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Abstract-The problem of exploiting parallelism in the testing 
of VLSI circuits with built-in self-test (BIST) was first introduced 
in [l]. In this paper, this problem is examined in detail using a 
broader modeling foundation and new algorithms. A hierarchical 
model for VLSI circuit testing is introduced. The test resource 
sharing model from [l] is employed to exploit the potential 
parallelism. Based on this model, very efficient suboptimum 
algorithms are proposed for defining test schedules for both the 
equal length test and unequal length test cases. For the unequal 
length test case, three different scheduling disciplines are defined 
and scheduling algorithms are given for two of the three cases. 
Data on algorithm performance are presented. The issue of the 
control of the test schedule is also addressed, and a number of 
structures are proposed for implementation of control. 

Index Terms-Built-in self-test, cliques, design for testability, 
graph coloring, scheduling, test control, VLSI circuit testing. 

I .  INTRODUCTION 

N VERY large scale integrated (VLSI) circuits, there exists I a large device count and a relatively few input/output pins. 
This can produce complex structures for which test generation 

is difficult and results in long tests with high input/output 

traffic during testing. One approach to dealing with this 

difficult testing problem is to employ built-in self-test (BIST) 

[ 2 ] .  In the VLSI environment, desirable goals for BIST are to 

1) eliminate as much test generation as possible, 

2) permit a fairly general class of failure modes, 

3) permit easy circuit initialization and observation, 

4) reduce input/output pin signal traffic, and 

5) reduce test length. 
Although BIST techniques clearly realize a number of the 

goals listed, for very large circuits with extensive BIST 

resources, the testing time can still be quite long if the tests for 

the various parts of the circuits are executed one after the 

other. In such cases, in order to reduce testing time and fully 

exploit the power of the BIST resources, it is essential to 

control the testing process so that full use is made of the 

potential parallelism available. 

In order to develop a perspective for parallelism in BIST, 

consider the testing of a block of logic within a VLSI chip. The 

inputs to the block under test (BUT) must be stimulated with 

an appropriate input sequence including initialization steps. 
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The outputs of the BUT must be observed and the response 

analyzed to determine if the block is faulty or not. The 

observation of the response must typically be coordinated with 

the application of the input sequence. 
In the typical BIST implementation for testing a block of 

logic, the original source of the stimuli is a set of one or more 

test pattern generators (TPG) and the final destination of the 

responses is a set of one or more compressors and/or response 

analyzers [3]. It is possible that the test generators and 

response compressors and/or analyzers are directly attached to 

the block under test. Often, however, there is additional logic 

lying between the test generators and the BUT and between the 

BUT and the response compressors/analyzers. Thus, test 

control logic must exist which controls not only the test pattern 

generators and response compressors/analyzers but also this 

intervening logic. Typically, paths must be established from 

the test pattern generators to the inputs of the BUT and from 

the BUT to the response compressors/analyzers. In addition, 

the test control logic must interact with a higher level of 

control either on or off the chip. The blocks which are 

required to perform a test (test control logic, TPG’s, compres- 

sordanalyzers, BUT, and any intervening logic) are known as 

test resources. Test resources may be shared among BUT’S. 

For example, testing schemes exist in which the response 

compressor for one BUT can be used as an input stimulus, 

i.e., as a TPG, for another BUT [3]. Also, for those blocks 

which lie on the periphery of the chip, a portion of the test 

resources may lie off-chip. For a block entered by primary 

inputs, all or part of a TPG may lie off-chip. For a block 

feeding primary outputs, all or part of a response compressor/ 

analyzer may likewise lie off-chip. 

In this paper, the potential for parallel execution of tests will 

be exploited. Models, including one based on test resources, 

will be developed, algorithms for generating test schedules 

will be given, and the control of resources in executing the test 

schedule will be explored. 

11. A HIERARCHICAL MODEL FOR TEST PARALLELISM 

The approach to testing discussed in Section I and the notion 

of a test as an element of a hierarchy can be used to develop a 

model for parallelism in the self-test of an integrated circuit. 

The resulting model is hierarchical in nature due to the 

underlying design of the circuit and the relationship between 

the tests and the test resources. It should be noted that two 

major types of test parallelism problems have been identified 

in the literature thus far [ 11, 141. One of the forms as discussed 

in [l] deals with tests for blocks of logic; these tests which we 

refer to as block tests potentially consist of many test vectors 
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Fig. 1. Block diagram of example illustrating testing hierarchy 

and are regarded as indivisible entities for scheduling. 

Furthermore, there is no temporal relationship between the 

test vectors in different block tests other than that defined by 

conflicting use of resources. The other form, as discussed in 

[4], deals with test steps which may need to appear in and 

utilize resources in a specific temporal order. Although certain 

aspects of the model in this section may apply to both forms, 

the remaining sections of the paper will deal exclusively with 

scheduling of block tests. 
To provide a general perspective for overall parallelism, an 

example and the corresponding hierarchical model for test 

scheduling is presented. The example circuit to be considered 

is shown in block diagram form in Fig. 1. The circuit contains 

a bus B and two 8-bit processors, P l  and P 2 ,  which are not 

necessarily identical. Each processor contains, as detailed in 

Fig. 1, a data path D, a register file R ,  a control C ,  and a bus 

interface I. Each data path, in turn, contains two multiplexers 

MA and MB, an ALU A ,  a shifter S ,  and a status unit U. 
Suppose that the testing of this example circuit is considered 

from a hierarchical view with parallelism of testing in mind. 

