
Test Set Compaction Algorithms for Combinational Circuits �

Ilker Hamzaoglu and Janak H. Patel
Center for Reliable & High-Performance Computing

University of Illinois, Urbana, IL 61801

Abstract
This paper presents two new algorithms, Redundant Vec-

tor Elimination (RVE) and Essential Fault Reduction (EFR),
for generating compact test sets for combinational circuits
under the single stuck at fault model, and a new heuristic
for estimating the minimum single stuck at fault test set size.
These algorithms together with the dynamic compaction al-
gorithm are incorporated into an advanced ATPG system for
combinational circuits, called MinTest. MinTest found better
lower bounds and generated smaller test sets than the previ-
ously published results for the ISCAS85 and full scan version
of the ISCAS89 benchmark circuits.

1 Introduction
Compact test sets are very important for reducing the cost

of testing the VLSI circuits by reducing the test application
time. This is especially important for the scan-based circuits
as the test application time for these circuits is directly pro-
portional to product of the test set size and the number of stor-
age elements used in the scan chain. Small test sets also re-
duce the test storage requirements.

Since even the problem of estimating the size of a min-
imum single stuck at fault test set for a given irredundant
combinational circuit is proven to be NP-hard [10], several
test set compaction algorithms based on different heuristics
are proposed in the literature, e.g. static compaction [6], dy-
namic compaction [6], independent and compatible fault sets
based test generation [1, 9, 12, 14], reverse order fault sim-
ulation [13], maximal compaction [12], rotating backtrace
[12], double detection [8, 9], Two by one [9], Three by two
[9], forced pair merging [4] and essential fault pruning [4].

Although these algorithms are successful in producing
small test sets, the resulting test sets are still larger than
the known lower bounds. This is because of the following
two reasons; the previously published test set compaction

�This research was supported in part by the Semiconductor Research
Corporation under contract SRC 96-DP-109 and in part by DARPA under
contract DABT63-95-C-0069.

algorithms are unable to compact the test sets any further,
and the known lower bounds are not tight. In order to close
this gap further, this paper addresses both of these problems.
We present two new test set compaction algorithms, Redund-
ant Vector Elimination (RVE) and Essential Fault Reduc-
tion (EFR), and a new heuristic for estimating the minimum
single stuck at fault test set size. These algorithms and the
dynamic compaction algorithm proposed in [6] are incorpor-
ated into an advanced ATPG system for combinational cir-
cuits [7], called MinTest. MinTest found better lower bounds
and generated smaller test sets than the previously published
results for the ISCAS85 and full scan version of the ISCAS89
benchmark circuits [2, 3].

The rest of the paper is organized as follows. Section 2
presents the definitions that will be used in this paper. Sec-
tion 3 presents the RVE algorithm. The EFR algorithm is
presented in Section 4. Minimum Test Set Size estimation
heuristic is described in Section 5. The experimental results
are given in Section 6. Finally Section 7 presents the conclu-
sions.

2 Preliminaries
In this section, we present the definitions that will be used

in this paper. A test vector in a given test set is called an es-
sential vector, if it detects at least one fault that is not detec-
ted by any other test vector in this test set. A fault is defined
to be an essential fault of a test vector, if it is detected only
by this test vector in a given test set [4, 9]. In other words
an essential vector detects at least one essential fault. A test
vector is redundant with respect to a given test set, if it does
not detect any essential faults, i.e. all the faults detected by it
are also detected by the other test vectors in this test set [9].

An essential fault efi of a test vector ti is said to be
pruned, if a test vector tj 6= ti in the test set is replaced by a
new test vector t0j which detects efi, the essential faults of tj
and the faults detected only by ti and tj [4].

