
IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988 1099

Test Scheduling and Control for VLSI Built-In
S elf - Tes t

GARY L. CRAIG, MEMBER, IEEE, CHARLES R. U M E , SENIOR MEMBER, IEEE, AND KEWAL K. SALUJA, MEMBER, IEEE

Abstract-The problem of exploiting parallelism in the testing
of VLSI circuits with built-in self-test (BIST) was first introduced
in [l]. In this paper, this problem is examined in detail using a
broader modeling foundation and new algorithms. A hierarchical
model for VLSI circuit testing is introduced. The test resource
sharing model from [l] is employed to exploit the potential
parallelism. Based on this model, very efficient suboptimum
algorithms are proposed for defining test schedules for both the
equal length test and unequal length test cases. For the unequal
length test case, three different scheduling disciplines are defined
and scheduling algorithms are given for two of the three cases.
Data on algorithm performance are presented. The issue of the
control of the test schedule is also addressed, and a number of
structures are proposed for implementation of control.

Index Terms-Built-in self-test, cliques, design for testability,
graph coloring, scheduling, test control, VLSI circuit testing.

I . INTRODUCTION

N VERY large scale integrated (VLSI) circuits, there exists I a large device count and a relatively few input/output pins.
This can produce complex structures for which test generation

is difficult and results in long tests with high input/output

traffic during testing. One approach to dealing with this

difficult testing problem is to employ built-in self-test (BIST)

[2] . In the VLSI environment, desirable goals for BIST are to

1) eliminate as much test generation as possible,

2) permit a fairly general class of failure modes,

3) permit easy circuit initialization and observation,

4) reduce input/output pin signal traffic, and

5) reduce test length.
Although BIST techniques clearly realize a number of the

goals listed, for very large circuits with extensive BIST

resources, the testing time can still be quite long if the tests for

the various parts of the circuits are executed one after the

other. In such cases, in order to reduce testing time and fully

exploit the power of the BIST resources, it is essential to

control the testing process so that full use is made of the

potential parallelism available.

In order to develop a perspective for parallelism in BIST,

consider the testing of a block of logic within a VLSI chip. The

inputs to the block under test (BUT) must be stimulated with

an appropriate input sequence including initialization steps.

Manuscript received July 15, 1986; revised April 17, 1987. This work was
supported in part by the National Science Foundation under Grants DCR-
8206564 and DCR-8509194 and by the Australian Department of Science and
Technology.

G . L. Craig is with the Department of Electrical and Computer Engineering,
Syracuse University, Syracuse, NY 13215.

C. R. K i m and K. K. Saluja are with the Department of Electrical and
Computer Engineering, University of Wisconsin, Madison, WI 53706.

IEEE Log Number 8718428.

The outputs of the BUT must be observed and the response

analyzed to determine if the block is faulty or not. The

observation of the response must typically be coordinated with

the application of the input sequence.
In the typical BIST implementation for testing a block of

logic, the original source of the stimuli is a set of one or more

test pattern generators (TPG) and the final destination of the

responses is a set of one or more compressors and/or response

analyzers [3]. It is possible that the test generators and

response compressors and/or analyzers are directly attached to

the block under test. Often, however, there is additional logic

lying between the test generators and the BUT and between the

BUT and the response compressors/analyzers. Thus, test

control logic must exist which controls not only the test pattern

generators and response compressors/analyzers but also this

intervening logic. Typically, paths must be established from

the test pattern generators to the inputs of the BUT and from

the BUT to the response compressors/analyzers. In addition,

the test control logic must interact with a higher level of

control either on or off the chip. The blocks which are

required to perform a test (test control logic, TPG’s, compres-

sordanalyzers, BUT, and any intervening logic) are known as

test resources. Test resources may be shared among BUT’S.

For example, testing schemes exist in which the response

compressor for one BUT can be used as an input stimulus,

i.e., as a TPG, for another BUT [3]. Also, for those blocks

which lie on the periphery of the chip, a portion of the test

resources may lie off-chip. For a block entered by primary

inputs, all or part of a TPG may lie off-chip. For a block

feeding primary outputs, all or part of a response compressor/

analyzer may likewise lie off-chip.

In this paper, the potential for parallel execution of tests will

be exploited. Models, including one based on test resources,

will be developed, algorithms for generating test schedules

will be given, and the control of resources in executing the test

schedule will be explored.

11. A HIERARCHICAL MODEL FOR TEST PARALLELISM

The approach to testing discussed in Section I and the notion

of a test as an element of a hierarchy can be used to develop a

model for parallelism in the self-test of an integrated circuit.

The resulting model is hierarchical in nature due to the

underlying design of the circuit and the relationship between

the tests and the test resources. It should be noted that two

major types of test parallelism problems have been identified

in the literature thus far [11, 141. One of the forms as discussed

in [l] deals with tests for blocks of logic; these tests which we

refer to as block tests potentially consist of many test vectors

0018-9340/88/0900-1099$01 .OO O 1988 IEEE

1100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

EXAMPLE E

PROCESSOR P1

MULTIPLEXER MA

MULTIPLEXER MB

1
SHIITER S I

REGISTER FILE R

CONTROL C I I
I L

I

-
B

U
S

I
N
T
E
R
F
A
C
E

I

-

-
B

U
S

I
N
T
E
R
F
A
C
E

I

-

PROCESSOR P2

DATA PATH D

MULTIPLEXER MA

MULTIPLEXER MB

ALU A

SHIFTER S

STATUS U

‘I I REGISTER FILE R

11 I CONTROL C

Fig. 1. Block diagram of example illustrating testing hierarchy

and are regarded as indivisible entities for scheduling.

Furthermore, there is no temporal relationship between the

test vectors in different block tests other than that defined by

conflicting use of resources. The other form, as discussed in

[4], deals with test steps which may need to appear in and

utilize resources in a specific temporal order. Although certain

aspects of the model in this section may apply to both forms,

the remaining sections of the paper will deal exclusively with

scheduling of block tests.
To provide a general perspective for overall parallelism, an

example and the corresponding hierarchical model for test

scheduling is presented. The example circuit to be considered

is shown in block diagram form in Fig. 1. The circuit contains

a bus B and two 8-bit processors, P l and P 2 , which are not

necessarily identical. Each processor contains, as detailed in

Fig. 1, a data path D, a register file R , a control C , and a bus

interface I. Each data path, in turn, contains two multiplexers

MA and MB, an ALU A , a shifter S , and a status unit U.
Suppose that the testing of this example circuit is considered

from a hierarchical view with parallelism of testing in mind.