We begin with the testing of the components of the data path 

and have tests t M A ,  t ,UB, t A  , ts ,  and tu for the multiplexers 

MA and MB, ALU A ,  shifter S ,  and status U, respectively. In 

the design of the BIST hardware for the data path, the designer 
realizes that it is possible to perform test tMA and tMB 

simultaneously but that due to sharing of hardware the 

remaining tests must be executed serially. Thus, tMA and t,VfB 

are scheduled simultaneously followed by tA , t s ,  and tu.  This 

scheduled set of tests is referred to by the designer as t o ,  the 

data path test. Similarly, tests can be obtained for the register 

file, the control, and the bus interface. These tests are t R  , tc ,  

and t,, respectively. This can be done for the two processors 

and the bus as well. Thus, at the second level of the hierarchy, 

there are eight tests tal, t R  I ,  tcl , til, t D 2 ,  t ~ 2 ,  t ~ 2 ,  and t 1 2 .  In 
terms of the design partition of the hardware, a third level of 

tests can be established, t p l ,  t p z ,  and t B .  We can choose to 

schedule tests at each level of the hierarchy or can combine 

levels in the model to be proposed. For the example, we will 

combine in a natural way levels two and three. In general, 

such a combination of levels prior to scheduling can lead to 

more efficient schedules. A formal model for hierarchical test 

schedules follows and is illustrated via this example. 

The overall test schedule for the circuit can be viewed as a 

partial order in which ti I ti if either ti = tj or ti is scheduled 

before t j .  Furthermore, universal bounds can be defined for 

this partial order as tests B (begin) and E (end) which may 

correspond to test control functions or may simply be null 

tests. The test schedule can then be represented by a Hasse 

diagram [5] which is a single entry point-single exit point 

acyclic directed graph. However, it is also possible to 

represent any test which has internal scheduling in the 

hierarchy with the same structure. When detail is desired, the 

graph for a test can simply replace its single node because of 

the single entry point-single exit point structure. To avoid 

ambiguity, if there is more than one appearance of B and E in 

a graph that represents multiple levels in the hierarchy, the 

appearances of B and E will be subscripted. Note that the 

graph representing a test that has not been internally scheduled 

consists simply of disconnected nodes representing the sub- 
tests. 

The test structure developed thus far for the example is 

partially represented in Fig. 2 using the partial order and 

hierarchy. The schedule for testing of the data path D1 is 

shown with MA and MB being tested in parallel. At the next 

level, the tests are at present unscheduled, so there are no arcs 

in the graph. At the top of the model, there is a single node 

representing the testing of the circuit. Later, after developing 

the theory and methods for test scheduling, a schedule for the 

combined second and third levels in the example model will be 

found, thus completing the schedule for the circuit test. 

Thus far, a hierarchical model for test schedules has been 

given. In the next section, a model which will serve as a 
foundation for obtaining a schedule for an unscheduled portion 

of the hierarchy will be developed. 

1 1 
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Fig. 2.  Partial testing hierarchy for example circuit in Fig. 1. 
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Fig. 3 .  An example system 

111. TESTABILITY RESOURCES AND TEST MODELING 

A test t, is defined in an unscheduled portion of the test 

hierarchy at which parallelism is to be investigated. For a 

typical BIST implementation, test t, requires the use of a TPG, 

test control logic, the BUT, the intervening logic, and a 

signature analyzer (SA). Once such a resource set is known 

for each test, then it is possible to define an allocation 
relation A between tests and resources such that ( t,, rJ) is in A 

if resource rJ is in the resource set for test t,. 

The example given in Fig. 3 will be used to illustrate 

concepts in this and subsequent sections. The system shown 

consists of combinational logic denoted by C, and registers 

denoted by R I .  Each combinational logic block is built-in 
testable and may represent testable PLA’s, ROM’s, or random 

blocks of logic. For this example, each of the registers is 

assumed to be configurable into one or more built-in logic 
block observer (BILBO) structures for testing attached combi- 

national logic [3]. The BILBO’s can be configured as a TPG or 

an SA as appropriate. A serial scan path is available for 

initializing TPG’s and for observing the resulting signatures in 

Fig. 4. Allocation graph A for the example system in Fig. 3 .  

the SA’s. The use of this structure can be illustrated by test t2 
on block C2. Test t2 uses RB and RC as a TPG and RE as an 

SA. In addition, block C3, because it overlaps block C2, is 

involved in the test. Thus, the resource set for test t2 is { RB, 

RC, RE, C2, C31, and (t2, RBI, (t2, RC),  ( t 2 ,  RE),  ( h ,  
C2),  and ( t z ,  C3) are all in relation A .  In general, such 

information can be represented by a bipartite graph with a 

node set consisting of the tests and the resources. If ( t , ,  rJ) is in 

A ,  then there is an edge between t, and rJ in the graph. Fig. 4 

shows the resource allocation graph for the example system. 

In test t S ,  it is assumed that the lateral signals from C4 to C5 

are functionally dependent only on the inputs fed by register 

RF. It is also clear from Fig. 3 that t4 must test both output 

paths to RI  (from C4 and C5) separately. 
In the resource allocation graph, a resource node which is 

connected to more than one test indicates contention between 

the tests for use of that resource. In cases in which it is 
possible for a resource to be used simultaneously by two or 
more tests, the arcs between that resource node and the test 

nodes in the resource allocation graph are labeled with a 
common symbol. Except for such labeling, it is assumed that 

tests sharing one or more resources must be disjoint in time, 

i.e., cannot be active concurrently. A pair of tests that cannot 

be run concurrently will be said to be incompatible. Other- 

wise, they are compatible. 

Pairs of compatible tests form a relation on the set of tests 
which is a compatibility relation [6]. Such a relation can be 

represented by a test compatibility graph (TCG) in which a 

node appears for each test and an edge exists between node t, 

and node tJ if test t, and test tJ are compatible. The TCG for the 
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Fig. 5. Test compatibility graph TCG for the example system in Fig. 3.  

example is shown in Fig. 5. The resulting TCG indicates 

exactly which pairs of tests can be run concurrently and from it 

one can derive larger sets of tests which also can be run 

concurrently if they exist. 