If two faults can be detected by a single test vector, they
are called compatible. Similarly two faults are called incom-
patible, if they cannot be detected by a single test vector. An
incompatibility graph for a given set of faults, FS = f fi j 1
� i � n g, is defined as IG(FS) = (V, E) where V = f vi =
fi j 1 � i � n g and E = f ej = (vk; vl) j vk and vl are in-
compatible, 1 � k � n and 1 � l � n g [1, 4, 9, 14]. A fault
set is called an independent fault set, if all the faults in this

REDUNDANT VECTOR ELIMINATION (t : test vector)
f

Fault simulate test vector t for each fault that is not proven to be redundant
For each fault fi that is detected by vector t
f

detection count[fi]++
if (detection count[fi] == 1) then

number of essential faults[t]++
else if (detection count[fi] == 2) then
f

Identify the vector tj 6= t that detects fi
number essential faults[tj]��
if (number of essential faults[tj] == 0) then
f

drop vector tj from the test set
For each fault fk that is detected by tj
f

detection count[fk]��
if (detection count[fk] == 1) then
f

Identify the vector tk 6= tj that detects fk
number of essential faults[tk]++

g
g

g
g

g
g

Figure 1: RVE algorithm

set are pairwise incompatible [1]. For a given combinational
circuit an independent fault set of maximum size is called a
maximum independent fault set. Since the problem of finding
a maximum independent fault set is NP-hard [10], maximal
independent fault sets are used in practice.

Minimum test set size of a given combinational circuit un-
der the single stuck at fault model is defined to be the min-
imum number of test vectors required to detect all the testable
single stuck at faults in this circuit.

3 Redundant Vector Elimination
During automatic test pattern generation, some of the

faults detected by the earlier test vectors may also be acci-
dentally detected by the test vectors generated later. As a
result as more vectors are generated during the ATPG pro-
cess, a test vector generated earlier may become redund-
ant. Redundant Vector Elimination (RVE) algorithm iden-
tifies these redundant vectors during test generation and dy-
namically drops them from the test set. As it is shown in Fig-
ure 1, RVE fault simulates all the faults in the fault list except
the ones that are proven to be untestable, and it keeps track
of the faults detected by each vector, the number of essential
faults of each vector and the number of times a fault is detec-
ted. During test generation if the number of essential faults
of a vector reduces to zero, i.e. the vector becomes redund-
ant, it is dropped from the test set.

As illustrated in the example below, RVE algorithm can
reduce the size of a test set more than Reverse Order Fault
Simulation (ROFS) [13]. This is because ROFS cannot
identify a redundant test vector if some of the faults detected
by it are only detected by the test vectors generated earlier. It
can only identify a redundant vector, if all the faults detected
by it are also detected by the test vectors generated later.

ESSENTIAL FAULT REDUCTION (T : test set, NumIteration: int,
MFL : int, MEFL : int)
f

For NumIteration times
f

For each test vector ti in T with less than MEFL essential faults
f

all ef pruned = true
failure limit = 0
For each essential fault fj of ti
f

pruned = false
For each test vector tk 6= ti
f

pruned = Multiple Target Test Generation(tk, ti, fj)
if (pruned == true) then break

g
if (pruned == true) then
f

Update T by replacing tk with the new test vector
Fault simulate the new test vector

g
else
f

failure limit++
all ef pruned = false
if (failure limit == MFL) then break

g
g
if (all ef pruned == true) then drop vector ti from T

g
g

g

Figure 2: EFR algorithm

Example: Consider the fault set ff1, f2, f3, f4g. Sup-
pose that for this fault set the ATPG system generated the
test set f t1, t2, t3 g in the given order, and t1 detects the
faults f1 and f2, t2 detects the faults f3 and f1, and t3 de-
tects the faults f4 and f3. In this example, after t3 is gener-
ated, RVE algorithm detects that t2 becomes redundant and
drops it from the test set. Thus it reduces the test set to f t1,
t3 g. However, ROFS cannot reduce the size of this test set.

The performance of the RVE algorithm is similar to the
Double Detection (DD) algorithm introduced in [8, 9], even
though slightly different results may be produced because
of the order of dropping redundant vectors. However, we
are not proposing RVE as a standalone test set compaction
algorithm, rather as the first step of a two-step compaction
framework that includes both RVE and Essential Fault Re-
duction (EFR) algorithms. In addition to the number of es-
sential faults for each test vector, which is also obtained by
DD, EFR needs the additional information that is produced
by RVE; faults detected by each test vector and the exact
number of times each fault is detected by the current test set.
If DD is used instead of RVE, then EFR itself should obtain
this information. Since RVE spends most of its execution
time for computing this information, the execution time of
the RVE and EFR algorithms combined is smaller than the
DD and EFR algorithms combined.