We begin with the testing of the components of the data path

and have tests t M A , t ,UB, t A , ts , and tu for the multiplexers

MA and MB, ALU A , shifter S , and status U, respectively. In

the design of the BIST hardware for the data path, the designer
realizes that it is possible to perform test tMA and tMB

simultaneously but that due to sharing of hardware the

remaining tests must be executed serially. Thus, tMA and t,VfB

are scheduled simultaneously followed by tA , t s , and tu. This

scheduled set of tests is referred to by the designer as t o , the

data path test. Similarly, tests can be obtained for the register

file, the control, and the bus interface. These tests are t R , tc ,

and t,, respectively. This can be done for the two processors

and the bus as well. Thus, at the second level of the hierarchy,

there are eight tests tal, t R I , tcl , til, t D 2 , t ~ 2 , t ~ 2 , and t 1 2 . In
terms of the design partition of the hardware, a third level of

tests can be established, t p l , t p z , and t B . We can choose to

schedule tests at each level of the hierarchy or can combine

levels in the model to be proposed. For the example, we will

combine in a natural way levels two and three. In general,

such a combination of levels prior to scheduling can lead to

more efficient schedules. A formal model for hierarchical test

schedules follows and is illustrated via this example.

The overall test schedule for the circuit can be viewed as a

partial order in which ti I ti if either ti = tj or ti is scheduled

before t j . Furthermore, universal bounds can be defined for

this partial order as tests B (begin) and E (end) which may

correspond to test control functions or may simply be null

tests. The test schedule can then be represented by a Hasse

diagram [5] which is a single entry point-single exit point

acyclic directed graph. However, it is also possible to

represent any test which has internal scheduling in the

hierarchy with the same structure. When detail is desired, the

graph for a test can simply replace its single node because of

the single entry point-single exit point structure. To avoid

ambiguity, if there is more than one appearance of B and E in

a graph that represents multiple levels in the hierarchy, the

appearances of B and E will be subscripted. Note that the

graph representing a test that has not been internally scheduled

consists simply of disconnected nodes representing the sub-
tests.

The test structure developed thus far for the example is

partially represented in Fig. 2 using the partial order and

hierarchy. The schedule for testing of the data path D1 is

shown with MA and MB being tested in parallel. At the next

level, the tests are at present unscheduled, so there are no arcs

in the graph. At the top of the model, there is a single node

representing the testing of the circuit. Later, after developing

the theory and methods for test scheduling, a schedule for the

combined second and third levels in the example model will be

found, thus completing the schedule for the circuit test.

Thus far, a hierarchical model for test schedules has been

given. In the next section, a model which will serve as a
foundation for obtaining a schedule for an unscheduled portion

of the hierarchy will be developed.

1 1

CRAIG et al.’ TEST SCHEDUI J N G A N D CONTROL FOR VLSI SELF-TEST 1101

Fig. 2. Partial testing hierarchy for example circuit in Fig. 1.

RG

I-

Fig. 3 . An example system

111. TESTABILITY RESOURCES AND TEST MODELING

A test t, is defined in an unscheduled portion of the test

hierarchy at which parallelism is to be investigated. For a

typical BIST implementation, test t, requires the use of a TPG,

test control logic, the BUT, the intervening logic, and a

signature analyzer (SA). Once such a resource set is known

for each test, then it is possible to define an allocation
relation A between tests and resources such that (t,, rJ) is in A

if resource rJ is in the resource set for test t,.

The example given in Fig. 3 will be used to illustrate

concepts in this and subsequent sections. The system shown

consists of combinational logic denoted by C, and registers

denoted by R I . Each combinational logic block is built-in
testable and may represent testable PLA’s, ROM’s, or random

blocks of logic. For this example, each of the registers is

assumed to be configurable into one or more built-in logic
block observer (BILBO) structures for testing attached combi-

national logic [3]. The BILBO’s can be configured as a TPG or

an SA as appropriate. A serial scan path is available for

initializing TPG’s and for observing the resulting signatures in

Fig. 4. Allocation graph A for the example system in Fig. 3 .

the SA’s. The use of this structure can be illustrated by test t2
on block C2. Test t2 uses RB and RC as a TPG and RE as an

SA. In addition, block C3, because it overlaps block C2, is

involved in the test. Thus, the resource set for test t2 is { RB,

RC, RE, C2, C31, and (t2, RBI, (t2, RC), (t 2 , RE), (h ,
C2), and (t z , C3) are all in relation A . In general, such

information can be represented by a bipartite graph with a

node set consisting of the tests and the resources. If (t , , rJ) is in

A , then there is an edge between t, and rJ in the graph. Fig. 4

shows the resource allocation graph for the example system.

In test t S , it is assumed that the lateral signals from C4 to C5

are functionally dependent only on the inputs fed by register

RF. It is also clear from Fig. 3 that t4 must test both output

paths to RI (from C4 and C5) separately.
In the resource allocation graph, a resource node which is

connected to more than one test indicates contention between

the tests for use of that resource. In cases in which it is
possible for a resource to be used simultaneously by two or
more tests, the arcs between that resource node and the test

nodes in the resource allocation graph are labeled with a
common symbol. Except for such labeling, it is assumed that

tests sharing one or more resources must be disjoint in time,

i.e., cannot be active concurrently. A pair of tests that cannot

be run concurrently will be said to be incompatible. Other-

wise, they are compatible.

Pairs of compatible tests form a relation on the set of tests
which is a compatibility relation [6]. Such a relation can be

represented by a test compatibility graph (TCG) in which a

node appears for each test and an edge exists between node t,

and node tJ if test t, and test tJ are compatible. The TCG for the

1102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 9, SEPTEMBER 1988

Fig. 5. Test compatibility graph TCG for the example system in Fig. 3.

example is shown in Fig. 5. The resulting TCG indicates

exactly which pairs of tests can be run concurrently and from it

one can derive larger sets of tests which also can be run

concurrently if they exist.