The TCG can then be used as a basis for scheduling the tests 

so that the total testing time is minimized. In general, circuits 

fall into two classes 1) circuits in which all the tests are of 

approximately equal length, and 2) circuits in which the tests 

are unequal in length. Based on this classification, the 

following two problems may be stated: 1) find a schedule for 

running tests such that each test is run at least once and the 

total time to run all tests is minimum provided that each test ti 

takes T units of time to run completely, and 2) find a schedule 

for running tests such that each test is run at least once and the 

total time to run all tests is minimum provided that a test ti 

takes T, units of time to run completely. 

IV. EQUAL LENGTH TESTS 

In [l] ,  it is shown that for equal length tests, the total testing 

time for a particular schedule is nT where n is the number of 

test sets required to run all tests. A concurrent test set CTS is 

a set of tests which may be run concurrently. In order to obtain 
an optimal schedule (solution), the number of CTS’s, n must 

be a minimum. 

Theorem Z [Z]: Tests t i l ,  tiz, - * , tip can run concurrently if 

and only if til , ti,, * * , t;, form a complete subgraph Kp in the 

TCG. 

A clique, a maximal subgraph of a graph, of the TCG 

represents a maximal set of tests which can run concurrently. 

If all the cliques of the TCG were available, then finding S, a 

set of n cliques which covers all tests for n minimal, is an 

optimal solution to the equal length test scheduling problem. 

Thus, the test scheduling problem reduces to 1) finding all 

the cliques of the TCG, and 2) solving the covering problem in 

order to determine a minimum collection. The following is the 

procedure as presented in [l] .  
1) Construct the TCG of the circuit. 

2) Find G, the set of all cliques of the TCG. Let G = { G1, 

Gz, -, G r } ,  where each G; is a clique of the TCG. 
3) By using a covering table, find a minimal subset S of G 

such that Us G; = { tl , t z ,  * - e ,  t q } ,  the set of all tests in the 

TCG. 
4) Schedule all the tests in each G; from S to run 

concurrently. The total testing time is ISl*T, where IS1 

denotes the size of the set S.  
The following example illustrates the steps of the proce- 

dure. 

1) The TCG is given in Fig. 5. 

2) Set G for the graph is G = { G I ,  GZ, G3,  G4, G 5 }  in 

which GI = { t i ,  t3, t s } ,  Gz = { t i ,  t3, f 4 } ,  G3 = { t i ,  k } ,  G4 

3 )  The minimum cover can yield any one of the following 

threeso1utions:S = { G 2 , G I , G 4 } , S  = { G 2 , G 4 , G 5 } , o r S  

= { tZ, t6}9 G5 = { tZi t5}. 

= {Gz, G3, ( 3 5 ) .  
4) The total test time is 3 T. 
The order in which the CTS’s associated with different G,’s 

are run is not important. Also for tests which appear in more 

than one CTS in S, it is possible to delete all but one 

occurrence of such tests. The decision to eliminate redundant 

executions of a particular test is usually dependent on the test 

control implementation. It is also possible, however, to exploit 

these duplicate test executions to reduce the aliasing in the 

signature analyzers. For each execution of a test, a different 

configuration of the signature analyzer corresponding to a 

different polynomial can be used. This has been shown to 

reduce the probability of aliasing [7]. 

The minimum covering problem (step 3 of the optimal 

procedure) is NP-complete. In [8], the procedure from [ 11 was 

implemented using a suboptimal covering algorithm. Studies 

were performed for random test graphs. These studies showed 

that even for a reasonable number of tests the required 

computation became excessive. This was due primarily to the 

very large number of cliques generated in step 2, which 

produces enormous covering tables. These results prompted 

the need to find a heuristic which would generate a suboptimal 

solution without enumerating all of the cliques of the TCG. 

The approach taken was to develop an algorithm which 

generates exactly one complete set corresponding to each CTS 

in the final solution. Each CTS can also be thought of as an 
independent set of the complementary graph of the TCG, the 

test incompatibility graph (TIC). 

The problem of finding a minimum cover consisting of 

independent sets is equivalent to finding a minimum coloring 

of the TIG. The graph coloring problem tries to color each 

node in a graph such that no two adjacent nodes (nodes with a 

common incident edge) have the same color. A minimum 

coloring for a graph is one which requires a minimum number 

of colors [9]. The set of nodes having the same color in a 

minimum coloring is analogous to a CTS in a minimum equal 

length test schedule. This analogy is also reported in [lo]. 

The approach of the algorithm is to generate a CTS by 

adding candidate tests to an expanding set. Once a CTS has 

been created, those nodes which are in the CTS are removed 

from the TIG and the remaining subgraph is used to generate a 

new CTS. This process is repeated until every test has been 

included (covered) in some CTS. 

In a graph, the degree of a node (test) is the number of edges 

which are incident with that node (test). The algorithm selects 

a test ti having maximum degree to seed a given expanding set 

(at each step the goal is to remove the maximum number of 

incompatibilities from the remaining graph). It is known that 

any node which is incompatible with test t; cannot be a 

candidate to be added to the expanding set. Therefore, all 

adjacent (incompatible) nodes are added to a marked set (M) 
and excluded from further consideration during the expansion 

of the current CTS. 