4 Essential Fault Reduction
Since pruning an essential fault of a test vector decreases

the number of its essential faults by one, if all the essential
faults of a test vector is pruned then it becomes redundant,

and it can be dropped from the test set. As it is shown in Fig-
ure 2 after the initial test set is generated, Essential Fault Re-
duction (EFR) algorithm is used iteratively to further com-
pact the test set by pruning the essential faults of each vec-
tor as much as possible. EFR uses the Multiple Target Test
Generation (MTTG) procedure [4, 9] to generate a test vector
that will detect a given set of faults. EFR algorithm improves
the Two by One (TBO) [9] and the Essential Fault Pruning
(EFP) algorithms [4].

Given an initial test set, TBO tries to reduce the test set
size by replacing two test vectors with a new one. This is
achieved by finding a test vector that detects the essential
faults of the both vectors as well as the faults detected only by
these two vectors. However, even if it is not possible to find
such a test vector, it may still be possible to eliminate these
two test vectors from the test set. This may be achieved by
a three by two algorithm (TBT) which tries to replace three
test vectors with two new ones. In general, the algorithm can
be extended to an N by M (M < N) algorithm. However, in
the worst case, TBO needs to check O(V 2) vector pairs for
possible compaction, where V is the number of test vectors in
the initial test set, TBT needs to check O(V 3) vector triplets,
and in general N by M algorithmneeds to check O(V N) vec-
tor sets. Thus, the N by M algorithm is computationally too
expensive for N > 2, and implementation of an N by M al-
gorithm where N > 2 is not reported.

EFP, on the other hand, tries to reduce the test set size by
trying to prune the essential faults of each test vector. If all
the essential faults of a test vector is pruned, then this vec-
tor becomes redundant and it can be dropped from the test
set. TBO can be seen as a special case of EFP in which a
test vector is allowed to prune its essential faults by repla-
cing only one vector. EFP achieves better performance than
TBO by relaxing this restriction and allowing a test vector to
prune its essential faults by replacing more than one vector
in the test set. In the worst case, EFP will try to generate a
test vector for O(E x V) fault sets, where E is the number of
essential faults and V is the number of test vectors in the ini-
tial test set. Since in almost all cases E is larger than V, EFP
is computationally more expensive than TBO. However, for
N > 2 in most cases N by M algorithm is computationally
more expensive.

The problem of compacting a given test set can be viewed
as distributing the essential faults of this test set to the given
test vectors such that the number of redundant vectors is max-
imized. Therefore, the search space that should be explored
is all possible distributions of the essential faults to the given
test vectors. Since neither TBO nor EFP algorithms have
this global view of the search space, they carry out a local-
ized greedy search by concentrating only on removing one
test vector at a time from the test set by pruning its essen-
tial faults. They prune an essential fault of a test vector only
if this causes this vector to be redundant, otherwise they do
not prune the essential fault. Because of this restriction, they
only explore part of the search space.