The TCG can then be used as a basis for scheduling the tests

so that the total testing time is minimized. In general, circuits

fall into two classes 1) circuits in which all the tests are of

approximately equal length, and 2) circuits in which the tests

are unequal in length. Based on this classification, the

following two problems may be stated: 1) find a schedule for

running tests such that each test is run at least once and the

total time to run all tests is minimum provided that each test ti

takes T units of time to run completely, and 2) find a schedule

for running tests such that each test is run at least once and the

total time to run all tests is minimum provided that a test ti

takes T, units of time to run completely.

IV. EQUAL LENGTH TESTS

In [l] , it is shown that for equal length tests, the total testing

time for a particular schedule is nT where n is the number of

test sets required to run all tests. A concurrent test set CTS is

a set of tests which may be run concurrently. In order to obtain
an optimal schedule (solution), the number of CTS’s, n must

be a minimum.

Theorem Z [Z]: Tests t i l , tiz, - * , tip can run concurrently if

and only if til , ti,, * * , t;, form a complete subgraph Kp in the

TCG.

A clique, a maximal subgraph of a graph, of the TCG

represents a maximal set of tests which can run concurrently.

If all the cliques of the TCG were available, then finding S, a

set of n cliques which covers all tests for n minimal, is an

optimal solution to the equal length test scheduling problem.

Thus, the test scheduling problem reduces to 1) finding all

the cliques of the TCG, and 2) solving the covering problem in

order to determine a minimum collection. The following is the

procedure as presented in [l] .
1) Construct the TCG of the circuit.

2) Find G, the set of all cliques of the TCG. Let G = { G1,

Gz, -, G r } , where each G; is a clique of the TCG.
3) By using a covering table, find a minimal subset S of G

such that Us G; = { tl , t z , * - e , t q } , the set of all tests in the

TCG.
4) Schedule all the tests in each G; from S to run

concurrently. The total testing time is ISl*T, where IS1

denotes the size of the set S.
The following example illustrates the steps of the proce-

dure.

1) The TCG is given in Fig. 5.

2) Set G for the graph is G = { G I , GZ, G3, G4, G 5 } in

which GI = { t i , t3, t s } , Gz = { t i , t3, f 4 } , G3 = { t i , k } , G4

3) The minimum cover can yield any one of the following

threeso1utions:S = { G 2 , G I , G 4 } , S = { G 2 , G 4 , G 5 } , o r S

= { tZ, t6}9 G5 = { tZi t5}.

= {Gz, G3, (3 5) .
4) The total test time is 3 T.
The order in which the CTS’s associated with different G,’s

are run is not important. Also for tests which appear in more

than one CTS in S, it is possible to delete all but one

occurrence of such tests. The decision to eliminate redundant

executions of a particular test is usually dependent on the test

control implementation. It is also possible, however, to exploit

these duplicate test executions to reduce the aliasing in the

signature analyzers. For each execution of a test, a different

configuration of the signature analyzer corresponding to a

different polynomial can be used. This has been shown to

reduce the probability of aliasing [7].

The minimum covering problem (step 3 of the optimal

procedure) is NP-complete. In [8], the procedure from [11 was

implemented using a suboptimal covering algorithm. Studies

were performed for random test graphs. These studies showed

that even for a reasonable number of tests the required

computation became excessive. This was due primarily to the

very large number of cliques generated in step 2, which

produces enormous covering tables. These results prompted

the need to find a heuristic which would generate a suboptimal

solution without enumerating all of the cliques of the TCG.

The approach taken was to develop an algorithm which

generates exactly one complete set corresponding to each CTS

in the final solution. Each CTS can also be thought of as an
independent set of the complementary graph of the TCG, the

test incompatibility graph (TIC).

The problem of finding a minimum cover consisting of

independent sets is equivalent to finding a minimum coloring

of the TIG. The graph coloring problem tries to color each

node in a graph such that no two adjacent nodes (nodes with a

common incident edge) have the same color. A minimum

coloring for a graph is one which requires a minimum number

of colors [9]. The set of nodes having the same color in a

minimum coloring is analogous to a CTS in a minimum equal

length test schedule. This analogy is also reported in [lo].

The approach of the algorithm is to generate a CTS by

adding candidate tests to an expanding set. Once a CTS has

been created, those nodes which are in the CTS are removed

from the TIG and the remaining subgraph is used to generate a

new CTS. This process is repeated until every test has been

included (covered) in some CTS.

In a graph, the degree of a node (test) is the number of edges

which are incident with that node (test). The algorithm selects

a test ti having maximum degree to seed a given expanding set

(at each step the goal is to remove the maximum number of

incompatibilities from the remaining graph). It is known that

any node which is incompatible with test t; cannot be a

candidate to be added to the expanding set. Therefore, all

adjacent (incompatible) nodes are added to a marked set (M)
and excluded from further consideration during the expansion

of the current CTS.

I 1

CRAIG el U / . : TEST SCHEDULING AND CONTROL FOR VLSI SELF-TEST

Enumeration of Cliques & Suboptimal Cover

#of Tests Clique #of Total

Time # O f ‘Iiques Generation Time Test Sets

5’ 4x.x 30 978 4.3

1103

-.

Algonthm 1

#of Execution 1
Test Sets Time

s* 0 2

During the execution of the algorithm when no additional

nodes can be added to the expanding set, a CTS has been found

and M is the remaining subgraph of the TIG. To minimize the

total number of CTS’s in the final solution it is important,
while processing the current expanding set, to minimize the

incompatibilities in M. To achieve this goal, the algorithm

first considers as candidates tests which are a distance 2 from

the expanding set (tests compatible with the expanding set and

incompatible to one or more of the tests in M) . The set of

distance 2 candidates is C‘ . If no such distance 2 candidates

exist, then a test tc is considered for inclusion in the expanding

set if it is not an element of the marked set and has not yet been
placed in the expanding set. The set C contains all candidate

tests. Thus, a test t , is selected from C’ (or C if C‘ is empty)

for inclusion in the expanding set such that its degree is

maximum (removing the greatest number of incompatibilities

in the remaining graph). The test(s) incompatible with test f,

are then added to M . The candidate sets are updated and the

process continues until there are no new candidates.

For the formal presentation of the suboptimal algorithm, the

following sets and notation are defined: S is the solution set,

A N is the set of active (noncovered) nodes, T is the set of all

nodes, M is the set of “marked” nodes, C is the set of

candidate nodes, C’ is the set of distance 2 candidate nodes,

N({ t , }) is the adjacency relation (set of nodes incompatible
with a set of nodes { t , }) , I t, I is the degree of node t , .