I 1 
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During the execution of the algorithm when no additional 

nodes can be added to the expanding set, a CTS has been found 

and M is the remaining subgraph of the TIG. To minimize the 

total number of CTS’s in the final solution it is important, 
while processing the current expanding set, to minimize the 

incompatibilities in M.  To achieve this goal, the algorithm 

first considers as candidates tests which are a distance 2 from 

the expanding set (tests compatible with the expanding set and 

incompatible to one or more of the tests in M ) .  The set of 

distance 2 candidates is C‘ . If no such distance 2 candidates 

exist, then a test tc is considered for inclusion in the expanding 

set if it is not an element of the marked set and has not yet been 
placed in the expanding set. The set C contains all candidate 

tests. Thus, a test t ,  is selected from C’ (or C if C‘ is empty) 

for inclusion in the expanding set such that its degree is 

maximum (removing the greatest number of incompatibilities 

in the remaining graph). The test(s) incompatible with test f, 

are then added to M .  The candidate sets are updated and the 

process continues until there are no new candidates. 

For the formal presentation of the suboptimal algorithm, the 

following sets and notation are defined: S is the solution set, 

A N  is the set of active (noncovered) nodes, T is the set of all 

nodes, M is the set of “marked” nodes, C is the set of 

candidate nodes, C’ is the set of distance 2 candidate nodes, 

N({  t , } )  is the adjacency relation (set of nodes incompatible 
with a set of nodes { t , } ) ,  I t, I is the degree of node t , .  

Algorithm 1 is the resulting suboptimal algorithm. 

Algorithm I :  suboptimal algorithm for equal length tests. 

k+O; AN+T; S - 0 ;  
while A N #  0 
begin 

k + k +  1; M+@; C + A N ,  c‘+@; S k - 0 ;  

while A N n & f #  0 
begin 

if C‘ f 0 ,  choose t, E C‘ where 1 t, I is maximum, 

else choose t ,  E C where I t ,  1 is maximum; 

A N t A N -  { t , } ;  M + M U ( N ( {  t , } ) n A N ) ;  C+C- 

({til U N ( { t , ) ) ) ;  
C’+Cf%v(M); s k t S k u {  t , } ;  

end 

SeSU { S k } ;  

end. 

30 
30 

40 
40 
40 

50 
SO 
50 

In the implementation of the algorithm, if there is more than 

one ti such that I t,I is maximum, the test with smallest 

subscript is chosen. 

The algorithm generates the following solution for the 

complementary graph of Fig. 5. 

844 4.0 36.0 4’ 

930 3.7 :* 40.1 4* 1 ~ 

5161 29.1 5 944.0 5 11.4 

4564 20.0 8* 822.6 8* 0.4 , 
493 1 26.7 6* 825.2 6+ 0.4 

20119 117.9 10’ 1444.5.7 10* 0 7  

20474 109.6 I’ 13496.3 7* 

17978 125.4 7 10803.2 6 ;.; j 

In this example the solution is optimal and SI and S2 

correspond to G4 and G2, respectively. Note that in general, 

the solution CTS’s S I ,  Sz, . . . , S, will not be cliques. This 

heuristic produces an irredundant solution (each test appears 

exactly once in the final solution). If cliques are desired, each 

set can be expanded to generate cliques for the solution by 

adding to each set all tests which are compatible with every 

TABLE I 

RESULTS FOR NINE RANDOM GRAPHS 

test in the set. As an example, S3 can be expanded to 

correspond to either G I  or G S .  

The selection of a test t ,  and the updating of all sets is 

executed once for each test. The determination of C‘ is on the 

order O ( N 2 )  ( N  is the number of tests). Therefore, the 

complexity of the algorithm is on the order 0 ( N 3 ) .  

Algorithm 1, although developed independently, appears to 

utilize the same heuristics as the suboptimal graph coloring 

algorithm BSP2 reported in [ l l ] .  In this survey [ I  I ] ,  several 

suboptimal algorithms for graph coloring are compared and 

BSP2 is reported to be superior for large graphs. 

Table I shows the results of performance measurements 

made on the two implementations of the equal length test 

problem using a series of randomly generated graphs. The 
results for the implementation of procedure from [ l ]  using a 

suboptimal covering algorithm as reported in [8] are listed in 

the left portion of Table I .  Execution times are reported for 

both clique generation and the combined clique generation/ 

clique cover time. It is important to note how rapidly the 

number of cliques increases as the number of tests (nodes) in 

the graph increases. 

The right portion of the table presents the results for 

Algorithm 1. Algorithm 1 produced optimal or near-optimal 

solutions in all cases. Even for large TCG’s, the execution 

times are very reasonable. For all of the random graphs, a 

lower bound for the optimal number of test sets was 

calculated. This lower bound is the size of the largest clique of 

the TIG. The solutions are marked with an asterisk and are 

optimal if the number of CTS’s in the solution matches the 

lower bound figure for a particular graph. It should be noted 

that the fact that some of the results differed from the lower 

bound does not indicate that the solutions were not optimal. 

For the purposes of this work, however, since the solutions 

were adequately “close” to the lower bound, the excessive 

cost of determining true optimal solutions for comparison was 

not justified. 

Another study on 60 random TIG’s, ranging in size from 30 

to 50 nodes, resulted in the suboptimal algorithm producing an 

optimal solution for 34 TIG’s. In 24 other TIG’s, the 

algorithm produced a solution which contained one additional 

CTS than was indicated by the lower bound estimate of 

optimal. In the remaining two graphs, the algorithm strayed by 

two CTS’s (all graphs produced solutions ranging from 3 to 10 

CTS’s). 
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w 
Fig. 6. TCG for unequal length test example. 

