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The multiband EPI sequence has been developed for the human connectome project

to accelerate MRI data acquisition. However, no study has yet investigated the

test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain

networks constructed from this new sequence. Here, we employed a multiband diffusion

MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and

high-resolution WM networks by volume- and surface-based parcellation methods. The

reproducibility of network metrics and its dependence on type of construction procedures

was assessed by the intra-class correlation coefficient (ICC). We observed conserved

topological architecture of WM structural networks constructed from the multiband dMRI

data as previous findings from conventional dMRI. For the global network properties,

the first order metrics were more reliable than second order metrics. Between two

parcellation methods, networks with volume-based parcellation showed better reliability

than surface-based parcellation, especially for the global metrics. Between different

resolutions, the high-resolution network exhibited higher TRT performance than the

low-resolution in terms of the global metrics with a large effect size, whereas the

low-resolution performs better in terms of local (region and connection) properties with

a relatively low effect size. Moreover, we identified that the association and primary

cortices showed higher reproducibility than the paralimbic/limbic regions. The important

hub regions and rich-club connections are more reliable than the non-hub regions and

connections. Finally, we found WM networks from the multiband dMRI showed higher

reproducibility compared with those from the conventional dMRI. Together, our results

demonstrated the fair to good reliability of the WM structural brain networks from the

multiband EPI sequence, suggesting its potential utility for exploring individual differences

and for clinical applications.

Keywords: brain connectome, diffusion tensor imaging, graph theory, multiband EPI, reproducibility, tractography,
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INTRODUCTION

The concept of the “human connectome” has been recently pro-

posed and has provided a new perspective to investigate the

brain’s structural and functional systems (Sporns et al., 2005).

As the anatomical substrate of brain function, the structural

brain connectome describes brain wiring patterns and is fun-

damentally important for revealing the mechanisms of how the

brain works. Recent studies have suggested that the human white

matter (WM) structural network can be mapped in vivo using

diffusion MRI (dMRI) tractography techniques and quantified

by graph-theoretical analysis (Hagmann et al., 2007; Bullmore

and Sporns, 2009; Gong et al., 2009a). The quantitative graph

metrics of structural brain networks are suggested to be closely

related to individual cognitive performances (Li et al., 2009; Wen

et al., 2011) and sensitive to the processes of normal develop-

ment (Hagmann et al., 2010) and aging (Gong et al., 2009b), as

well as neuropsychiatric diseases (Lo et al., 2010; Shu et al., 2011;

Zalesky et al., 2011; Bai et al., 2012; Cao et al., 2013), suggest-

ing that network metrics may be potential biomarkers for clinical

applications.

Recently, some promising fast-collecting imaging techniques,

such as multiband EPI (mEPI), have been applied in the dMRI

data acquisition (Moeller et al., 2010). This new sequence can

accelerate acquisition by simultaneously imaging multiple slices

in the human brain, while not significantly sacrificing spatial res-

olution or the SNR (Moeller et al., 2010; Xu et al., 2013). This

sequence is being applied in the recently launched human connec-

tome project aiming to acquire a large sample of healthy subjects

with the goal of uncovering individual differences in brain cir-

cuitry related to behavior (van Essen et al., 2012). However,

before successfully charting the human connectome using this

new sequence, studies must determine whether connectivity

properties conserved across the population can be reproducibly

quantified in an individual over multiple scanning sessions and
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whether that reproducibility can be potentially influenced by

methodological variations.

Previous network studies have suggested that many factors

may influence the accuracy and reliability of the network met-

rics, such as various choices of the structural descriptions of the

WM network elements and connections. Specifically, the nodes

can be defined by the parcellation of the cortex into hundreds or

thousands of regions using an atlas (Zalesky et al., 2010) or the

landmarks of gyri and sulci (Hagmann et al., 2008). The connec-

tions can be reconstructed by dMRI deterministic or probabilistic

tractography approaches (Gong et al., 2009a,b; Shu et al., 2011).

Additionally, the network construction and analysis involve other

procedures that may also introduce certain variances, such as

node scales and weighting schemes. Until now, only a subset of

studies has investigated the intra- and inter-variability and relia-

bility of network metrics from dMRI data using a conventional

EPI sequence (Vaessen et al., 2010; Zalesky et al., 2010; Bassett

et al., 2011; Cheng et al., 2012; Buchanan et al., 2014; Duda et al.,

2014); moderate to high reliability was indicated for the global

network metrics, and different procedures have large effects on

the intra- and inter-subject variability. However, for the mEPI

sequence, whether multiband dMRI scans can effectively identify

the conserved topological organization of the WM structural net-

work in the brain and whether they can exhibit good test-retest

(TRT) reliability remains largely unknown.

In the present study, we aim to investigate the TRT reliability

of network metrics from fast collecting dMRI data with hundreds

of gradient directions as acquired by a mEPI sequence. The multi-

band dMRI dataset consists of 11 healthy subjects who were each

scanned twice with approximately 1 week apart. Based on differ-

ent parcellation approaches, both low- and high-resolution WM

structural networks were constructed to examine the reliability of

network properties from global and local perspectives. The repro-

ducibility of network properties and its dependence on types of

procedures (cortical parcellation and nodal scales) were assessed

by the intra-class correlation coefficient (ICC).

MATERIALS AND METHODS

TEST-RETEST DATASETS

The multiband test-retest pilot dataset was publicly available

from INDI (http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_

RS_TRT/FrontPage.html). The dataset includes 24 subjects whose

phenotype information is presented in Table 1. All individuals

included in the sample underwent semi-structured diagnostic

psychiatric interviews and completed a battery of psychiatric,

cognitive and behavioral assessments. Written informed consents

were obtained from all participants. The study was approved by

the Nathan Kline Institute Institutional Review Board. Recently,

the test-retest resting-state functional MRI (rs-fMRI) data in this

dataset has been used to examine the reliability of regional func-

tional homogeneity (Zuo et al., 2013) and the reliability of global

hubs in human voxel-wise functional networks (Liao et al., 2013).

To exclude the potential effects of health issues, the data of seven

subjects with current/past psychiatric disorders and four subjects

without diagnostic information were discarded. Moreover, one

subject was excluded due to brain atrophy and one subject lacked

one repeated session; therefore, data from 11 healthy subjects (3

Table 1 | Summary of phenotype information of subjects.