Algorithm 1 is the resulting suboptimal algorithm.

Algorithm I : suboptimal algorithm for equal length tests.

k+O; AN+T; S - 0 ;
while A N # 0
begin

k + k + 1; M+@; C + A N , c‘+@; S k - 0 ;

while A N n & f # 0
begin

if C‘ f 0 , choose t, E C‘ where 1 t, I is maximum,

else choose t , E C where I t , 1 is maximum;

A N t A N - { t , } ; M + M U (N ({ t , }) n A N) ; C+C-

({til U N ({ t ,))) ;
C’+Cf%v(M); s k t S k u { t , } ;

end

SeSU { S k } ;

end.

30
30

40
40
40

50
SO
50

In the implementation of the algorithm, if there is more than

one ti such that I t,I is maximum, the test with smallest

subscript is chosen.

The algorithm generates the following solution for the

complementary graph of Fig. 5.

844 4.0 36.0 4’

930 3.7 :* 40.1 4* 1 ~

5161 29.1 5 944.0 5 11.4

4564 20.0 8* 822.6 8* 0.4 ,
493 1 26.7 6* 825.2 6+ 0.4

20119 117.9 10’ 1444.5.7 10* 0 7

20474 109.6 I’ 13496.3 7*

17978 125.4 7 10803.2 6 ;.; j

In this example the solution is optimal and SI and S2

correspond to G4 and G2, respectively. Note that in general,

the solution CTS’s S I , Sz, . . . , S, will not be cliques. This

heuristic produces an irredundant solution (each test appears

exactly once in the final solution). If cliques are desired, each

set can be expanded to generate cliques for the solution by

adding to each set all tests which are compatible with every

TABLE I

RESULTS FOR NINE RANDOM GRAPHS

test in the set. As an example, S3 can be expanded to

correspond to either G I or G S .

The selection of a test t , and the updating of all sets is

executed once for each test. The determination of C‘ is on the

order O (N 2) (N is the number of tests). Therefore, the

complexity of the algorithm is on the order 0 (N 3) .

Algorithm 1, although developed independently, appears to

utilize the same heuristics as the suboptimal graph coloring

algorithm BSP2 reported in [l l] . In this survey [I I] , several

suboptimal algorithms for graph coloring are compared and

BSP2 is reported to be superior for large graphs.

Table I shows the results of performance measurements

made on the two implementations of the equal length test

problem using a series of randomly generated graphs. The
results for the implementation of procedure from [l] using a

suboptimal covering algorithm as reported in [8] are listed in

the left portion of Table I . Execution times are reported for

both clique generation and the combined clique generation/

clique cover time. It is important to note how rapidly the

number of cliques increases as the number of tests (nodes) in

the graph increases.

The right portion of the table presents the results for

Algorithm 1. Algorithm 1 produced optimal or near-optimal

solutions in all cases. Even for large TCG’s, the execution

times are very reasonable. For all of the random graphs, a

lower bound for the optimal number of test sets was

calculated. This lower bound is the size of the largest clique of

the TIG. The solutions are marked with an asterisk and are

optimal if the number of CTS’s in the solution matches the

lower bound figure for a particular graph. It should be noted

that the fact that some of the results differed from the lower

bound does not indicate that the solutions were not optimal.

For the purposes of this work, however, since the solutions

were adequately “close” to the lower bound, the excessive

cost of determining true optimal solutions for comparison was

not justified.

Another study on 60 random TIG’s, ranging in size from 30

to 50 nodes, resulted in the suboptimal algorithm producing an

optimal solution for 34 TIG’s. In 24 other TIG’s, the

algorithm produced a solution which contained one additional

CTS than was indicated by the lower bound estimate of

optimal. In the remaining two graphs, the algorithm strayed by

two CTS’s (all graphs produced solutions ranging from 3 to 10

CTS’s).

1104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 9, SEPTEMBER 1988

w
Fig. 6. TCG for unequal length test example.

V. UNEQUAL LENGTH TESTS

In the unequal length test problem, a test ti requires Ti units

of time to run completely. Consider the added constraint

associated with the unequal length test problem where two

tests tl and t2 can run concurrently and TI > T2. Clearly, if

both tl and t2 are initiated simultaneously, t2 will finish before

tl . Three possibilities now exist. 1) Test t2 can be modified to

take TI units oflime to run completely or alternatively t2 can

be stopped and its results saved. Thus, only on completion of

tl can the analysis of both t l and t2 be performed internally by

a local controller or externally after the results have been

accessed. 2) If local test analysis hardware exists internally,

then local control can be provided to process both tl and t2
independently. Therefore, in such an environment, t l proceeds

uninterrupted and a new test, say t3 , which is compatible with

t l (t3 incompatible with t2) can be initiated. However, it is

important to note that each test once initiated must run to

completion. 3) A third possibility exists if a mechanism which

permits storing and restoring of test state is available. Test t l is

interrupted upon completion of test t2 , the results of t2 along

with the status of tl and also the partial results due to test tl are

saved. The results of t2 can be compared and a new set of tests

can be started. If the new set includes t l , then t l need only be

restarted from its interrupted state after restoring the status of

t l and its partial results. Alternatively, the unfinished segment

of tl can be completed at a later time.

The three possibilities will be explained by way of an

example. Consider the TCG shown in Fig. 6 . The time for the
completion of each of the tests is TI = T3 = Ts = 2 T, T2 =

T4 = T6 = T. In the first case, shown in the Fig. 7(a), tests tl ,
t2 , t3 are initiated simultaneously. Test t2, being of shorter

duration than tl and t3, is adjusted to run for a duration of 2 T.
Thus, at time 2 T the results of all three tests are evaluated. At

this time, tests t4 and ts are initiated and test t4 is extended to

run for the duration of 2 Tunits. Thus, the results of the tests t4
and ts are evaluated at time 4 T and test t6 is initiated at that

time. Total testing time is five units. This is an optimal

schedule under the condition that each test once started must

run to completion and no test may be interrupted. This

scheduling discipline, which will be referred to as nonparti-
tioned testing, was discussed in [13.