V. UNEQUAL LENGTH TESTS 

In the unequal length test problem, a test ti requires Ti units 

of time to run completely. Consider the added constraint 

associated with the unequal length test problem where two 

tests tl and t2 can run concurrently and TI > T2. Clearly, if 

both tl and t2 are initiated simultaneously, t2 will finish before 

tl . Three possibilities now exist. 1) Test t2 can be modified to 

take TI units oflime to run completely or alternatively t2 can 

be stopped and its results saved. Thus, only on completion of 

tl can the analysis of both t l  and t2 be performed internally by 

a local controller or externally after the results have been 

accessed. 2) If local test analysis hardware exists internally, 

then local control can be provided to process both tl and t2 
independently. Therefore, in such an environment, t l  proceeds 

uninterrupted and a new test, say t3 ,  which is compatible with 

t l ( t3  incompatible with t2)  can be initiated. However, it is 

important to note that each test once initiated must run to 

completion. 3) A third possibility exists if a mechanism which 

permits storing and restoring of test state is available. Test t l  is 

interrupted upon completion of test t2 ,  the results of t2 along 

with the status of tl and also the partial results due to test tl are 

saved. The results of t2 can be compared and a new set of tests 

can be started. If the new set includes t l  , then t l  need only be 

restarted from its interrupted state after restoring the status of 

t l  and its partial results. Alternatively, the unfinished segment 

of tl can be completed at a later time. 

The three possibilities will be explained by way of an 

example. Consider the TCG shown in Fig. 6 .  The time for the 
completion of each of the tests is TI  = T3 = Ts = 2 T, T2 = 

T4 = T6 = T. In the first case, shown in the Fig. 7(a), tests tl , 
t2 ,  t3 are initiated simultaneously. Test t2, being of shorter 

duration than tl and t3, is adjusted to run for a duration of 2 T. 
Thus, at time 2 T the results of all three tests are evaluated. At 

this time, tests t4 and ts are initiated and test t4 is extended to 

run for the duration of 2 Tunits. Thus, the results of the tests t4 
and ts are evaluated at time 4 T and test t6 is initiated at that 

time. Total testing time is five units. This is an optimal 

schedule under the condition that each test once started must 

run to completion and no test may be interrupted. This 

scheduling discipline, which will be referred to as nonparti- 
tioned testing, was discussed in [ 13. 

In the second case, tests t l  , t2 ,  and t3 are initiated as is 

evident from Fig. 7@). On completion of t2 ,  a new test tS is 

scheduled while test t l  and t3 are still running. Test t4 is 

A. 
t2V) ts (2T) 

(C) 

(b) partitioned testing with run to completion, and (c) partitioned testing. 
Fig. 7. Time schedules for unequal length tests: (a) nonpartitioned testing, 

scheduled on completion of tl and t3 and finally, test t6 is 

scheduled last. Total testing time is four units. This is an 

optimal schedule under the condition that each test once started 

must run to completion. Note that in a serial scan environ- 

ment, if signatures are compared externally, this scheme may 

imply interrupting tl and t3 on completion of t2 ,  then restarting 

tl and t3 from interrupted states. This scheduling discipline 

will be referred to as partitioned testing with run to 
completion. 

In the third case, each test can be interrupted at any time, 

the only requirement being that all tests must be completed by 

the end of testing. As shown in Fig. 7(c), test t3 in this case is 

run in two segments. Test t3 is initiated at time 0. At time T,  
when all tests are interrupted, test t3 is not rescheduled; instead 

its status and partial results are saved and t3 is rescheduled at 

time 2 Tafter restoring its saved state and partial results. Total 

testing time in this case is three units, which is once again 

optimal under the condition that tests can be interrupted and 

restarted at will. This scheduling discipline will be referred to 

as partitioned testing. 
In the above discussion, it has been assumed that the time 

spent in saving and restoring of the partial state and results for 

a test and for the comparison of results is negligibly small 

compared to the duration of any segment of the test. If the time 

overhead due to interruption is not small, then such time 

should also be added to the total time for testing. 

An algorithm was presented in [l] to find an optimal 

schedule for the case of nonpartitioned testing. It was shown 

that not only is it necessary to find all cliques, but also 

subcliques of the cliques before solving the covering problem 

to find a minimum cover. Thus, the computational complexity 

of this problem is considerably greater than the equal length 

algorithm. Attempts were made to develop suboptimal al- 

gorithms to schedule unequal length tests in the nonpartitioned 

1 
. - - -  
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testing scheduling discipline. These efforts met with little 

success. 

However, success of the equal length heuristic, presented in 

Section IV of this paper, prompted the use of the same 

heuristic for the unequal length problem. In what follows, 
partitioned testing is reduced to an equal length test problem. 

It is then suggested that the equal length heuristic be applied to 

the different cases of unequal length problem. It is important 

to keep in mind that if a test t, is segmented into { t,, , ti2, . . . , 
ti }, then this collection of segments frequently needs to be 
treated as an ordered set for the scheduling of segments during 

testing. In other words, in the final schedule, not only must all 

segments appear, but all tij must appear before t,, for all 1 I j 
< k I mi. The need for ordering is illustrated by the case in 

which the signature is determined over the entire sequence of 

test segments for a given test. It should be noted that any 
sequential ordering of test vectors otherwise required must 

also be preserved in the segmenting process. 

Theorem 2: Partitioned testing for the unequal length test 

problem can be reduced to an equivalent equal length test 

problem. 
Proof: The assertion is proved in two parts. In part I, the 

TCG for the unequal length test case is redefined such that all 

the nodes in the new graph correspond to tests of equal length. 
In part 11, it is shown that an optimal schedule derived for the 

modified graph can be used to derive an optimal schedule for 

partitioned testing for the unequal length test problem. 

Part I: Let the original TCG for the system in which tests 

are of unequal lengths be TCG, . Clearly in TCG, every node 

corresponds to a test ti of length T,. Let there be m nodes in 

the graph. Let 

mi 

T=gcd {TI ,  T2, . . . ,  Tm}.  