ID Sex Age(y) Current diagnosis

(N/A, no information)

Lifetime diagnosis

(N/A, no information)

21001 M 57 NO NO

21002b M 52 N/A N/A

21006b M 32 N/A N/A

21018b M 36 N/A N/A

21024b M 22 N/A N/A

1427581 F 27 NO NO

1793622a M 60 NO 305- Alcohol Abuse;

305.2- Cannabis Abuse;

1961098a F 21 296.20- Major

Depressive Disorder,

Single Episode,

Unspecified;

305.2- Cannabis Abuse;

307.5- Eating Disorder

NOS

2475376* M 21 NO NO

2799329* M 30 NO NO

2842950* M 27 NO NO

3201815* M 48 NO NO

3313349a F 22 NO 296.26- Major

Depressive Disorder,

Single Episode, Full

Remission

3315657* M 19 NO NO

3795193* M 57 NO NO

3808535* M 25 NO NO

3893245a M 38 296.35- Major

Depressive Disorder,

Recurrent, In partial

remission

305- Alcohol Abuse

4176156* M 46 NO NO

4288245a M 22 NO 305- Alcohol Abuse;

304.3- Cannabis

Dependence;

311- Depressive Disorder

NOS

6471972a M 32 300.02-Generalized

Anxiety;

303.9-Alcohol

Dependence, unspecified

7055197* F 22 NO NO

8574662a M 42 296.31- Major

Depressive Disorder,

Recurrent, Mild;

300.23- Social Phobia;

305- Alcohol Abuse;

305.2- Cannabis Abuse;

304.2- Cocaine

Dependence;

304- Opiod Dependence;

314.01- ADHD Combined

Type

8735778* F 31 NO NO

9630905* F 36 NO NO

The diagnostic information for each subject was collected using structured clini-

cal interview for DSM Disorder (SCID) by trained professionals and the numbers

are DSM-IV codes. “No” indicates no psychiatric disorder was identified during

the interview.

aSubjects with current/historical psychiatric disorders.

bSubjects without diagnostic information.

*Subjects used in the present study.
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females, mean age 32.9 ± 12.5 years) were left for further analyses

(marked in Table 1).

DATA ACQUISITION

Each participant received test-retest dMRI scans (at least 1 week

apart) using a Siemens Trio 3T scanner. The dMRI data were

acquired using a recently developed mEPI sequence (Moeller

et al., 2010; Xu et al., 2013): repetition time (TR) = 2400 ms, echo

time (TE) = 85 ms, 64 slices, slice thickness of 2 mm, FOV =

212 × 180 mm2, voxel size of 2 mm isotropic, b value = 1500

s/mm2, 128 gradient directions with 9 b = 0 images, multiband

acceleration factor = 4, averages = 1, total acquisition time =

5:58 min. A T1-weighted image was obtained with an magneti-

zation prepared rapid gradient echo (MPRAGE) sequence [TR =

2500 ms, TE = 3.5 ms, inversion time (TI) = 1200 ms, acquisition

matrix = 256 × 256, voxel size of 1 mm isotropic]. Additionally,

the test-retest rs-fMRI data were also acquired, but were not used

in the present study. For each dMRI scan, the data quality was

checked by visual inspection to avoid the distortions caused by

magnetic field inhomogeneities.

DATA PREPROCESSING

The preprocessing of dMRI data consisted of the following steps:

eddy current and motion artifact correction, estimation of the

diffusion tensor, calculation of the fractional anisotropy (Smith

et al.). The eddy current distortions and motion artifacts in

the dMRI dataset were corrected by applying an affine align-

ment of each diffusion-weighted image to the b = 0 image. After

that, the diffusion tensor elements were estimated by solving

the Stejskal and Tanner equation; then, the reconstructed tensor

matrix was diagonalized to obtain three eigenvalues (λ1, λ2, λ3)

and eigenvectors, and the corresponding FA of each voxel was cal-

culated. All of the processes were performed with the FDT toolbox

(Behrens et al., 2003) of FMRIB Software Library (FSL, http://

www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004).

STRUCTURAL SEGMENTATION AND WM TRACTOGRAPHY

First, the structural T1-weighted image was first segmented

into gray matter (GM), WM and cerebrospinal fluid (CSF)

in the CIVET pipeline (http://wiki.bic.mni.mcgill.ca/index.php/

CIVET). Then the individual T1-weighted image was coregis-

tered to the b = 0 image through a linear transformation which

is applied to the segmented WM mask. Within each WM voxel,

eight seeds were started and evenly distributed over the volume

of the voxel. A streamline was started from each seed following

the primary diffusion direction from voxel to voxel, thus recon-

structing the WM fibers. The tractography was terminated if it

turned at an angle greater than 45 degrees (Mori et al., 1999).

Tens of thousands of streamlines were generated to etch out all of

the major WM tracts. Diffusion tensor tractography was imple-

mented with the Diffusion Toolkit (http://trackvis.org/) using

the “fiber assignment by continuous tracking” method (Mori

et al., 1999) and was visualized in the TrackVis program (http://

trackvis.org/).

NETWORK NODE DEFINITION

To investigate the effects of different parcellation schemes on

the network topological architecture and reliability, we used

the two most common cortical parcellation methods (surface-

and volume-based parcellations) to define network nodes. Both

parcellation methods were based on the volumetric Automated

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)

in which 80 cortical areas were selected (Table 2).

1) Volume-based parcellation: the detailed procedure of the

volume-based parcellation has been previously described

(Gong et al., 2009a; Shu et al., 2011) and was performed using

SPM software (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8). Briefly, the coregistered T1-weighted image was non-

linearly normalized to the nonlinear asymmetric ICBM152

Table 2 | Cortical region-of-interest defined in the study.

Index Regions Abbreviation

(1, 2) Precental gyrus PreCG

(3, 4) Superior frontal gyrus, dorsolateral SFGdor

(5, 6) Superior frontal gyrus, orbital part ORBsup

(7, 8) Middle frontal gyrus MFG

(9, 10) Middle frontal gyrus, orbital part ORBmid

(11, 12) Inferior frontal gyrus, opercular part IFGoperc

(13, 14) Inferior frontal gyrus, triangular part IFGtriang

(15, 16) Inferior frontal gyrus, orbital part ORBinf

(17, 18) Rolandic operculum ROL

(19, 20) Supplementary motor area SMA

(21, 22) Olfactory cortex OLF

(23, 24) Superior frontal gyrus, medial SFGmed

(25, 26) Superior frontal gyrus, medial orbital ORBsupmed

(27, 28) Gyrus rectus REC

(29, 30) Insula INS

(31, 32) Anterior cingulate and paracingulate gyri ACG

(33, 34) Median cingulate and paracingulate gyri DCG

(35, 36) Posterior cingulate gyrus PCG

(37, 38) Hippocampus HIP

(39,40) Parahippocampal gyrus PHG

(41,42) Calcarine fissure and surrounding cortex CAL

(43,44) Cuneus CUN

(45,46) Lingual gyrus LING

(47,48) Superior occipital gyrus SOG

(49,50) Middle occipital gyrus MOG

(51,52) Inferior occipital gyrus IOG

(53,54) Fusiform gyrus FFG

(55,56) Postcentral gyrus PoCG

(57,58) Superior parietal gyrus SPG

(59,60) Inferior parietal, supramarginal and angular gyri IPL

(61,62) Supramarginal gyrus SMG

(63,64) Angular gyrus ANG

(65,66) Precuneus PCUN

(67,68) Paracentral lobule PCL

(69,70) Heschl gyrus HES

(71,72) Superior temporal gyrus STG

(73,74) Temporal pole: superior temporal gyrus TPOsup

(75,76) Middle temporal gyrus MTG

(77,78) Temporal pole: middle temporal gyrus TPOmid

(79,80) Inferior temporal gyrus ITG
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T1 template (Fonov et al., 2009) in the Montreal Neurological

Institute (MNI) space. The inverse transformations were used

to warp the AAL atlas from the MNI space to the diffusion

native space. Discrete labeling values were preserved with the

nearest neighbor interpolation method.