In the second case, tests t l , t2 , and t3 are initiated as is

evident from Fig. 7@). On completion of t2 , a new test tS is

scheduled while test t l and t3 are still running. Test t4 is

A.
t2V) ts (2T)

(C)

(b) partitioned testing with run to completion, and (c) partitioned testing.
Fig. 7. Time schedules for unequal length tests: (a) nonpartitioned testing,

scheduled on completion of tl and t3 and finally, test t6 is

scheduled last. Total testing time is four units. This is an

optimal schedule under the condition that each test once started

must run to completion. Note that in a serial scan environ-

ment, if signatures are compared externally, this scheme may

imply interrupting tl and t3 on completion of t2 , then restarting

tl and t3 from interrupted states. This scheduling discipline

will be referred to as partitioned testing with run to
completion.

In the third case, each test can be interrupted at any time,

the only requirement being that all tests must be completed by

the end of testing. As shown in Fig. 7(c), test t3 in this case is

run in two segments. Test t3 is initiated at time 0. At time T,
when all tests are interrupted, test t3 is not rescheduled; instead

its status and partial results are saved and t3 is rescheduled at

time 2 Tafter restoring its saved state and partial results. Total

testing time in this case is three units, which is once again

optimal under the condition that tests can be interrupted and

restarted at will. This scheduling discipline will be referred to

as partitioned testing.
In the above discussion, it has been assumed that the time

spent in saving and restoring of the partial state and results for

a test and for the comparison of results is negligibly small

compared to the duration of any segment of the test. If the time

overhead due to interruption is not small, then such time

should also be added to the total time for testing.

An algorithm was presented in [l] to find an optimal

schedule for the case of nonpartitioned testing. It was shown

that not only is it necessary to find all cliques, but also

subcliques of the cliques before solving the covering problem

to find a minimum cover. Thus, the computational complexity

of this problem is considerably greater than the equal length

algorithm. Attempts were made to develop suboptimal al-

gorithms to schedule unequal length tests in the nonpartitioned

1
. - - -

1

CRAIG et al.: TEST SCHEDULING AND CONTROL FOR VLSl SELF-TEST 1105

testing scheduling discipline. These efforts met with little

success.

However, success of the equal length heuristic, presented in

Section IV of this paper, prompted the use of the same

heuristic for the unequal length problem. In what follows,
partitioned testing is reduced to an equal length test problem.

It is then suggested that the equal length heuristic be applied to

the different cases of unequal length problem. It is important

to keep in mind that if a test t, is segmented into { t,, , ti2, . . . ,
ti }, then this collection of segments frequently needs to be
treated as an ordered set for the scheduling of segments during

testing. In other words, in the final schedule, not only must all

segments appear, but all tij must appear before t,, for all 1 I j
< k I mi. The need for ordering is illustrated by the case in

which the signature is determined over the entire sequence of

test segments for a given test. It should be noted that any
sequential ordering of test vectors otherwise required must

also be preserved in the segmenting process.

Theorem 2: Partitioned testing for the unequal length test

problem can be reduced to an equivalent equal length test

problem.
Proof: The assertion is proved in two parts. In part I, the

TCG for the unequal length test case is redefined such that all

the nodes in the new graph correspond to tests of equal length.
In part 11, it is shown that an optimal schedule derived for the

modified graph can be used to derive an optimal schedule for

partitioned testing for the unequal length test problem.

Part I: Let the original TCG for the system in which tests

are of unequal lengths be TCG, . Clearly in TCG, every node

corresponds to a test ti of length T,. Let there be m nodes in

the graph. Let

mi

T=gcd {TI , T2, . . . , Tm}.

Note that T divides Ti for all 1 I i I m. Let a, = Ti/T.

Expand TCG, to a new graph TCG, as follows: for every node

ti in TCG, there are ai nodes ti, , ti2, . . * , tiai in TCG,. All the ai

nodes corresponding to the node ti are incompatible with each

other. Two nodes ti, and t k l in TCG, are compatible if and only

if ti and t k are compatible in TCG, . It is easy to see that TCG,

so obtained from TCG, is a much larger graph with the total

number of nodes being Cy=,ai. Furthermore, in TCG, each

node corresponds to a test of length T, although there is no

information on the order of segments of a test ti in TCG,.

Part II: Let S = { G I , G2, . . * , Gk} be a minimum

cover for some TCG,. In the case of the equal length test
problem, it was pointed out that the total time for testing is

independent of the order in which tests are applied. However,

in the case of unequal length tests, it is important that an

interrupted test be restarted from its preinterrupt state. Thus, if

tj was interrupted at tg , then whenever ti is restarted it must

start from t$+ I . It will now be shown that this can be achieved

once a minimum cover is found for the graph TCG,. Without

loss of generality, assume that the test schedule is G I G2
Gk, i.e., all tests of G I are applied first and they are followed

by all tests of G2, etc. Furthermore, assume that every test t5
appears only once in this schedule. In this schedule, let Gj, ,
Gj,, . . e , Gjaj be all those G’s which contain segments of a
test tJ . Note that no set Gj, can contain more than one segment

of the test tJ because all such segments are incompatible with
each other. We now modify Gjk such that fJk replaces the

segment of t, in Gjk for all 1 I k I a,. This process now

assures that rn a given schedule, segments of the test tJ always

appear in the desired order. This process is repeated for every

test t,, 1 5 i I m. 0

Suboptimal algorithms were implemented to solve the

partitioned lesting with run to completion and partitioned

testing cases of the unequal length test scheduling problem.

Both algorithms convert the unequal length TCG, into an

equivalent equal length TCG, . Rather than actually produce

the TCG,, however, it is possible to take advantage of the fact

that each unequal length test maps to a set of equal length

segments each having an identical compatibility relation. The

algorithm models each set of equal length segments as a set of

tokens via two parameters: 1) the number of remaining equal

length segments, and 2) the node degree of the next segment to

be selected. Thus, except for additional bookkeeping, the

partitioned resting problem can be solved using the equal

length algorithm. It should also be noted that by processing the

set of equal length segments in this manner, the proper

ordering of the segments in the final solution can easily be

maintained.

The details of the partitioned testing algorithm are presented

in Algorithm 2 with the following sets and notation. Sets S,

A N , T, M , C, and C ‘ , relation N({ t , }) , and degree operator

It,(are equivalent to the sets and operators described for

Algorithm 1 . In addition, L, is the number of equal length

segments for test t , , and I, is the number of equivalent

incompatibilities (degree) associated with each token for t, .