Note that T divides Ti for all 1 I i I m. Let a, = Ti/T.  

Expand TCG, to a new graph TCG, as follows: for every node 

ti in TCG, there are ai nodes ti, , ti2, . . * , tiai in TCG,. All the ai 

nodes corresponding to the node ti are incompatible with each 

other. Two nodes ti, and t k l  in TCG, are compatible if and only 

if ti and t k  are compatible in TCG, . It is easy to see that TCG, 

so obtained from TCG, is a much larger graph with the total 

number of nodes being Cy=,ai. Furthermore, in TCG, each 

node corresponds to a test of length T,  although there is no 

information on the order of segments of a test ti in TCG,. 

Part II: Let S = { G I ,  G2, . . * ,  Gk} be a minimum 

cover for some TCG,. In the case of the equal length test 
problem, it was pointed out that the total time for testing is 

independent of the order in which tests are applied. However, 

in the case of unequal length tests, it is important that an 

interrupted test be restarted from its preinterrupt state. Thus, if 

tj  was interrupted at tg ,  then whenever ti is restarted it must 

start from t$+ I .  It will now be shown that this can be achieved 

once a minimum cover is found for the graph TCG,. Without 

loss of generality, assume that the test schedule is G I  G2 
Gk, i.e., all tests of G I  are applied first and they are followed 

by all tests of G2, etc. Furthermore, assume that every test t5 
appears only once in this schedule. In this schedule, let Gj, , 
Gj,, . . e ,  Gjaj be all those G’s which contain segments of a 
test tJ . Note that no set Gj, can contain more than one segment 

of the test tJ because all such segments are incompatible with 
each other. We now modify Gjk such that fJk replaces the 

segment of t, in Gjk for all 1 I k I a,. This process now 

assures that rn a given schedule, segments of the test tJ always 

appear in the desired order. This process is repeated for every 

test t,, 1 5 i I m. 0 

Suboptimal algorithms were implemented to solve the 

partitioned lesting with run to completion and partitioned 

testing cases of the unequal length test scheduling problem. 

Both algorithms convert the unequal length TCG, into an 

equivalent equal length TCG, . Rather than actually produce 

the TCG,, however, it is possible to take advantage of the fact 

that each unequal length test maps to a set of equal length 

segments each having an identical compatibility relation. The 

algorithm models each set of equal length segments as a set of 

tokens via two parameters: 1) the number of remaining equal 

length segments, and 2) the node degree of the next segment to 

be selected. Thus, except for additional bookkeeping, the 

partitioned resting problem can be solved using the equal 

length algorithm. It should also be noted that by processing the 

set of equal length segments in this manner, the proper 

ordering of the segments in the final solution can easily be 

maintained. 

The details of the partitioned testing algorithm are presented 

in Algorithm 2 with the following sets and notation. Sets S, 

A N ,  T, M ,  C, and C ‘ ,  relation N({  t , } ) ,  and degree operator 

It,( are equivalent to the sets and operators described for 

Algorithm 1 .  In addition, L, is the number of equal length 

segments for test t , ,  and I, is the number of equivalent 

incompatibilities (degree) associated with each token for t, . 

Algorithm 2: suboptimal algorithm for partitioned testing. 

k+O; A N + T  S + 0 ;  L,+a,; Z,+L,- 1 +CJ,rJEN( l t , ) )  LJ;  
while AN# 0 
begin 

k 6 k - t  1; M+@; C t A N ,  C ‘ + 0 ;  S L - 0 ;  

while A N n M #  0 
begin 

if C’ # 0 ,  choose t, E C’ where I ,  is maximum, 

else choose t, E C where I, is maximum; 

A N t - A N  - { t , } ;  M+MU(N({  t , } ) n m ) ;  c+c 
- ( { t , ) U ~ ( { 4 1 ) ) ;  
C ’ + C n N ( M ) ;  S k C S k u { t , } ;  I[@I{-l; h t I ~ - l  

where ( j E N ( {  t,})); 
end 

for each t, E Sk 

begin 

L,+L, - 1; 

if L, # O  

StSU { S k } ;  

then A N t A N U  { t , } ;  

end 

end. 

Algorithm 2 was modified for partitioned testing with run to 

completion (Algorithm 2M). In Algorithm 2M, an initial CTS 

is generated. For the partitioned testing with run to comple- 
tion, it is required that all segmerlla of a given test be run 
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TABLE I1 

RESULTS FOR ALGORITHM 2 AND ALGORITHM 2M 

contiguously. Thus, all of the tests in the CTS must be 

scheduled to run in parallel until the shortest currently active 

test tk is completed. At this point, the current CTS S is 

modified to reflect the removal of all completed tests and this 

modified set is used as a seed for further processing in order to 
preserve the run to completion requirement. This generates a 

test schedule of the type shown in Fig. 7(b). 

Algorithm 2M: suboptimal algorithm for partitioned test 

with run to completion. 

ANcr s*O; L l t u l ;  z,tLl - + EJl/~cN({/ ,])  L J ;  
while AN# 0 
begin 

M+N(s); c-ANnll;l; c ’ + c n N ( M ) ;  
while CZ 0 
begin 

if C‘ # 0, choose t, E C‘ where Z, is maximum, 
else choose t, E C where Z, is maximum; 

AN+AN - i t , } ;  M + M u ( N ( { t , } ) n A N ) ;  c+c 
- ({ t l  1 UN({ t, 1)); 
c ’ + c n z v ( M ) ;  s+su{t,}; z,+z, - 1; zJ+4 - 1 

where t ,})); 
end 

time+min,lrlES { L,};  
{output S and time; current solution S to run for 

time*T units} 

for all t, E S 

begin 

L,+L, - time; Z,+Z, - (time - 1); 

begin 

end 

if L, = 0 then S+S - { t ,};  

for t J E N ( {  t l } >  

J+Z, - (time - 1); 

end 

end. 