2) Surface-based parcellation: The surface-based parcellation was

performed using the CIVET pipeline (http://www.bic.mni.

mcgill.ca/ServicesSoftware/CIVET). A detailed description of

the analysis can be found in He et al. (2007). The T1-weighted

image was registered into the stereotaxic space using a lin-

ear transformation (Collins et al., 1994) and was further

segmented into GM, WM, CSF and background using an

advanced neural net classifier (Zijdenbos et al., 2002). The

internal surfaces of GM and the interface of WM and GM, each

consisting of 40,962 vertices in the brain per hemisphere, were

then automatically extracted using the Constrained Laplacian-

based Automated Segmentation with Proximities (CLASP)

algorithm (MacDonald et al., 2000; Kim et al., 2005).The labels

of the cortex were assigned by a surface-based AAL atlas on

the average 150 normal brains template (MacDonald et al.,

2000).

Using the above procedures, we obtained 80 cortical regions

(40 for each hemisphere; Table 2) of each subject in diffusion

native space through two parcellation methods, each represent-

ing a node of the network. In addition to the parcellation scheme

using 80 nodes in AAL template (L-AAL), we also used a high-

resolution (∼1000 parcels) parcellation (H-1024) by randomly

subdividing the AAL atlas into 1024 regions with equal size both

in the volume and in the average cortical surface of 150 normal

brains. Therefore, for surface and volume-based parcellations,

both L-AAL and H-1024 WM networks with different nodal

scales were constructed (Figure 1).

NETWORK EDGE DEFINITION

Based on whole-brain tractography and cortical parcellation, two

regions were considered structurally connected if at least one fiber

streamline with two end points were located in these two regions.

For the weighted WM networks, we defined the fiber number

(FN) of interconnecting streamlines between two regions as the

weights of the network edges (Shu et al., 2011; Cheng et al., 2012;

van den Heuvel et al., 2012). Therefore, both L-AAL and H-1024

FN-weighted WM networks from surface- and volume-based

parcellations were constructed for each participant, respectively

(Figure 1).

NETWORK ANALYSIS

To characterize the topological organization of WM structural

networks, several graph measures were considered, as follows:

network strength (Sp), global efficiency (Eglob), local efficiency

(Eloc), shortest path length (Lp), clustering coefficient (Van Essen

et al.) and small-world parameters (λ, γ, and σ) (Rubinov and

Sporns, 2010). For regional characteristics, we considered the

nodal strength and nodal efficiency (Achard and Bullmore, 2007).

Moreover, we investigated the rich-club organization of WM net-

works (van den Heuvel and Sporns, 2011). For a recent review on

the uses and interpretations of these network measures, refer to

Rubinov and Sporns (2010). See Appendix for the detailed defini-

tions and mathematical expressions of the graph metrics used in

the present study. All network analyses were performed using in-

house GRETNA software (http://www.nitrc.org/projects/gretna/)

and visualized using BrainNet Viewer software (http://www.nitrc.

org/projects/bnv/) (Xia et al., 2013).

TRT RELIABILITY

To evaluate the TRT reliability of the network metrics between

two sessions, a measurement of ICC was employed. The ICC value

was calculated as (Shrout and Fleiss, 1979):

ICC =
σ 2

bs − σ 2
ws

σ 2
bs + (m − 1)σ 2

ws

where σbs is the between-subject variance, σws is the within subject

variance, and m represents the number of repeated measurements

(here, m = 2).

ICC is a normalized measure which has a maximum of 1. The

ICC values were categorized into five common intervals (Landis

and Koch, 1977): 0 < ICC ≤ 0.2 (slight), 0.2 < ICC ≤ 0.4 (fair),

0.4 < ICC ≤ 0.6 (moderate), 0.6 < ICC ≤ 0.8 (substantial), and

0.8 < ICC ≤ 1.0 (almost perfect). Negative ICCs, implying neg-

ative reliability (i.e., completely non-reliable), are theoretically

difficult to interpret (Rousson et al., 2002) and reasons for nega-

tive ICC values are unclear (Muller and Buttner, 1994). Therefore,

we set negative ICCs to zero, as suggested in other test-retest

studies using the ICC (Kong et al., 2007; Braun et al., 2012).

STATISTICAL ANALYSIS

To test the differences of the reliability of network properties

derived from different procedures of network construction and

the reliability differences across regions and edges, the repeated

ANOVA was performed with SPSS software (version 13.0; SPSS,

Chicago, Ill). Moreover, the correlation of the network metrics

between the two sessions was calculated by Pearson’s correlation

using an in house Matlab (The MathWorks, Inc.) program.

TRT RELIABILITY FROM CONVENTIONAL dMRI AND SUBSAMPLED

MULTIBAND dMRI

To compare the reproducibility of network metrics between

multiband dMRI and conventional dMRI, we further investi-

gated the TRT reliability of WM networks constructed from a

conventional dMRI dataset with 30 gradient directions (conv-

dMRI-30grad), Moreover, to remove the possible effects of the

number of gradient directions on the reliability and make results

more comparable, we also investigated the TRT reliability of WM

networks constructed from subsampled multiband dMRI data

with 30 gradient directions (multi-dMRI-30grad).

1) Conventional dMRI dataset: Eleven right-handed subjects (3

females, mean age 28.0 ± 5.0 years) without history of neu-

rological or psychiatric disorders were included. Each partic-

ipant received test-retest dMRI scans (at least 1 week apart)

using a Siemens Trio 3T scanner at the Imaging Center for

Brain Research, Beijing Normal University. The dMRI images

were acquired using a single-shot twice-refocused spin-echo
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FIGURE 1 | The flowchart of the construction of four WM networks

under two parcellation methods and two resolutions. (1) The b = 0

image (A) and the individual T1-weighted image (B) were coregistered

through a linear transformation. (2) The T1 images were then nonlinearly

normalized to the ICBM152 T1 template (D) in the MNI space. (3) Each vertex

on the average cortical surface of 150 normal brains was assigned with the

value of the label in the volumetric AAL (F) to generate an atlas of surface

parcellation (E). (4) The inverse transformations were used to warp the AAL

atlas to the native diffusion space. (5) Both surface and volume atlases were

subdivided into 1024 regions with equal size to define a high resolution nodal

scale. (6) The reconstruction of all WM fibers in the brain was performed

using deterministic tractography using the Diffusion Toolkit (C). (7) The

weighted networks of each subject were created by computing the number

of streamlines that connected each pair of brain regions. Both low- (L-AAL)

and high-resolution (H-1024) WM networks based on different parcellation

approaches (surface and volume) were constructed for each subject (H),

which are represented by the abbreviations of SurL, SurH, VolL, and VolH,

respectively.

conventional EPI sequence (TR = 8,000 ms, TE = 89 ms,

FOV = 282 × 282 mm2, voxel size of 2.2 mm isotropic, b

value = 1000 s/mm2, 30 gradient directions with one b = 0

images, average = 2, total acquisition time = 8:06 min). The

T1-weighted images were acquired using a MPRAGE sequence

(TR = 2530 ms, TE = 3.39 ms, TI = 1100 ms, matrix size =

256 × 256, voxel size = 1 × 1 × 1.33 mm3).

