition, where the engagement is likely
stronger than resting state. Following previous studies,
ICC was used to quantify test–retest reliability at both
unit-wise and scan-wise levels [Guo et al., 2012]. Unit-wise
reliability refers to the individual ICC value derived from
each connection within the matrix. Overall, there is a sig-
nificant improvement of reliability with natural viewing
paradigm (Fig. 1B,D; FDR-corrected P< 0.025, paired per-
mutation test; Table I). Importantly, this significant
improvement is robust to different preprocessing strategies
(Supporting Information, Sfig. 1B and 2B; FDR-corrected
P< 0.025, paired permutation test).

Consistent with previous findings, scan-wise ICCs,
based on the mean connectivity strengths of the ROI
matrices, were generally higher than the average unit-wise
ICCs for both resting state and natural viewing conditions
(Fig. 1B) [Guo et al., 2012]. Similar to the results based on
unit-wise reliability, natural viewing condition was associ-
ated with much higher scan-wise ICC (0.7593) than resting
state (0.5381), supporting overall improved reliability dur-
ing natural viewing (P 5 0.0014, paired permutation test;
Table I).

Test–Retest Reliability of Degree Centrality

We further examined graph theoretical metrics during
resting state and natural viewing conditions. To ensure
robustness to the chosen threshold, we derived graph met-
rics across a broad range of thresholds (Tr 5 0.1, 0.3, 0.5).
We first focused on degree centrality, as it is a basic graph
metric with good reliability during resting state [Guo
et al., 2012; Schwarz and McGonigle, 2011]. Similar to the
results based on ROI connectivity matrices, degree central-
ity is higher overall during resting state than natural view-
ing conditions (Supporting Information, Sfig. 3A, upper
panel). To ensure robustness of our results to the composi-
tion of connectivity networks, we also derived whole brain
degree maps using a voxel-based approach (Supporting
Information, Sfig. 3A, lower panel). The degree maps
show somewhat different spatial patterns from previous
studies [Buckner et al., 2009; Du et al., 2015; Zuo et al.,
2012]. Additional analysis suggested that the differences
are mostly contributed by the inclusion of global signal
regression in those previous studies (Supporting Informa-
tion, Sfig. 3B).

We then examined the reliability of degree centrality at
both the individual unit- and scan-wise levels. Here, unit-
wise reliability refers to the ICC values derived from degree
centrality of each node (ROI or voxel). As we hypothesized,
unit-wise ICCs of degree centrality are significantly higher
during natural viewing than resting-state conditions, irre-
spective of the threshold used (Fig. 2A,B,C; Supporting
Information, Sfig. 4; paired permutation tests; Table I). The
increases in reliability are substantial across many brain
regions: while primary visual and auditory cortices showed
robust improvements, higher order brain regions also
become more reliable during natural viewing, including the
anterior cingulate cortex, dorsolateral prefrontal cortex, and
dorsal medial prefrontal cortex (Fig. 2C). The improved reli-
ability in higher order brain networks is further revealed by
examining the 7 networks separately, where the greatest
increases were observed for limbic, frontoparietal, and
default mode networks (Fig. 2D).

We also found substantial improvement with scan-wise
reliability. Scan-wise ICC values increased from fair during
resting state (0.0295–0.5627) to good during natural viewing
(0.3449–0.7915; Fig. 2B, lower panel; Table I). Across analy-
ses, reliability of degree centrality is generally higher when
the graph is generated with a lower threshold, hence more
densely connected (Fig. 2B; Supporting Information, Sfig. 4),
as shown in previous reports [Guo et al., 2012; Schwarz
and McGonigle, 2011]. The improvement in reliability dur-
ing natural viewing is remarkably robust to different parcel-
lation schemes (Supporting Information, Sfig. 5A,B and
Stable 1) and different thresholding strategies (Supporting
Information, Sfig. 6A,B and Stable 2).