Algorithm 2: suboptimal algorithm for partitioned testing.

k+O; A N + T S + 0 ; L,+a,; Z,+L,- 1 +CJ,rJEN(l t ,)) LJ;
while AN# 0
begin

k 6 k - t 1; M+@; C t A N , C ‘ + 0 ; S L - 0 ;

while A N n M # 0
begin

if C’ # 0 , choose t, E C’ where I , is maximum,

else choose t, E C where I, is maximum;

A N t - A N - { t , } ; M+MU(N({ t , }) n m) ; c+c
- ({ t ,) U ~ ({ 4 1)) ;
C ’ + C n N (M) ; S k C S k u { t , } ; I[@I{-l; h t I ~ - l

where (j E N ({ t,}));
end

for each t, E Sk

begin

L,+L, - 1;

if L, # O

StSU { S k } ;

then A N t A N U { t , } ;

end

end.

Algorithm 2 was modified for partitioned testing with run to

completion (Algorithm 2M). In Algorithm 2M, an initial CTS

is generated. For the partitioned testing with run to comple-
tion, it is required that all segmerlla of a given test be run

1106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

TABLE I1

RESULTS FOR ALGORITHM 2 AND ALGORITHM 2M

contiguously. Thus, all of the tests in the CTS must be

scheduled to run in parallel until the shortest currently active

test tk is completed. At this point, the current CTS S is

modified to reflect the removal of all completed tests and this

modified set is used as a seed for further processing in order to
preserve the run to completion requirement. This generates a

test schedule of the type shown in Fig. 7(b).

Algorithm 2M: suboptimal algorithm for partitioned test

with run to completion.

ANcr s*O; L l t u l ; z,tLl - + EJl/~cN({/ ,]) L J ;
while AN# 0
begin

M+N(s); c-ANnll;l; c ’ + c n N (M) ;
while CZ 0
begin

if C‘ # 0, choose t, E C‘ where Z, is maximum,
else choose t, E C where Z, is maximum;

AN+AN - i t , } ; M + M u (N ({ t , }) n A N) ; c+c
- ({ t l 1 UN({ t, 1));
c ’ + c n z v (M) ; s+su{t,}; z,+z, - 1; zJ+4 - 1

where t ,}));
end

time+min,lrlES { L,};
{output S and time; current solution S to run for

time*T units}

for all t, E S

begin

L,+L, - time; Z,+Z, - (time - 1);

begin

end

if L, = 0 then S+S - { t ,};

for t J E N ({ t l } >

J+Z, - (time - 1);

end

end.

Table I1 shows the comparative results for the two subopti-

mal unequal length algorithms. The lower bound estimate

calculated for each graph is the test time determined by the

largest weighted clique of the TIG. It should be noted that this

is a very loose lower bound approximation. The table shows

that for the majority of the graphs, both algorithms perform

very well. The worst case CPU time for Algorithm 2 was

approximately 15 s on a VAX 11/750 for an equivalent equal

length graph size of 7000 nodes.

As a final illustration of the unequal length test schedule,

consider the TIG (Fig. 8) for the combined second and third
levels of the example model shown in Fig. 2. The time for the

completion of each of the tests is TD, = TD2 = 20, TRI =

A

Fig. 8. TIG for testing the combined second and third levels of example.

TR2 = 6 , Tc, = Tc2 = 10, and Tl1 = T12 = T, = 2. The
optimal solution is bounded by the clique comprised of nodes

(0 1 , R 1 , C l } , which implies a minimum execution time of

36 units. One solution for the nonpartitioned testing is GI =

(0 1 , 0 2 , R 2 , Zl} , G2 = { C l , C2, B } , and G3 = { R l ,

12) . This solution yields a total testing time of 36 units. The

optimal solution for partitioned testing with run to completion

and partitioned testing is also 36 units.

VI. CONTROL

Having determined a schedule, the problem becomes one of

implementing the test schedule in a cost-effective way. This

requires a low-cost solution to the problem of controlling

different resources used in the application of different tests.

Resources used by tests in a CTS must be initialized and the

test results must be observed at appropriate instants by a

supervisor. Such a supervisor or controller can be centralized

or distributed, but it must meet the following objectives. 1) It

must initialize the required resources for different tests at

appropriate instants. 2) It must control all resources used in
performing a test including the intervening logic for the

application of appropriate tests. 3) The supervisor must be

able to communicate with BUT’S, aggregate the test results if

required, and communicate with the external world. (Depend-

ing on the choice of implementation, the supervisor may be

expected to communicate with other supervisors or, in the case

of hierarchical design, it should be able to communicate with

higher level supervisors.) 4) The complete control structure
should be such that the supervisor is simple and area efficient

and the communication is reliable with low overhead (in space

as well as in time).

In this section, minimal self-testing units necessary for the

application of tests which place resource control physically

close to the BUT are described; then a number of structures to

implement the control are discussed.

For the testing control, a self-testing unit (STU) is defined

to be comprised of a BUT and its corresponding test control
logic (TCL). For this discussion, it is assumed that each BUT

is sufficiently complex and has enough unique features to

warrant a local control of its own. An STU is conceptually

similar to an SV as defined in [121. The structure of an STU is

such that the resources required to test a BUT are controlled

and initialized by the TCL associated with the BUT. Such

resources can be external to a TCL or alternatively a TCL may

contain BIST elements (linear feedback shift register, counter,

multiplexer, etc.) required for testing its associated BUT.
Also, in certain structures it may not be possible to draw a

distinction or boundaries between the TCL and BUT. For

example, in BIST PLA’s [13], [14], extra logic used during
testing is interspersed in the PLA. Similarly, in the case of a

1 I

CRAIG er al.: TEST SCHEDULING AND CONTROL FOR VLSI SELF-TEST

Control Communication Area

Structure Requirements

Star High

1107

TCL System Testing Time Most Appropriate

Complexity Reliability Effects Scheduling Discipline

Low High None
Partitioned

testing

Bus
Non-partitioned

testing
Low High LOW

Moderately Partitioned

Multiple Bus

BUT being a microprogrammed ALU, the TCL may be

implemented as part of the microprogram to test the ALU.
It is quite likely that two tests, CI and t2, share common test

resources (note such tests are normally incompatible). In such

an environment, a resource common between two distinct

blocks must be controllable by two TCL’s. It is important, in

such cases, that TCL’s are activated such that no conflicts

result in the use of resources.