2) Subsampled multiband dMRI dataset: From the original

multiband dMRI data with 128 gradient directions, we

selected 30 diffusion-weighted images with uniformly dis-

tributed gradient directions and one b = 0 image to compose

a subsampled multiband dMRI data for each participant.

Based on the conventional and subsampled multiband dMRI

datasets, both the high- and low-resolution weighted WM

networks with surface and volume based parcellations were

constructed with the same procedures as performed for the orig-

inal multiband dMRI dataset (multi-dMRI-128grad). Then the

ICC values of the global network metrics from each dMRI dataset

were calculated.

TRT RELIABILITY OF BINARY WM NETWORKS

To remove the possible effects of the weighting scheme on the

inter-subject variability, both the high- and low-resolution WM

networks with surface and volume based parcellations from the

multiband dMRI were binarized and global metrics based on the

unweighted networks were calculated. Then the ICC values of the

global network metrics from two sessions were computed.

RESULTS

First, we examined the architectural characteristics of weighted

WM structural networks for the new multiband sequence. Then
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the TRT reliability of WM structural networks derived from the

multiband dMRI data was investigated and reported in four levels:

global metrics, regional metrics, structural connectivity and rich-

club organization.

CONSERVED TOPOLOGICAL ARCHITECTURE

For the L-AAL network constructed from surface- and volume-

based parcellations, the WM networks are sparse with a group

mean sparsity of 17.5 and 20.1%, respectively. For the H-1024

WM network, the sparsities are about 1.4 and 1.9% for differ-

ent parcellations. Low wiring cost of the structural connectivity

network is observed, consistent with findings from conven-

tional EPI sequence (Gong et al., 2009a; Bullmore and Sporns,

2012). Compared with random networks, the brain WM net-

works showed the similar shortest path length and higher clus-

tering (Table 3), suggesting a prominent small-world architec-

ture regardless of different strategies for network construction.

Together, these results indicate that WM networks obtained from

multiband dMRI data exhibit conserved topological architecture

as those derived from conventional dMRI data (Table 3).

TRT RELIABILITY OF GLOBAL NETWORK METRICS

Figure 2A shows the TRT reliability of global network metrics

under different procedure choices. Generally, most global net-

work parameters exhibited moderate to high reliability (ICC >

0.52) regardless of the construction procedure. Only the lambda

from L-AAL network with surface-based parcellation had a rela-

tively low reproducibility (ICC = 0.22). Global network measures

can be further classified into first and second order metrics where

the first order metrics include strength, Lp, Cp, global and local

efficiency, and the second order metrics include small-world

parameters (λ, γ, and σ), which are normalized by the metrics of

random networks (Bassett et al., 2011). Using a repeated ANOVA

in which order was treated as a categorical factor and parcella-

tion and resolution were treated as repeated measures, we found

that the first order metrics, such as strength and efficiency, are

more reliable than the second order metrics (p = 0.0009, Partial

Eta Squared = 0.86) (Figure 2B).

Given that particular choices of construction options (i.e., cor-

tical parcellation and network resolution) can make significant

differences in network topological parameters, we next evalu-

ated which construction scheme performed the best at modeling

the brain networks from the perspective of TRT reliability. A

Two-Way repeated ANOVA in which parcellation and resolu-

tion were treated as repeated measures showed a significant main

effect of parcellation (p = 0.002, Partial Eta Squared = 0.81),

where post-hoc comparisons confirmed that the volume-based

parcellation yielded more reproducible results than the surface-

based parcellation (Figure 2B). Meanwhile, a significant main

effect of resolution was found, which revealed an increasing

Table 3 | Global properties of WM network constructed from mEPI sequence.

SurL SurH VolL VolH

Session1 Session2 Session1 Session2 Session1 Session2 Session1 Session2

Sp 2994 3024 388 390 3786 3768 509 507

Eglob 205.3 211.2 9.92 9.84 207.0 210.9 11.89 11.91

Eloc 245.9 250.6 25.56 25.75 302.7 306.1 28.07 28.15

Lp 0.006 0.006 0.10 0.10 0.005 0.005 0.086 0.085

Cp 68.67 68.99 8.46 8.57 80.20 81.25 8.49 8.50

λ 1.20 1.18 1.44 1.46 1.21 1.18 1.49 1.48

γ 3.71 3.73 31.59 31.77 3.35 3.38 22.18 22.26

σ 3.10 3.15 21.96 21.79 2.78 2.86 14.91 15.06

FIGURE 2 | The TRT reliability of global network properties. (A) The ICC

values of global network metrics from low to high were presented with

colorbars from blue to red. Multiple network metrics showed moderate to

high reliability regardless of construction procedures. (B) Statistical analysis

of the effects of network construction procedures on the reliability of first

order and second order graph metrics. The bars and errorbars represent the

mean values and standard errors, respectively, of the ICC values of first order

and second order network metrics.
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reproducibility of global metrics at finer spatial resolutions (p =

0.002, Partial Eta Squared = 0.82) regardless of parcellations

(Figure 2B). No significant interactions of parcellation × reso-

lution were found (p > 0.1) (Figure 2B).

TRT RELIABILITY OF REGIONAL STRENGTH AND EFFICIENCY

Figure 3 shows the nodal strength (A) and efficiency (B) of

all regions (averaged over subjects) from the surface- (top)

and volume-based parcellations (bottom). Between two sessions,

highly significant correlations of nodal properties across all nodes

were observed (all r > 0.94). Moreover, highly similar distri-

butions of hub regions (nodal strength > mean + std) were

observed between the two sessions, regardless of the network

construction procedures (Figure 3). For the L-AAL network, the

hub regions were mainly located in the bilateral middle tempo-

ral gyri, superior and middle frontal gyri, precuneus, precentral

gyrus, postcentral gyrus and supplementary motor area for both

parcellations. While for the H-1024 network from surface-based

parcellation, the hub regions were distributed in the bilateral

temporal gyri, superior and middle frontal gyri, precuneus,

anterior and median cingulate and paracingulate gyri, precen-

tal and postcentral gyrus, fusiform gyrus and insula. For the

volume-based parcellation, more regions in the bilateral tempo-

ral gyri, superior and middle occipital gyrus and fewer regions

in the superior and middle frontal gyri were identified as hubs

compared with the network from the surface-based parcellation

(Figure 3).