= Detected

= Not Detected

= Redundant

f7 f1 f2 f3 f5

f6

f5 f2 f3 f4 f5

f4 f2 f5

f3 f1 f5 f7

f2 f4 f5 f7

f1 f3 f7

Incompatibility Graph

t2 f3 f4

t1’ f1 f2 f3

Test
Vector

Faults
Detected

t3’ f5 f6 f1

t4 f7

 Step 2

t2 f3 f4

Test
Vector

Faults
Detected

 Step 1

t1 f1 f2

t3’ f5 f6 f1

t4 f7

Test
Vector

Faults
Detected

 Initial Test Set

t4 f7

t2 f3 f4

t1 f1 f2

t3 f5 f6

t2 f3 f4

t4’ f7 f4

t1’ f2 f3

t3’ f5 f6 f1

Test
Vector

Faults
Detected

 Step 3

Figure 3: EFR Example

EFR algorithm, on the other hand, has a global view of
the search space. It overcomes the limitation of the TBO and
EFP algorithms by carrying out a non-greedy global search
by trying to distribute the essential faults to the given test
vectors such that the number of redundant vectors is maxim-
ized. Therefore, even if a vector does not become redund-
ant, EFR tries to reduce the number of its essential faults as
much as possible by trying to prune as many of its essential
faults as possible. Even if it fails to prune one of the essen-
tial faults of a test vector, it still tries to prune its other es-
sential faults. This way EFR explores a larger portion of the
search space than both TBO and EFP. As illustrated in the ex-
ample below, using this new search technique EFR can pro-
duce smaller test sets than the ones produced by TBO, TBT,
and EFP algorithms.

Example: Consider the test set ft1, t2, t3, t4g. Suppose
that t1 detects the faults ff1, f2g, t2 detects ff3, f4g, t3 de-
tects ff5, f6g and t4 detects ff7g, and the adjacency list rep-
resentation of the incompatibility graph is as given in Figure
3. EFR can reduce the size of this test set by one in the first it-
eration. As it is illustrated in Figure 3, this can be achieved by
replacing the test vectors t1 with t0

1
that detects f2 and f3, t3

with t0
3

that detects f1, f5, and f6, and t4 with t0
4

that detects
f4 and f7. After these replacements t2 becomes redundant,
thus it can be dropped from the test set. None of the TBO,
TBT, and EFP algorithms can reduce the size of this initial
test set.

As illustrated in the example below, by means of the new
search technique, EFR can further compact a given test set
when it is used iteratively. This is not possible with TBO

= Detected = Not Detected

= Redundant

f9 f1 f2 f3 f4 f6 f7 f8

f10 f1 f2 f3 f4 f6 f7 f8

f8 f1 f2 f3 f5 f6 f9 f10

f7 f1 f2 f3 f5 f6 f9 f10

f5 f1 f2 f3 f4 f7 f8

f4 f1 f2 f5 f6 f9 f10

f3 f2 f5 f6 f7 f8 f9 f10

Incompatibility Graph

f2 f3 f4 f5 f7 f8 f9 f10

f1 f4 f5 f6 f7 f8 f9 f10

f6 f1 f3 f4 f7 f8 f9 f10

Test

Test
Vector

t1 f1 f2

t3 f5 f6

t5 f9 f10

t4’ f7 f8 f4

 Step 1

 Iteration 1

Test
Vector

t1 f1 f2

t3 f5 f6

 Step 1

t5’ f9 f10 f5

 Iteration 2

Test
Vector

t1 f1 f2

 Step 2

t2’ f3 f1

t3’ f5 f6 f2

t5’ f9 f10 f5

Vector

t2 f3 f4

t1 f1 f2

t3 f5 f6

 Step 2

t4’ f7 f8 f4

Test
Vector

 Initial Test Set

t2 f3 f4

t1 f1 f2

t3 f5 f6

t4 f7 f8

t5 f9 f10

t2 f3 f4

Faults
Detected

Detected
Faults Faults

Detected

Detected
Faults

Detected
Faults

t2’ f3 f4 f1

t4’ f7 f8 f4

t4’ f7 f8 f4

t5’ f9 f10 f5

Figure 4: EFR Iteration Example

and TBT. Although it is possible that EFP may further com-
pact a given test set when it is used iteratively, this is very
unlikely. Because this can only happen if one of the new test
vectors “accidentally” detects one or more essential faults of
the other test vectors that it is not intended to detect. This
may make it possible to prune the essential faults of a test
vector in the second iteration, even though it was not possible
in the first iteration.