Test–Retest Reliability of Additional Graph

Metrics

We further quantified the test–retest reliability of addi-
tional graphical theoretical metrics, including clustering
coefficient, efficiency, betweenness centrality, and eigen-
vector centrality based on ROI connectivity matrices. Simi-
lar to correlation measures and degree centrality,
test–retest reliability of these graph metrics is significantly
improved during natural viewing across all three thresh-
olds (Fig. 3; Table I), except for scan-wise ICC of eigenvec-
tor centrality and betweenness centrality at the high
threshold (Tr 5 0.5). Similar to degree centrality, test–retest
reliability of graph metrics tends to decrease when the
graph becomes sparser (Fig. 3). We further replicated these
results with sparsity thresholding strategy (Supporting
Information, Sfig. 6C and Stable 2) and Yeo 2011 parcella-
tion (Supporting Information, Sfig. 5C and Stable 1).

Reliability During Different Segments of

Natural Viewing

Movie viewing is a dynamic and evolving process. In
this movie stimulus, the storyline develops gradually and
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Figure 2.

Degree centrality reliability analysis. (A) Permutation tests of

the unit-wise reliability of degree centrality derived from ROI-

based method at threshold of 0.1. Upper panel: unit-wise ICCs

are compared to corresponding null distribution with 5,000 ran-

domizations. Vertical lines indicate the observed values in each

condition. Data from resting state is color coded in cyan, and

natural viewing in green. Dashed lines indicate 95% CIs. Lower

panel: difference in unit-wise ICC is compared to the null distri-

bution with 5,000 randomizations. The vertical line indicates the

observed difference. Dashed lines indicate 95% CIs. (B) Average

unit-wise (upper panel) and scan-wise (lower panel) ICCs during

resting state (RS) and natural viewing (NV) across three thresh-

olds (Tr 5 0.1, 0.3, 0.5). Dashed lines indicate 95% CIs where

values above the CI lines indicate significant reliability. Results

based on both ROIs-and voxels-based analyses are presented.

(C) Unit-wise ICC differences between natural viewing and rest-

ing state with both ROI- and voxel-based approaches. Significant

differences are shown in color (warm color, NV>RS; cool col-

or, NV<RS; FDR-corrected P< 0.025, paired permutation test).

(D) Average unit-wise ICC differences across ROIs within each

network. Dashed lines indicate 95% CIs where values above the

CI lines indicate significantly greater reliability during natural

viewing than resting state. Positive values represent higher unit-

wise ICC during natural viewing than resting state. For illustra-

tion purpose, results in A, C, and D were generated using

threshold Tr 5 0.1. [Color figure can be viewed at wileyonlineli-

brary.com]
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reaches the climax toward the end (�17 min), which is
presumably the most important and engaging point of the
movie [Nguyen et al., 2016b]. We hence asked whether the
reliability of functional connectivity measures would vary
during the movie as the storyline and viewer engagement
develop. Here, we computed test–retest reliability sepa-
rately for 32 overlapping segments of the movie—win-
dows of 215 TRs moving forward with a 10-TR step. At
both unit- and scan-wise levels, reliability of functional
connectivity measures gradually increases as the movie
develops, peaking around 3=4 of the movie (24th segment;
Fig. 4A,B). Reliability of degree centrality follows the same
trend as that of functional connectivity (Fig. 4A,B). Inter-
estingly, connectivity measures derived from these later
movie segment were almost as reliable as the ones from
the entire 20-min of natural viewing data (Fig. 4; FM: full
movie). These results support that behavioral constraints
and engagements, which tend to increase as the storyline
evolves, could improve test–retest reliability of functional
measures of brain activity. The visual network not only
showed considerable improvement, higher-order networks,
including limbic and frontoparietal networks, but also
become much more reliable as the movie evolves (Fig.
4C,D).

Head Motion

Consistent with previous report, head motion is general-
ly less during natural viewing comparing to resting-state
condition [Vanderwal et al., 2015]. In our dataset, movie

viewing is associated with significantly less framewise dis-
placement than resting-state conditions for both scan ses-
sions (Fig. 5 and Table II).