Figure 4 shows the TRT reliability of nodal strength (A) and

efficiency (B) under different construction procedures. Across

parcellations, most of regions of the L-AAL network exhibited

moderate to high reproducibility (surface: nodal strength ICC =

0.70; nodal efficiency ICC = 0.70; volume: nodal strength ICC =

0.75; nodal efficiency ICC = 0.75) except the right posterior

cingulate cortex, left insula, right superior parietal gyrus and

paracentral lobule. For the H-1024 network, the ICC values

across most regions also ranged from moderate to high (sur-

face: nodal strength ICC = 0.56; nodal efficiency ICC = 0.58;

volume: nodal strength ICC = 0.62; nodal efficiency ICC =

0.72). When categorizing the cortical regions into three regional

classes (primary, association and paralimbic) (Mesulam, 1998)

(Figure 5A), a repeated ANOVA was performed in which nodal

metric was treated as repeated measures while regional class,

parcellation and resolution were treated as categorical factors.

An interaction between regional class and network resolution

(p < 0.0001, Partial Eta Squared = 0.02) and a significant

main effect of regional class (p < 0.0001, Partial Eta Squared

= 0.37) in the L-AAL network were observed (Figure 5B).

Further post-hoc comparisons showed that the association and

primary cortices exhibit a higher reliability than the paralim-

bic/limbic regions (p < 0.0001) for only the L-AAL network

FIGURE 3 | The correlation of nodal properties between sessions.

(A) Similar spatial patterns of nodal strength across regions and high

correlation of nodal strength between two sessions are demonstrated.

On the 3D surface, the nodes with strengths from low to high are

represented with colors from blue to red. In the plot, the blue dots

represent nodal strength and are linearly fitted with a red line between

sessions. (B) Similar spatial patterns of nodal efficiency across regions

and high correlation of nodal efficiency between two sessions are

demonstrated. On the 3D surface, the nodes with efficiency from low to

high are represented with colors from blue to red. In the plot, the blue

dots represent nodal efficiency and are linearly fitted with a red line

between sessions.
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FIGURE 4 | The TRT reliability of regional network properties. (A) 3D

representations of spatial distribution of ICC values of nodal strength

across regions. The plots show the correlation between nodal strength

and ICC values, with blue dots representing the nodes and the red line

representing the linear fit. (B) 3D representations of the spatial

distribution of ICC values of nodal efficiency across regions. The plots

show the correlation between nodal efficiency and ICC values, with blue

dots representing the node and the red line representing the linear fit.

Notably, the nodal properties across all nodes were resampled into a

Gaussian distribution.

(Figure 5B). Additionally, the relationship between the nodal

properties and their corresponding ICC values was investigated.

The correlation results indicated that under both low- and high-

resolutions, regions with higher nodal strength or efficiency

tend to have larger ICC values (all p < 0.001) (Figure 4). In

other words, the properties of densely connected hub regions

show higher reproducibility than those of peripheral non-hub

regions.

When focusing on the effects of cortical parcellation and net-

work resolution on the reproducibility of nodal strength and

efficiency, a repeated ANOVA was performed in which nodal

metric was treated as repeated measure, parcellation and res-

olution were treated as categorical factors while the effect of

regional class was averaged. The L-AAL network showed higher

nodal ICCs than the H-1024 network (p < 0.0001, Partial Eta

Squared = 0.02) (Figure 6). And the volume-based parcella-

tion yielded higher nodal ICCs than the surface-based parcel-

lation (p = 0.0003, Partial Eta Squared = 0.01) (Figure 6). An

interaction between nodal metric and network resolution (p =

0.001, Partial Eta Squared = 0.01) was observed and nodal effi-

ciency showed significantly higher ICCs than the nodal strength

(p < 0.0001, Partial Eta Squared = 0.06) in the H-1024 net-

work (Figure 6). Overall, the L-AAL network with volume-based

parcellation exhibited the highest reproducibility in terms of

nodal properties.

TRT RELIABILITY OF STRUCTURAL CONNECTIVITY

Figure 7A shows the average matrices of WM connections across

subjects for each session. Between two sessions, highly signifi-

cant correlations of edge weights across all edges were observed,

especially for the L-AAL network (all r > 0.9) (Figure 7B). To

assess the intra-session reliability of the WM connectivity, we first

detected significantly consistent connections across subjects, by

performing a nonparametric one-tailed sign test. For each pair of

brain regions, the sign test was performed with the null hypoth-

esis that no connection exists [“fiber bundle number = 0” (p <

0.05)]. Nonzero connections within either session groups were

detected and assigned the average edge weight (number of inter-

connecting streamlines between two regions) across subjects and

sessions to combine as a backbone network. Figure 8A shows the

reliability of edge weights of the backbone network under differ-

ent construction procedures. The histogram distributions of edge

ICCs are shown in Figure 8B. At least 52% of the edges of WM

networks under all construction methods exhibited moderate to

high ICCs. The average ICC values across all backbone connec-

tions were greater than 0.4 (SurL: mean ICC = 0.51; SurH: mean
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FIGURE 5 | The TRT reliability of nodal properties across different

regional classes. (A) The regions are shown in red, blue and green on a 3D

surface, indicating the association, primary and paralimbic/limbic cortices.

(B) Statistical analysis of the nodal reliability between regional classes in

the WM network. The bars and errorbars represent the mean values and

standard errors, respectively, of the ICC values of all regions in each

regional class. The ICCs of nodal strength and efficiency from surface- and

volume-based networks were represented by Sur_nStr, Sur_nEff, Vol_nStr,

and Vol_nEff, respectively.

ICC = 0.42; VolL: mean ICC = 0.51; VolH: mean ICC = 0.44).

A Two-Way ANOVA in which parcellation and resolution were

treated as categorical factors revealed that surface- and volume-

based parcellations have similar edge ICCs (p = 0.6), but the

L-AAL network showed higher edge ICCs than the H-1024 net-

work (p < 0.0001, Partial Eta Squared = 0.02). Additionally, we

found that the ICC values are positively correlated with the edge

weights (connection strength) (Figure 8C), suggesting that the

stronger connections tend to be more reproducible than the weak

ones.