Having defined STU’s as above, the function of the

supervisor is essentially to control the STU’s and communi-

cate with them and also with the external world. Of course, the

supervisor must control STU’s such that no conflict arises in

resource utilization. In other words, the supervisor must

implement the solution to the test scheduling problem. Briefly,

the functions of a supervisor are as follows: 1) send control

signals (initialize, start testing, result request) to STU’s, 2)

obtain test results from STU’s, 3) collect test results and

analyze the state of STU’s, and 4) communicate the outcome

of testing to higher level supervisors or the external world.

Note, such information often may need to be communicated in

coded form to save on pin count [151.
The type of implementation used for both the communica-

tion between a supervisor and its STU’s and between a

supervisor and the external world will be referred to as the

control structure. Three potential control structures are con-

sidered: 1) a star structure, 2) a bus structure, and 3) a multiple

bus structure. Comparative results on these three structures

are given in Table 111. These results will be briefly discussed

here for each structure.

Star Structure: The simplest and most general method to

implement the control is by a star configuration in which the

supervisor is directly connected to each STU. In this approach,

the supervisor can controUcomrnunicate with each STU

independently. Clearly, if k, is the number of communication

lines between the supervisor and the ith STU, then the total

number of communication lines will be C:= k , , for a system

with n STU’s. Because of the dedicated nature of the

communication paths in the star, the communication is

comparatively of higher reliability since information can still
be collected from TCL’s connected to other than the faulty

line.

Since the star is the most general control scheme, it can be

used to implement any one of the three scheduling disciplines

discussed in Section V. It is ideally suited for implementing

partitioned testing because any test can be interrupted at any

time by the supervisor without any effect on the other tests.

Thus, the overhead due to the interrupts can be minimized.

-~

Moderate High Moderate Increased testing with

run to completion

A minor generalization of the star is a multilevel tree in

which there are one or more intermediate levels of supervisors

between the primary supervisor and the STU’s. Although the

number of communication lines increases in this case, a saving
in area can take place by locating the lower level supervisors

physically close to the STU’s they control. One of the

advantages of this scheme is that it can easily be extended to
board or system level test.

Bus Structure: The number of communication lines and,

therefore, area occupied by a communications network can be

reduced by using a bus structure for supervisor-STU com-

munication. In this scheme, each STU is assigned an identifi-

cation, ID. The supervisor can communicate with STU’s
through their ID’S. Although the number of communication

lines decreases, the complexity of TCL’s increases as each

TCL must be able to identify irs ID.
In the simplest environment, a supervisor can start one test

at a time through a TCL but at any given instant many tests can

be running concurrently. Similarly, for the communication of

results, only one TCL can send results to a supervisor. To

avoid any collisions [16] on the bus, TCL’s can be required to

send results to a supervisor only on receipt of a result request

signal from the supervisor. This may increase the total testing

time as the results will be transmitted sequentially. Alterna-

tively, codes can be employed in which a number of TCL’s

can transmit results simultaneously on a single bus [17], [18]

without unduly effecting the reliability of transmission while

reducing the time spent in transmission of results. Any fault

within the bus structure may disable the entire structure, thus

cutting off communication between the supervisor and all

TCL’s; thus, the reliability of this structure is comparatively

low.

In a bus-oriented control structure, a considerable time will

be spent in initialization of tests and result communication;

therefore, this control scheme is best suited for nonpartitioned

testing where initialization and result communication are

performed relatively infrequently.

Although the use of such a scheme may raise other questions

(e.g., synchronization etc.), nontheless it makes the point that

parallelism may be achievable even in bus-oriented control

structure. A factor which provides support to the use of a bus-
oriented structure is that in some VLSI architectures it may be

possible to use existing on-chip buses during test mode. A

major drawback of this scheme is that the bus becomes an

essential testing structure. Thus, if the bus fails, no testing

may proceed and very little diagnosis information may be

obtained.

1108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

Multiple Bus Structure: The bus and star structures

proposed above can be combined to include more than one

bus. Two alternative structures and allocation of STU’s to

buses for the multiple bus structure are given in [181. One such

configuration would be to have k buses (k equals the

maximum number of tests in a CTS). The tests which are

simultaneously interrupted are assigned to different buses.

This structure is particularly ideal for use with the partitioned

test with run to completion scheduling discipline because the

partitioning of STU’s to different buses can eliminate sequen-

tially processed interrupts. Generally, in the multiple bus

structure, buses can be organized based on the physical

location of STU’s. Thus, the choice of the structure which

minimizes the overhead can be made. It should be noted that

the multiple bus structure can be generalized to a hierarchical
structure by including a higher level supervisor to control

lower level supervisors with supervisor communication imple-

mented in either a star or multiple bus structure.

In the above discussion, the approach has been to implement

the control in a hierarchical manner. Although the existence of

a centralized controller has been assumed, test resources have

been assumed to be controllable by TCL’s. Alternatively, it is

possible to control all resources by a single centralized

controller as proposed in [171. It is the opinion of the authors

that the use of TCL’s which are placed physically close to the

resources they control is a more flexible implementation. In

addition, +e use of TCL’s reduces the complexity of the

central controller and it offers the freedom to use different

control structures which in turn can reduce the area and/or

time overhead.

Yet another alternative is to distribute part of the control. In

one of the simplest schemes, TCL’s can be issued tokens [161

at the start of the test cycle. Upon completion of a test, the

tokens are passed on to other TCL’s which in turn can start

testing their BUT’S. This process continues until the complete

system has been tested.

VII. CONCLUSIONS

In this paper, the test scheduling problem for equal length

and unequal length tests for VLSI circuits using BIST has been

modeled. An efficient algorithm has been presented for

producing test schedules for the equal length tests. The

unequal length test problem has been subdivided into three

cases and efficient algorithms have been presented for two out

of the three cases. Although the solutions presented here have

been given in the context of BIST, it is also possible to employ

the results in other testing environments where inherent

parallelism exists. In addition, the solutions presented here for

VLSI circuits using BIST can be extended to the board or

system level as well.