Table I1 shows the comparative results for the two subopti- 

mal unequal length algorithms. The lower bound estimate 

calculated for each graph is the test time determined by the 

largest weighted clique of the TIG. It should be noted that this 

is a very loose lower bound approximation. The table shows 

that for the majority of the graphs, both algorithms perform 

very well. The worst case CPU time for Algorithm 2 was 

approximately 15 s on a VAX 11/750 for an equivalent equal 

length graph size of 7000 nodes. 

As a final illustration of the unequal length test schedule, 

consider the TIG (Fig. 8) for the combined second and third 
levels of the example model shown in Fig. 2. The time for the 

completion of each of the tests is TD, = TD2 = 20, TRI = 

A 

Fig. 8. TIG for testing the combined second and third levels of example. 

TR2 = 6 ,  Tc, = Tc2 = 10, and Tl1 = T12 = T, = 2. The 
optimal solution is bounded by the clique comprised of nodes 

( 0 1 ,  R 1 ,  C l } ,  which implies a minimum execution time of 

36 units. One solution for the nonpartitioned testing is GI = 

( 0 1 ,  0 2 ,  R 2 ,  Zl} ,  G2 = { C l ,  C2, B } ,  and G3 = { R l ,  

12 ) .  This solution yields a total testing time of 36 units. The 

optimal solution for partitioned testing with run to completion 

and partitioned testing is also 36 units. 

VI. CONTROL 

Having determined a schedule, the problem becomes one of 

implementing the test schedule in a cost-effective way. This 

requires a low-cost solution to the problem of controlling 

different resources used in the application of different tests. 

Resources used by tests in a CTS must be initialized and the 

test results must be observed at appropriate instants by a 

supervisor. Such a supervisor or controller can be centralized 

or distributed, but it must meet the following objectives. 1)  It 

must initialize the required resources for different tests at 

appropriate instants. 2) It must control all resources used in 
performing a test including the intervening logic for the 

application of appropriate tests. 3) The supervisor must be 

able to communicate with BUT’S, aggregate the test results if 

required, and communicate with the external world. (Depend- 

ing on the choice of implementation, the supervisor may be 

expected to communicate with other supervisors or, in the case 

of hierarchical design, it should be able to communicate with 

higher level supervisors.) 4) The complete control structure 
should be such that the supervisor is simple and area efficient 

and the communication is reliable with low overhead (in space 

as well as in time). 

In this section, minimal self-testing units necessary for the 

application of tests which place resource control physically 

close to the BUT are described; then a number of structures to 

implement the control are discussed. 

For the testing control, a self-testing unit (STU) is defined 

to be comprised of a BUT and its corresponding test control 
logic (TCL). For this discussion, it is assumed that each BUT 

is sufficiently complex and has enough unique features to 

warrant a local control of its own. An STU is conceptually 

similar to an SV as defined in [ 121. The structure of an STU is 

such that the resources required to test a BUT are controlled 

and initialized by the TCL associated with the BUT. Such 

resources can be external to a TCL or alternatively a TCL may 

contain BIST elements (linear feedback shift register, counter, 

multiplexer, etc.) required for testing its associated BUT. 
Also, in certain structures it may not be possible to draw a 

distinction or boundaries between the TCL and BUT. For 

example, in BIST PLA’s [13], [14], extra logic used during 
testing is interspersed in the PLA. Similarly, in the case of a 

1 I 
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Control Communication Area 

Structure Requirements 

Star High 

1107 

TCL System Testing Time Most Appropriate 

Complexity Reliability Effects Scheduling Discipline 

Low High None 
Partitioned 

testing 

Bus 
Non-partitioned 

testing 
Low High LOW 

Moderately Partitioned 

Multiple Bus 

BUT being a microprogrammed ALU, the TCL may be 

implemented as part of the microprogram to test the ALU. 
It is quite likely that two tests, CI and t2, share common test 

resources (note such tests are normally incompatible). In such 

an environment, a resource common between two distinct 

blocks must be controllable by two TCL’s. It is important, in 

such cases, that TCL’s are activated such that no conflicts 

result in the use of resources. 

Having defined STU’s as above, the function of the 

supervisor is essentially to control the STU’s and communi- 

cate with them and also with the external world. Of course, the 

supervisor must control STU’s such that no conflict arises in 

resource utilization. In other words, the supervisor must 

implement the solution to the test scheduling problem. Briefly, 

the functions of a supervisor are as follows: 1) send control 

signals (initialize, start testing, result request) to STU’s, 2 )  

obtain test results from STU’s, 3) collect test results and 

analyze the state of STU’s, and 4) communicate the outcome 

of testing to higher level supervisors or the external world. 

Note, such information often may need to be communicated in 

coded form to save on pin count [ 151. 
The type of implementation used for both the communica- 

tion between a supervisor and its STU’s and between a 

supervisor and the external world will be referred to as the 

control structure. Three potential control structures are con- 

sidered: 1) a star structure, 2 )  a bus structure, and 3) a multiple 

bus structure. Comparative results on these three structures 

are given in Table 111. These results will be briefly discussed 

here for each structure. 

Star Structure: The simplest and most general method to 

implement the control is by a star configuration in which the 

supervisor is directly connected to each STU. In this approach, 

the supervisor can controUcomrnunicate with each STU 

independently. Clearly, if k, is the number of communication 

lines between the supervisor and the ith STU, then the total 

number of communication lines will be C:= k , ,  for a system 

with n STU’s. Because of the dedicated nature of the 

communication paths in the star, the communication is 

comparatively of higher reliability since information can still 
be collected from TCL’s connected to other than the faulty 

line. 