TRT RELIABILITY OF RICH-CLUB ORGANIZATION

To quantify the reliability of the rich-club organization, we calcu-

lated the normalized rich-club coefficient (RC) of the backbone

network according to van den Heuvel and Sporns (2011) under

a range of thresholds. The normalized RC values were greater

than 1 under each network construction procedure (Table 4),

suggesting a characteristic rich-club organization. Furthermore,

the nodes of the backbone network were classified into hubs

(nodal strength > mean + std) and non-hubs. Correspondingly,

edges were classified onto rich-club connections, which link

hub nodes to hub nodes; feeder connections, which link hub

nodes to non-hub nodes; and local connections, which link

FIGURE 6 | The effects of different parcellation and resolution on the

reliability of nodal strength and efficiency. The bars and errorbars

represent the mean values and standard errors, respectively, of the ICC

values of all nodal properties from different construction procedures. The

ICCs of nodal strength and efficiency from surface- and volume-based

networks were represented by Sur_nStr, Sur_nEff, Vol_nStr, and Vol_nEff,

respectively.

between non-hub nodes (Figure 9A). The reliability of the dif-

ferent hub categories of regions and edges were investigated using

a Three-Way ANOVA in which parcellaion, resolution and hub

category were treated as categorical factors. ANOVA analyses indi-

cated that the reliability of hub regions was higher than that

of non-hub regions (p < 0.0001, Partial Eta Squared = 0.01)

regardless of the construction procedure (Figure 9B), consistent

with the above finding that regions with higher nodal strength

tend to have greater ICC values. For the connections, a sig-

nificant effect of the edge category was observed (p < 0.0001,

Partial Eta Squared = 0.01), and post-hoc comparisons con-

firmed that the reliability of rich-club connections is significantly

higher than that of feeder (p = 0.0001) and local connections

(p < 0.0001), and the reliability of feeder connections is sig-

nificantly higher than that of local connections (p < 0.0001)

(Figure 9C).

TRT RELIABILITY FROM CONVENTIONAL dMRI AND SUBSAMPLED

MULTIBAND dMRI

Figure 10 shows the TRT reliability of global network met-

rics from the conventional dMRI and subsampled multiband

dMRI datasets. A significantly progressive increase of ICC val-

ues in the global network metrics from the conventional dMRI,

the subsampled multiband dMRI to the original multiband

dMRI was identified by a repeated ANOVA (p < 0.0001, Partial

Eta Squared = 0.54). The conventional dMRI dataset showed

an overall decrease of reproducibility in all network metrics

regardless of the construction procedures, except for the low-

resolution network with volume-based parcellation. The subsam-

pled multiband dMRI data also exhibited significantly decreased

reliability than the original multiband dMRI, especially in the

small-world parameters from the volume-based low-resolution

networks.
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FIGURE 7 | The correlation of structural connection matrices between

sessions. (A) For each session, the backbone of the WM network under

different construction procedures was shown in a matrix. (B) Between the

two sessions, high correlations of connection strength across all edges were

shown in the plots (all p < 10−10). The blue dots represent the edge weights

and are linearly fitted with a red line.

Table 4 | RC and normalized RC of the WM backbone networks under a range of thresholds.

Threshold RC Normalized RC

SurL SurH VolL VolH SurL SurH VolL VolH

Mean 0.67 0.71 0.72 0.68 1.14 1.11 1.27 1.09

Mean + 0.5 std 0.54 0.65 0.53 0.56 1.15 1.21 1.25 1.18

Mean + 1.0 std 0.53 0.61 0.35 0.48 1.21 1.31 0.99 1.29

Mean + 1.5 std 0.49 0.57 0.27 0.40 1.10 1.40 – 1.35

TRT RELIABILITY OF GRAPH METRICS OF BINARY WM NETWORKS

Figure 11 shows the TRT reliability of global network metrics for

both binarized and weighted WM networks from the multiband

dMRI dataset. Lower ICC values of the global network metrics

were found for the binary networks compared with the weighted

WM networks by a paired two-sample t-test (p = 0.002, Partial

Eta Squared = 0.27).

DISCUSSION

In the present study, we investigated the reliability of weighted

WM structural networks constructed from multiband dMRI data

with two repeated scanning sessions. Our primary results can be

summarized as follows: First, conserved topological architecture

of WM structural networks constructed from the mEPI sequence

was observed, such as low wring cost, small-worldness and highly

connected hub regions. Second, most of the weighted WM net-

work metrics exhibited a high TRT reliability, especially the first

order metrics are more reliable than the second order metrics

(a partial eta squared value around 0.8), suggesting the poten-

tial utility in clinical applications of the new sequence. Third,

different procedures of network construction have an effect on

the network reliability. For example, networks with volume-

based parcellation and high spatial resolution are more reliable

than those with surface-based parcellation and low resolution,

respectively. Moreover, WM networks from the multiband dMRI

showed higher reproducibility compared with those from the

conventional dMRI. Additionally, the network reliability varies

across regions and edges, although with relatively low effect sizes
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FIGURE 8 | The TRT reliability of structural connections. (A) Spatial

distribution of the edge ICCs of WM networks constructed from

different procedures. (B) Normalized histograms of edge ICCs from 0 to

1, with an interval of 0.1. (C) The correlation between connection

strength (edge weight) and ICC values is shown in the plot. The blue

dots represent the edge weights and are linearly fitted with a red line.

Notably, the connection strengths across all edges were resampled into

a Gaussian distribution.

(partial eta squared values less than 0.1). These findings provide

reference and guidance for the future network studies using this

new sequence.

Generally, the ICC values obtained in our study are compara-

ble with the findings of previous WM network studies (Vaessen

et al., 2010; Bassett et al., 2011; Cheng et al., 2012; Buchanan

et al., 2014). Compared with the conventional dMRI, the multi-

band dMRI data showed higher reliability of global metrics of

WM networks, and with a large effect size (Partial Eta Squared =

0.54). For the mEPI sequence, the high reproducibility of net-

work metrics may be attributed to the relatively short scan time

that can minimize the effects of head motion and can increase

the reliability of fiber orientation estimation from the dMRI data

with hundreds of gradient directions. However, the differences

in the subjects and acquisition parameters (e.g., different slice

thickness of T1 images) between the conventional and multiband

dMRI datasets may have an effect on the comparison of the TRT

reliability. Future comparisons with the same cohort and same

acquisition parameters should be warranted.

The comparisons of parcellation methods and network res-

olutions offer certain insights into network reliability. First, in

all cases, networks with volume-based parcellation showed better

TRT reliability than the surface-based parcellation, in terms of

both the global (Partial Eta Squared = 0.81) and local ICCs

(Partial Eta Squared = 0.01). These results may be due to

more WM seed voxels in volume-based parcellation. More WM

seed points produce more robust tractography results, which

can be supported by the findings of improved TRT reliabil-

ity of structural networks seeding from WM rather than GM

(Buchanan et al., 2014). However, investigation of other parcella-

tion approaches merits further investigation; notably, approaches

based on the individual landmarks of gyri and sulci without a

template (Hagmann et al., 2008) may reduce the bias caused by

registration errors. Second, the high resolution network exhib-

ited an overall higher TRT performance than the low resolution

network in terms of global network metrics with a large effect

size (Partial Eta Squared = 0.82), whereas the low resolution

performs better in terms of local (region and edge) properties

with a relatively low effect size (Partial Eta Squared = 0.02).