DISCUSSION

In this study, we for the first time evaluated the test–ret-
est reliability of functional connectivity measures derived
from a naturalistic fMRI paradigm. Our results demon-
strated that naturalistic paradigm offers a reliable experi-
mental condition in measuring functional connectivity in
the brain. Using both simple correlation measures and
graph metrics, we showed that test–retest reliability of
functional brain measures is good to excellent during nat-
uralistic fMRI paradigm, much improved over resting-
state measures. This improvement in reliability is robust to
the choice of preprocessing approach, thresholding strate-
gy, and parcellation scheme. Noticeably, reliability appears
to improve during the natural viewing paradigm, poten-
tially reflecting increased cognitive engagement as the
storyline develops. This positive impact of cognitive
engagement on reliability seems to outweigh the potential
negative impact of familiarity due to repeated viewing.
Overall, our results support the use of naturalistic neuro-
imaging paradigms in examining functional brain net-
works, especially paradigms that allow for the
appreciation of the full storyline.

In general, functional neuroimaging measures during
resting-state condition show moderate test–retest reliabili-
ty. Consistently with previous reports, ICCs range between

Figure 3.

Additional graph theoretical metrics—clustering coefficient, effi-

ciency, betweenness centrality, and eigenvector centrality—

derived using ROI-based approach. Average (A) unit-wise and

(B) scan-wise ICCs during resting state (RS) and natural viewing

(NV) across three thresholds (Tr 5 0.1, 0.3, 0.5). Dashed lines

indicate 95% CIs where values above the CI lines indicate signifi-

cant reliability. [Color figure can be viewed at wileyonlinelibrary.

com]
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Figure 4.

Reliability analysis of movie segments. Mean unit-wise ICCs (sol-

id lines) and scan-wise ICCs (dashed lines) for (A) ROI correla-

tion coefficient and (B) degree centrality derived from different

segments during natural viewing. The first segment and the seg-

ment with highest reliability (24th) are signified with red and

blue crosses, respectively. The indices of fMRI volumes for these

two segments are labeled on the bottom. ICC values of the full

movie (FM) and resting state (RS) are indicated by horizontal

lines as references. (C) Unit-wise ICC differences between the

full movie and resting state, and between the 24th segment and

resting state. Significant differences are shown in color (warm

color, movie segment>RS; cool color, movie segment<RS;

FDR-corrected P< 0.025, paired permutation test). (D) Average

unit-wise ICC differences between the full movie and resting

state (left panel), and between the 24th segment and resting

state (right panel) across ROIs within each network. Positive val-

ues represent higher unit-wise ICC during movie segments than

resting state. Dashed lines indicate 95% CIs where values above

the CI lines indicate significantly greater reliability during natural

viewing than resting state. For illustration purpose, results in B,

C, and D were generated using threshold Tr 5 0.1. [Color figure

can be viewed at wileyonlinelibrary.com]
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fair to good for functional connectivity measures, and
good to moderate for graph metrics like degree centrality
[Braun et al., 2012; Cao et al., 2014; Du et al., 2015; Guo
et al., 2012; Patriat et al., 2013; Shehzad et al., 2009]. To
improve the reliability of resting-state functional measures,
previous studies have tested a variety of experimental and
analytical strategies. Some have been found to be effective,
such as not regressing out global signals [Guo et al., 2012;
Liao et al., 2013], using wavelet processing [Guo et al.,
2012], or requiring eyes fixation [Patriat et al., 2013]. The
improvements, however, have been moderate, perhaps
reflecting the intrinsic limitation of resting state as a data
acquisition condition. Resting-state measures other than
connectivity-based ones, such as amplitude of low fre-
quency fluctuation and regional homogeneity, showed
comparable reliability [Jiang and Zuo, 2015; Li et al., 2012;
Zuo et al., 2013].