The algorithms presented for test scheduling often yield

optimum solutions. In the most extreme departure from

optimum among the test cases, the excess length of a test

schedule was no more than 15 percent. It is thought that for

most testing applications, this degree of optimization is likely

to be adequate. It should be noted that the algorithms presented

may have applications beyond testing since they can be applied

to any situation in which an efficient fixed schedule is to be

defined for a fixed allocation of tasks to resources.

Finally, a very general test control model has been

introduced for use in the BIST environment. Several control

structures and their appropriateness for use with various

scheduling cases defined is discussed.

REFERENCES

C. Kime and K. Saluja, “Test scheduling in testable VLSI circuits,” in
Proc. Znt. Symp. Fault-Tolerant Comput., Santa Monica, CA, June
1982, pp. 406-412.
ZEEE Design and Test of Computers, vol. 2, Apr. 1985.

B. Konemann, J. Mucha, and G. Zwielhoff, “Built-in logic block
observation techniques,” in Proc. Znt. Test Conf., Cherry Hill, NJ,
Oct. 1979, pp. 37-44.

M. Abadir and M. Breuer, “Constructing optimal test schedules for
VLSI circuits having built-in test hardware,” in Proc. Znt. Symp.
Fault-Tolerant Comput., Ann Arbor, MI, June 1985, pp. 165-170.

R. Grimaldi, Discrete and Combinatorial Mathematics-An Ap-
plied Introduction. Reading, MA: Addison-Wesley, 1985, pp. 141-

145.

2. Kohavi, Switching and Finite Automata Theory, 2nd ed. New
York: McGraw-Hill, 1978, pp. 28, 333-347.

S. Hassan and E. McCluskey, “Increased fault coverage through
multiple signatures,” in Proc. Znt. Symp. Fault-Tolerant Comput.,
Orlando, FL, June 1984, pp. 354-359.

G. Craig and C. Kime, “Determining parallel test schedules for VLSI
built-in test,” Tech. Rep. ECE-84-23, Dep. Elec. Comput. Eng.,
Univ. Wisconsin-Madison, Sept. 1984.
M. Swamy and K. Thulasiraman, Graphs, Networks, and Al-
gorithms. New York: Wiley, 1981.

A. Krasniewski and A. Albicki, “Automatic design of exhaustively
self-testing chips with BILBO modules,” in Proc. Znt. Test Conf.,
Philadelphia, PA, Nov. 1985, pp. 362-371.
A. Shneider, “Classification analysis of heuristic algorithms for graph
coloring,” Cybernetics, vol. 20, pp. 484492, 1984.

R. Sedmark, “Implementation techniques for self-verification,” in
Proc. Znt. Test Conf., Cherry Hill, NJ, Oct. 1980, pp. 267-278.
R. Treuer, H. Fujiwara, and V. Agarwal, “Implementing a built-in
self-test PLA,” ZEEE Design Test, vol. 2, pp. 37-48, Apr. 1985.

K. Saluja and J. Upadhyaya, “A built-in self-test PLA design with
extremely high fault coverage,” in Proc. ZEEE Znt. Conf. Comput.
Design, Port Chester, NY, Oct. 1986, pp. 596-599.
R. Sedmak and H. Liebergot, “Fault-tolerance of a general purpose
computer implemented by very large scale integration,” ZEEE Trans.
Comput., vol. C-29, pp. 492-500, June 1980.

A. Tanenbaum, Computer Networks. Englewood Cliffs, NJ: Pren-
tice-Hall, 1981.

J. Beausang and A. Albicki, “Towards determining an optimal test
control line distribution scheme for a self-testable chip,” Tech. Rep.
EL-8604, Dep. Elec. Eng., Univ. Rochester, Rochester, NY, Mar.
1986.
K. Saluja, C. Kime, and G. Craig, “Design of control for scheduling
tests in testable VLSI circuits,” Tech. Rep. EE8540, Dep. Elec.
Comput. Eng., Univ. Newcastle, New South Wales, Australia, 1985.

Gary L. Craig (S’79-M’87) received the B.S. degree
in electrical engineering from West Virginia Univer-
sity, Morgantown, in 1982 and the M.S. and Ph D.
degrees in electrical engineering from the University
of Wisconsin, Madison, in 1984 and 1987, respec-
tively.

He is presently an Assistant Professor in the
Department of Electrical and Computer Engineering,
Syracuse University, Syracuse, NY. His current

research and teaching mterests are in design for
testability, VLSI built-in self-test, VLSI design, fault-

tolerant computing, and computer architecture.

1 - - 1

CRAIG et al.: TEST SCHEDULING AND CONTROL FOR VLSI SELF-TEST 1109

Charles R. Kime (S’66-M’66-SM’79) received the
B S degree from the University of Iowa, Iowa
City, in 1962, the M S degree from the University
of Illinois in 1963, and the Ph D degree from the
University of Iowa in 1966, all in electrical engi-
neering

He joined the faculty of the University of Wis-
consin, Madison, in 1966 where he is currently a
Professor in the Department of Electrical and
Computer Engineering He spent the 1973-1974
academic year as a Visiting Associate Professor in

the Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley His current research and teaching interests are in
testing and built-in test, VLSI systems design, fault-tolerant computing,
computer architecture, and logic design

Dr Kime is a member of the Association for Computing Machinery, the
American Society of Engineering Education, and Sigma Xi He has served as
an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS and as the
General Chairman of the 1979 International Symposium on Fault-Tolerant
Computing

Kewal K. Saluja (S’70-M’73) received the B E
(Elect) degree from the University of Roorkee,
Roorkee, India, in 1967 and the M S and Ph D
degrees in electrical engineering from the Univer-
sity of Iowa, Iowa City, in 1972 and 1973,
respectively

From 1967 to 1970 he was with the state
electricity board, U P India From 1973 to 1985 he
was with the Department of Electrical and Com-
puter Engineering, University of Newcastle.
N S W , Australia He is presently an Associate

Professor in the Department of Electrical and Computer Engineering at the
University of Wisconsin, Madison He has held visiting and consulting
positions at the University of Southern California, the University of
Wisconsin, the University of Iowa, the State University of New York,
Binghamton, Hiroshima University, and other institutions His research
interests include design for testability, fault-tolerant computing, VLSI design,
and computer architecture His teaching interests are logic design, mini and
rmcrocomputer system architecture, and VLSI design and testing