Since the star is the most general control scheme, it can be 

used to implement any one of the three scheduling disciplines 

discussed in Section V. It is ideally suited for implementing 

partitioned testing because any test can be interrupted at any 

time by the supervisor without any effect on the other tests. 

Thus, the overhead due to the interrupts can be minimized. 

-~ 

Moderate High Moderate Increased testing with 

run to completion 

A minor generalization of the star is a multilevel tree in 

which there are one or more intermediate levels of supervisors 

between the primary supervisor and the STU’s. Although the 

number of communication lines increases in this case, a saving 
in area can take place by locating the lower level supervisors 

physically close to the STU’s they control. One of the 

advantages of this scheme is that it can easily be extended to 
board or system level test. 

Bus Structure: The number of communication lines and, 

therefore, area occupied by a communications network can be 

reduced by using a bus structure for supervisor-STU com- 

munication. In this scheme, each STU is assigned an identifi- 

cation, ID. The supervisor can communicate with STU’s 
through their ID’S. Although the number of communication 

lines decreases, the complexity of TCL’s increases as each 

TCL must be able to identify irs ID. 
In the simplest environment, a supervisor can start one test 

at a time through a TCL but at any given instant many tests can 

be running concurrently. Similarly, for the communication of 

results, only one TCL can send results to a supervisor. To 

avoid any collisions [16] on the bus, TCL’s can be required to 

send results to a supervisor only on receipt of a result request 

signal from the supervisor. This may increase the total testing 

time as the results will be transmitted sequentially. Alterna- 

tively, codes can be employed in which a number of TCL’s 

can transmit results simultaneously on a single bus [17], [18] 

without unduly effecting the reliability of transmission while 

reducing the time spent in transmission of results. Any fault 

within the bus structure may disable the entire structure, thus 

cutting off communication between the supervisor and all 

TCL’s; thus, the reliability of this structure is comparatively 

low. 

In a bus-oriented control structure, a considerable time will 

be spent in initialization of tests and result communication; 

therefore, this control scheme is best suited for nonpartitioned 

testing where initialization and result communication are 

performed relatively infrequently. 

Although the use of such a scheme may raise other questions 

(e.g., synchronization etc.), nontheless it makes the point that 

parallelism may be achievable even in bus-oriented control 

structure. A factor which provides support to the use of a bus- 
oriented structure is that in some VLSI architectures it may be 

possible to use existing on-chip buses during test mode. A 

major drawback of this scheme is that the bus becomes an 

essential testing structure. Thus, if the bus fails, no testing 

may proceed and very little diagnosis information may be 

obtained. 
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Multiple Bus Structure: The bus and star structures 

proposed above can be combined to include more than one 

bus. Two alternative structures and allocation of STU’s to 

buses for the multiple bus structure are given in [ 181. One such 

configuration would be to have k buses (k equals the 

maximum number of tests in a CTS). The tests which are 

simultaneously interrupted are assigned to different buses. 

This structure is particularly ideal for use with the partitioned 

test with run to completion scheduling discipline because the 

partitioning of STU’s to different buses can eliminate sequen- 

tially processed interrupts. Generally, in the multiple bus 

structure, buses can be organized based on the physical 

location of STU’s. Thus, the choice of the structure which 

minimizes the overhead can be made. It should be noted that 

the multiple bus structure can be generalized to a hierarchical 
structure by including a higher level supervisor to control 

lower level supervisors with supervisor communication imple- 

mented in either a star or multiple bus structure. 

In the above discussion, the approach has been to implement 

the control in a hierarchical manner. Although the existence of 

a centralized controller has been assumed, test resources have 

been assumed to be controllable by TCL’s. Alternatively, it is 

possible to control all resources by a single centralized 

controller as proposed in [ 171. It is the opinion of the authors 

that the use of TCL’s which are placed physically close to the 

resources they control is a more flexible implementation. In 

addition, +e use of TCL’s reduces the complexity of the 

central controller and it offers the freedom to use different 

control structures which in turn can reduce the area and/or 

time overhead. 

Yet another alternative is to distribute part of the control. In 

one of the simplest schemes, TCL’s can be issued tokens [ 161 

at the start of the test cycle. Upon completion of a test, the 

tokens are passed on to other TCL’s which in turn can start 

testing their BUT’S. This process continues until the complete 

system has been tested. 

VII. CONCLUSIONS 

In this paper, the test scheduling problem for equal length 

and unequal length tests for VLSI circuits using BIST has been 

modeled. An efficient algorithm has been presented for 

producing test schedules for the equal length tests. The 

unequal length test problem has been subdivided into three 

cases and efficient algorithms have been presented for two out 

of the three cases. Although the solutions presented here have 

been given in the context of BIST, it is also possible to employ 

the results in other testing environments where inherent 

parallelism exists. In addition, the solutions presented here for 

VLSI circuits using BIST can be extended to the board or 

system level as well. 

The algorithms presented for test scheduling often yield 

optimum solutions. In the most extreme departure from 

optimum among the test cases, the excess length of a test 

schedule was no more than 15 percent. It is thought that for 

most testing applications, this degree of optimization is likely 

to be adequate. It should be noted that the algorithms presented 

may have applications beyond testing since they can be applied 

to any situation in which an efficient fixed schedule is to be 

defined for a fixed allocation of tasks to resources. 

Finally, a very general test control model has been 

introduced for use in the BIST environment. Several control 

structures and their appropriateness for use with various 

scheduling cases defined is discussed. 
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