Consistent with our findings, Bassett et al. (2011) also found

an increasing reproducibility of global metrics in all atlases at

finer spatial resolutions. For the local properties, ROIs in low-

resolution networks with bigger size are more possible to be

connected by larger fiber tracts, avoiding the contamination from

different structures, whereas smaller ROIs in high-resolution net-

work are more easily impaired by the false positive streamlines
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FIGURE 9 | The TRT reliability of rich-club organization. (A) The

classification of hub/non-hub nodes and rich-club/feeder/local connections of

WM networks constructed from different procedures. (B) The reproducibility

of nodal strength of hub regions is significantly higher than the nodal strength

of non-hub regions regardless of construction procedures. The bars and

errorbars represent the mean values and standard errors, respectively, of the

ICC values of the nodal strength of the hub and non-hub regions.

(C) Statistical analysis of the reliability difference of edge weight among

rich-club, feeder and local connections of WM networks constructed from

different procedures. The bars and errorbars represent the mean values and

standard errors, respectively, of the ICC values of the connection strengths of

rich-club, feeder and local connections.

FIGURE 10 | The TRT reliability from conventional dMRI and subsampled

multiband dMRI dataset. The ICC values of global network metrics from low

to high were presented with colorbars from blue to red. The results showed a

progressive increase of ICC values in the global network metrics from the

conventional dMRI (conv-dMRI-30grad), the subsampled multiband dMRI

(multi-dMRI-30grad) to the original multiband dMRI (multi-dMRI-128grad).

with a lower SNR ratio but a more homogeneous fiber distri-

bution (Parker et al., 2003). Therefore, specific methodological

choice will affect the applicability of network topology-related

approaches.

Moreover, the weighting scheme also has an effect on the

network reliability. We found the binary WM networks showed

poorer reliability than the weighted networks. The increased reli-

ability of weighted networks may be partly due to the increased

inter-subject variability introduced by the weighting scheme,

which contains both real connectome differences and other

biases, such as the effects of brain size on the fiber tractog-

raphy. Binary network can partly overcome such problem by

avoiding the variability in fiber numbers, which also has its own

drawbacks, such as how to threshold the network (Buchanan

et al., 2014; Duda et al., 2014). Detailed investigation of the

effects of different weighting schemes on the reproducibility

of graph metrics for the multiband sequence is needed in the

future.

On a more methodological note, we found significant differ-

ences in reliability between graph metrics. For global metrics,

the first order graph metrics (such as shortest path length and

efficiency) were more reliable than second order metrics (such

as small-world parameters), with a large effect size (Partial Eta

Squared = 0.86). This result is consistent with the findings

from MEG data (Deuker et al., 2009), but in contrast with

results obtained from rs-fMRI data (Braun et al., 2012). The

worse reliability of second order metrics may be caused by the

normalization of the metrics of random networks, which may

also indicate an increased sensitivity to measurements such as

short term changes in the WM structure (Tang et al., 2010).
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FIGURE 11 | The TRT reliability of global network metrics of

binary and weighted structural networks. The ICC values of

global network metrics from low to high were presented with

colorbars from blue to red. Most of global metrics of binary

networks showed lower ICC values compared with those of the

weighted networks.

For nodal metrics, the nodal efficiency is more reliable than

the nodal strength, especially for the high-resolution WM net-

works, with a relatively low effect size (Partial Eta Squared =

0.06). However, a previous rs-fMRI study (Wang et al., 2011)

showed that the nodal degree showed higher reliability than

other nodal metrics in the binary functional networks. These

results suggest that the reliability of the same graph metrics

can be influenced by the imaging modalities, strategy of nodal

or edge definitions and network construction procedures. In

future studies, selecting specific metrics with high reliability for

specific modality and methodological choice should have high

priority.

The reproducibility varied across regions and exhibited spa-

tially heterogeneous distribution. We found that most of the

regions (>75%) showed moderate to high reproducibility under

all construction methods, except several regions located in the

left olfactory cortex, left insula, left middle temporal gyrus, right

gyrus rectus, right orbital frontal gyrus, right posterior cingu-

late cortex, right superior parietal gyrus and paracentral lobule.

Some of those regions were also identified as showing poor

estimated ICC values in a recent test-retest study of the dMRI

network obtained from conventional EPI sequence (Buchanan

et al., 2014). Bassett et al. (2011) also found certain less repro-

ducible regions in the inferior temporal and occipital cortices.

These similar results revealed that certain regions with inher-

ent instability are driven by anatomy or technique limitations,

such as magnetic susceptibility (Vargas et al., 2009). Moreover,

we found that the more densely connected regions tend to

have higher reliability, due to less influence by the bias from

noise or limitations of tractography algorithms. In future stud-

ies with mEPI, results regarding these regions especially which

showed low reliability in our study should be interpreted with

caution.

According to the functional roles in information processing

(Mesulam, 1998), the brain regions can be categorized into three

classes, including association, primary and paralimbic/limbic

regions. For the low-resolution WM network, the ICCs of asso-

ciation and primary regions were significantly higher than the

paralimbic/limbic regions (Partial Eta Squared = 0.37) and 72%

of regions that show low ICC values were located in the paral-

imbic/limbic cortices. This result may be induced by the smaller

ROI size in the paralimbic/limbic regions in the AAL template

(surface: association = 2.9 × 103 mm3, primary = 2.7 × 103

mm3, paralimbic/limbic = 1.4 × 103 mm3; volume: associa-

tion = 1.9 × 104 mm3, primary = 1.8 × 104 mm3, paralim-

bic/limbic = 8.9 × 103 mm3). As mentioned above, the smaller

ROI size can be easily biased by the image noise, partial vol-

ume effects and registration errors. Another possible reason is

the high anatomical variability of paralimbic/limbic tracts, such

as the uncinate fasciculus and cingulum bundles (Burgel et al.,

2006).

For the structural connectivity, the reliability varies across

edges. There are several sources that contribute to the varia-

tion of the edge weights (number of streamlines). Image noise,

spatial resolution, dMRI gradient encoding, and partial volume

effects may affect the quality of fiber quantification. The trac-

tography algorithm (Bastiani et al., 2012), including the number

of random seeds in fiber tracking, can also have a slight effect

on the variance of the network. Specifically, fewer random seeds

will lead to a larger variance in the number of fibers from fiber

tracking, although the effect in this study was diminished by

choosing eight seeds per voxel in fiber tracking. In addition, the

reliability of network construction also relies on the accuracy

of parcellation and the mapping during image registration. The

parcellation can have errors due to SNR limitations of the T1-

weighted image or the algorithm itself. The registration between

the T1-weighted image and the dMRI image can also have errors

due to image distortion and partial volume effects. All of these

factors affect the TRT reliability of the structural connectivity and

networks.

Importantly, we investigated the reliability of the rich-club

organization of WM networks. First, we found hubs regions and

rich-club connections were more reliable than non-hub ones with

a low effect size (Partial Eta Squared = 0.01). This is consis-

tent with the findings of positive correlations between ICCs with

nodal strength and edge weights. As the hub regions are more

densely interconnected than the other brain regions and have a

large influence on overall network organization, hubs are essential
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in supporting the performance of high cognitive functions of the

human brain by integrating specialized brain regions into coordi-

nated networks (van den Heuvel and Sporns, 2013). Buckner et al.