On the other hand, test–retest reliability of functional
measures during task-based paradigms tend to be higher
than the ones during resting state [Aron et al., 2006; Cao
et al., 2014; Raemaekers et al., 2007; Specht et al., 2003],
supporting the benefit of behavioral constraints during
functional neuroimaging paradigms. Our study provides
further support for this notion by directly comparing the
reliability measures between behavioral conditions within
the same scan session. The improvement in reliability dur-
ing natural viewing appears to be particularly prominent
for weakly connected edges and nodes. During resting
state, ICC was positively correlated with connectivity
strength: weak connections tend to be associated with low
reliability. This relationship, however, was minimal during
natural viewing, where the weak connections showed
equivalent reliability as strong connections (Supporting
Information, Sfig. 7). Therefore, behavioral constraint

during natural viewing might reduce the noise or variabil-
ity among these weakly connected edges and nodes.

Functional neuroimaging combined with dynamic natu-
ral stimuli could offer an effective paradigm to study neu-
ral processes during naturalistic experiences and its
disruption in neuropsychiatric disorders. With minimum
training or in-scanner performance required, this approach
enjoys similar advantages as resting-state acquisitions in
minimizing anxiety associated with completing difficult or
repetitive tasks, and can hence be conducted in clinical
populations with high tolerance. On the other hand, natu-
ral stimuli put ecologically relevant constraints on neuro-
nal processes and might be more effective in selectively
engaging brain networks of interest than resting state
acquisitions. In our recent study on major depressive

Figure 5.

Head motion comparison. (A) Framewise displacement (FD) and

(B) frequency of spikes under different conditions (Session A:

SA; session B: SB; resting state: RS; natural viewing: NV). Each

dot represents the mean FD or spikes frequency of each

subject. The data for the same subject are connected by lines. *

signifies significant differences between NV and RS (P< 0.05;

paired t-test, d.f. 5 17 in session A and d.f. 5 16 in session B).

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Mean values and standard deviations (s.t.d)

for mean framewise displacement (FD) and frequency of

spikes in different conditions (session A: SA; session B:

SB; resting state: RS; natural viewing: NV)

Metric SA, RS SA, NV SB, RS SB, NV

FD Mean 0.1390 0.0888 0.1144 0.0833
s.t.d 0.0722 0.0442 0.0545 0.0464
P 0.0039 0.0022
CI [0.0185, 0.0819] [0.0130, 0.0493]

Spikes Mean 0.0884 0.0279 0.0432 0.0286
s.t.d 0.1005 0.0414 0.0681 0.0499
P 0.0141 0.1136
CI [0.0138, 0.1071] [20.0039, 0.0311]

Degree of freedom 17 16

P and CI (95% confidence interval) were derived from paired t-
test. Nonsignificant results are in italic.
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disorder, many of the results are more robust during natu-
ral viewing than resting state paradigms [Guo et al., 2016].
Here, we provided convincing results on the superb
test–retest reliability using naturalistic paradigms, further
supporting its potential in clinical application, particularly
as longitudinal markers to track disease progression.

Several analytical choices have similar effects on test–ret-
est reliability in both behavioral conditions. First, summary
measures that quantify network connectivity as a whole are
more reliable than individual measures of connectivity. In
our study, given the same behavioral conditions and analyt-
ical approaches, scan-wise ICCs are consistently higher than
the mean of unit-wise ICCs. Second, lower thresholds for
graph theoretical analyses yield more reliable graph metric.
We found that the reliability of graph metric is generally
higher using thresholds of 0.1 or 0.3 than 0.5: the decrease in
reliability with higher thresholds is particularly obvious for
unit-wise ICC (Fig. 2B,3A). Finally, comparing across graph
metrics, degree centrality, cluster coefficient, and efficiency
are the most reliable graph metrics, while betweenness cen-
trality and eigenvector centrality tend to have low unit-wise
reliability (Figs. 2 and 3; Supporting Information, Sfig. 5,6).
These observations converge with previous findings based
on resting-state fMRI [Andellini et al., 2015; Braun et al.,
2012; Du et al., 2015; Guo et al., 2012].

Naturalistic neuroimaging paradigms could further con-
tribute to our understanding of brain connectomics during
natural, stimulus-driven conditions. Resting-state fMRI has
been instrumental to our understanding of the brain by
mapping its intrinsic connectivity architecture [Zuo and
Xing, 2014]. How this connectivity architecture is modulated
by stimulus-driven conditions, however, remains unclear.
Previous meta-analyses of task-based paradigms have
revealed that the topography of resting-state networks
closely resembles that of functional systems activated by
task [Biswal et al., 1995; Greicius et al., 2003; Smith et al.,
2009], as well as task-evoked functional connectivity net-
works [Cole et al., 2014]. Functional connectivity during nat-
ural viewing also shares similar patterns with resting-state
connectivity, although not identical (Fig. 1) [Betti et al., 2013;
Vanderwal et al., 2015]. Therefore, it is conceivable that nat-
uralistic paradigms, with improved reliability, could pro-
vide an ecologically valid condition for characterizing
functional connectivity architecture in healthy brain or neu-
ropsychiatric disorders. The improvement of reliability dur-
ing naturalistic paradigms is not limited to sensory regions,
but extends to several higher order networks, including the
default mode network. Furthermore, with rich and dynamic
context, naturalistic neuroimaging paradigms could further
advance the understanding of effective and dynamic con-
nectivity of the brain [Nguyen et al., 2016a].

LIMITATIONS AND FUTURE DIRECTIONS

Our study did not fully compare the effect of scan dura-
tion between resting state and movie viewing conditions.

Previous studies showed that the reliability of resting-state
connectivity measures improves with longer scans [Birn
et al., 2013; Zuo and Xing, 2014; Zuo et al., 2013]. Using
the similar reliability measure, functional connectivity dur-
ing natural viewing is more than 20% more reliable when
using the full data of 20 min than the first 8 min (Fig. 4A).
Therefore, natural viewing data could still be more reliable
than resting state dataset of longer duration, especially
considering the proneness to sleep and movement associ-
ated with long resting state scan. A new test–retest dataset
appears to support this view [O’Connor et al., 2016].

In addition, our findings could be confounded by time-
dependent effects. As resting-state condition is always
acquired before movie viewing, it is possible that subjects
became more relaxed and settled after the initial session.
In our experience, however, participants tend to get
fatigue and sleepy after being in the scanner for a while,
and therefore we opted to prioritize the resting state acqui-
sition first. We always gave participants time to get settled
into the scanner environment. A final consideration is that
this design avoids the potential effect on resting-state brain
activity from movie viewing experience. Given that our
reliability results on resting state are well within the range
reported in the literature [Birn et al., 2013; Braun et al.,
2012; Guo et al., 2012; Liao et al., 2013; Schwarz and
McGonigle, 2011], and our functional connectivity results
on resting state and movie viewing are very similar to a
recent study that counterbalanced the conditions [Vander-
wal et al., 2015], we do not believe the acquisition order
had a significant impact on our findings.

Finally, it is important to note that functional connectivi-
ty during natural viewing is not equal with resting-state
connectivity. We here used resting state as benchmark for
natural viewing data and showed that natural viewing
offers high reliability. We, however, do not imply natural
viewing is superior to nor should replace resting state—
these two conditions engage distinct mental state and high
test–retest reliability might not be the most desired out-
come in some situation. Rather, our results suggest natural
viewing could offer a complementary and reliable
approach for mapping brain function, particularly for clin-
ical research. Many technological issues, however, remain
to be addressed. The choice of movie might have an
impact on functional connectivity measures and their reli-
ability [Betti et al., 2013; Vanderwal et al., 2015]. It is also
possible that movie might engage different populations,
such as by gender and age, in different manners. These
issues should be carefully investigated to further evaluate
the applicability of naturalistic paradigms.
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