(2009) demonstrated that the topography of human brain cortical

hubs is highly similar across populations and robust against task

states, therefore reflecting a stable property of brain functional

architecture. Previous studies consistently revealed similar and

stable hub distributions of WM networks across subjects from

different samples (Hagmann et al., 2008; Gong et al., 2009a;

Zalesky et al., 2010; Bassett et al., 2011; van den Heuvel and

Sporns, 2013). This result is also in parallel with the findings from

functional MRI data (Wang et al., 2011; Liao et al., 2013), which

indicate that the reliable regions qualitatively tend to serve as hubs

in intrinsic functional brain networks. The high reliability of hub

regions and rich-club connections indicated that rich-club orga-

nization is a stable metric with commendable potential utility in

clinical applications.

There are some methodological issues need to be addressed.

First, we included only 11 subjects in the present study, large sam-

ples with more subjects in practical studies is necessary to obtain

sufficient statistical power. Second, investigation of the effects

of different acquisition parameters, gradient sampling schemes

and advanced diffusion modeling approaches, such as application

of higher order models to disentangle crossing fiber structures

(Tournier et al., 2008), on the reproducibility of network metrics

for this new sequence would be interesting, but was unfortunately

outside the scope of this paper. Finally, when considering the

influence of potential variations in WM structure, it is important

to consider the tradeoff between the reliability and sensitivity

of network metrics. In future studies, several measures (e.g.,

the coefficient of variation) can be further developed to com-

prehensively characterize the sensitivity of network metrics over

scanning sessions (Lachin, 2004; Bassett et al., 2011).
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APPENDIX

NETWORK STRENGTH

For a network (graph) G with N nodes and K edges, we calculated

the strength of G as follows:

Sp(G) =
1

N

∑

i ∈ G

S(i)

where S(i) is the strength of a node, which is the sum of the edge

weights wij (fiber number) linking to node i. The strength of a

network is the average of the strength across all of the nodes in

the network.

SMALL-WORLD PROPERTIES

Small-world network parameters (clustering coefficient, Cp, and

shortest path length, Lp) were originally proposed by Watts and

Strogatz (1998). In this study, we investigated the small-world

properties of the weighted brain networks. The clustering coef-

ficient of a node i, C(i), which was defined as the likelihood of

whether the neighborhoods were connected with each other, was

computed as follows:

C(i) =
2

ki(ki − 1)

∑

j,k

(w̄ijw̄jkw̄ki)
1/3

where ki is the degree of node i and w̄ is the weight, which is scaled

by the mean of all weights to control each participant’s cost at

the same level. The clustering coefficient is zero (C(i) = 0) if the

nodes are isolated or have just one connection, i.e., ki = 0 or ki =

1. The clustering coefficient, Cp, of a network is the average of

the clustering coefficient over all nodes and indicates the extent

of the local interconnectivity or cliquishness in a network (Watts

and Strogatz, 1998).

The path length between any pair of nodes (e.g., node i and

node j) is defined as the sum of the edge lengths along this path.

For weighted networks, the length of each edge was assigned by

computing the reciprocal of the edge weight, 1/wij. The shortest

path length, Lij, is defined as the shortest length among the lengths

of all possible paths between node i and node j. The shortest path

length of a network was computed as follows:

Lp(G) =
1

N(N − 1)

∑

i �= j∈G

Lij

where N is the number of nodes in the network. The Lp of a

network quantifies the ability for information to propagate in

parallel.

To examine the small-world properties, the clustering coef-

ficient, Cp, and the shortest path length, Lp, of the brain net-

works were compared with those of random networks. In this

study, we generated 100 matched random networks that had the

same number of nodes and edges and the same degree distri-

bution as real networks (Maslov and Sneppen, 2002). Notably,

we retained the weight of each edge during the randomiza-

tion procedure such that the weight distribution of the net-

work was preserved. Furthermore, we computed the normalized

Lp, λ = Lreal
p /Lrand

p , and the normalized Cp, γ = Creal
p /Crand

p ,

where Lrand
p and Crand

p are the mean Cp and the mean Lp of

100 matched random networks, respectively. Importantly, the

two parameters correct the differences in the edge number and

degree distribution of the networks across individuals. A real

network would be considered small-world if γ > 1 and λ ≈ 1

(Watts and Strogatz, 1998). Thus, a small-world network not

only has a higher local interconnectivity but also has a short-

est path length approximately equivalent to random networks.

These two measurements can be summarized into a simple

quantitative metric, small-worldness, σ = γ /λ, which is typically

greater than 1 for small-world networks (Humphries and Gurney,

2008).

NETWORK EFFICIENCY

The global efficiency of G measures the global efficiency of

the parallel information transfer in the network (Latora and

Marchiori, 2001), which can be computed as follows:

Eglob(G) =
1

N(N − 1)

∑

i �=j∈G

1

Lij

where Lij is the shortest path length between node i and node j

in G.

The local efficiency of G reveals how much the network is fault

tolerant and shows how efficient the communication is among

the first neighbors of the node i when it is removed. The local

efficiency of a graph is defined as follows:

Eloc(G) =
1

N

∑

i ∈ G

Eglob(Gi)

where Gi denotes the subgraph composed of the nearest neigh-

bors of node i.

REGIONAL CHARACTERISTICS

To determine the nodal (regional) characteristics of the WM net-

works, we computed the nodal strength and efficiency. The nodal

strength S(i) is defined as the sum of all of the edge weights

between this node and all of the other nodes in the network.

The nodal efficiency, Enodal(i) is defined as (Achard and Bullmore,

2007):

Enodal(i) =
1

N − 1

∑

i �= j ∈ G

1

Lij

where Lij is the shortest path length between node i and node j in

G. Enodal(i) measures the average shortest path length between a

given node i and all of the other nodes in the network.

RICH-CLUB ORGANIZATION

A “rich-club” in networks is defined as the phenomenon that the

high-degree nodes of a network tend to be more densely con-

nected among themselves than is expected by chance (Colizza

et al., 2006; McAuley et al., 2007). The brain’s rich-club has been

described previously (van den Heuvel and Sporns, 2011; van den
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Heuvel et al., 2012; Collin et al., 2014). For the weighted networks,

the rich-club coefficient (RC) φw(k) (Opsahl et al., 2008) is given
by the following equation:

φw(k) =
W>k

∑E>k

l = 1 wranked
l

where E>k denotes the subset of the edges between the hub nodes
with a strength > k, W>k denotes the total sum weights of this
subset, and Wranked denotes the ranked collection of weights in

the network, with weights W representing the number of fiber

streamlines of the edges. φ(k) was normalized relative to the

φrandom(k) of a set of comparable random networks (n = 1000)

of equal size and degree sequence, providing a normalized RC

(Colizza et al., 2006; McAuley et al., 2007):

φnorm(k) = φ(k)/φrandom(k)

Here, the threshold k is defined as the mean plus one standard

deviation (mean + std) of nodal strength across regions.
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