Example: Consider the test set ft1, t2, t3, t4, t5g. Sup-
pose that t1 detects the faults ff1, f2g, t2 detects ff3, f4g,
t3 detects ff5, f6g, t4 detects ff7, f8g, and t5 detects ff9,
f10g, and the adjacency list representation of the incompat-
ibility graph is as given in Figure 4. As it is illustrated in Fig-
ure 4, in the first iteration of the EFR algorithm only f4 will
be pruned by replacing t4 with t0

4
, and f5 will be pruned by

replacing t5 with t0
5
. Thus, in the first iteration EFR will not

be able to reduce the test set size. However, since after the
first iteration f4 is not an essential fault of t2 and f5 is not an
essential fault of t3 anymore, in the second iteration f1 will
be pruned by replacing t2 with t0

2
and f2 will pruned be repla-

cing t
3

with t0
3
. Because of these t

1
will become redundant,

and it will be dropped from the test set. On the other hand,
none of the TBO, TBT, and EFP algorithms can reduce the
size of this initial test set.

EFR has the same worst-case computational complexity
as EFP, i.e. it will try to generate a test vector for O(E x V)
fault sets, where E is the number of essential faults and V is
the number of test vectors in the initial test set. If it is used
iteratively then the worst-case complexity becomes O(I x E
x V), where I is the number of iterations.

An incompatibility graph is used for reducing the aver-
age case execution time of TBO and EFP algorithms [4, 9].
However, the incompatibility graph definition used in [1, 4,
9, 14] cannot represent the following incompatibilityrelation
between stuck at faults. It is possible that even though a fault
is pairwise compatible with all the faults in a given fault set, it
may be incompatible with these faults when they are targeted
together. Therefore, we extended the definition of the incom-
patibility graph by allowing a graph node to represent a set
of faults. This new incompatibility graph is constructed in a
demand-driven way during compaction. We have observed
that using this incompatibility graph reduced the execution
time of EFR algorithm.

5 Minimum Test Set Size Estimation
To be able to assess the effectiveness of test set compac-

tion algorithms for a combinational circuit, it is necessary to
know the Minimum Test Set Size (MTSS) for this circuit.
In addition if the MTSS is known, test set compaction time
can be reduced by stopping the iteration of EFR algorithm
whenever the minimum test set size is reached rather than it-
erating a predetermined number of times. Since the problem
of computing the size of a minimum single stuck at fault test
set for a given irredundant combinational circuit is proven to
be NP-hard [10], heuristic techniques are used for finding a
lower bound for MTSS.

One of the most commonly used heuristics for finding a
lower bound is finding the size of the maximal independent
fault set. The size of the maximal independent fault set is less
than or equal to the minimum test set size. The maximal in-
dependent fault set can be computed by finding the maximal
clique in the incompatibility graph of the given single stuck
at fault set [1, 4, 8, 9, 11, 14].

Since the problem of finding the maximal clique in a
given graph is proven to be NP-complete [5], several heur-
istics are proposed for finding a maximal clique in a given
incompatibility graph. Since the essential faults of the test
vectors in a given test set are highly incompatible, in [4] it is
suggested to compute the maximal clique by first consider-
ing only the essential faults and then enlarging this clique by
considering the other faults. In [9], it is reported that for some
circuits computing the maximal clique in the incompatibil-
ity graph that is constructed only by using the essential faults
found larger cliques than computing the maximal clique in
the incompatibility graph that is constructed by considering

all the faults. Based on the following theorem and the corol-
lary, we also compute the maximal clique by first consider-
ing only the essential faults and then enlarging this clique by
considering the other faults in the given fault list.

Theorem 1: Given a complete single stuck at fault test
set TS of size N for a combinational circuit, if there exists
a maximal independent fault set MIFS of size K (N=2 � K
� N) for this circuit, then that MIFS contains at least 2K-N
essential faults each from a different test vector.

Proof: If there exists a maximal independent fault set
MIFS of size K, then by definition there are K pairwise in-
compatible faults in MIFS. Since the faults in MIFS are pair-
wise incompatible, no test vector can detect more than one
fault in MIFS. Therefore each fault in MIFS should be detec-
ted by a different test vector in TS. Since the test set is com-
plete, at least K test vectors in TS detect these K faults. If
none of these K faults are detected by any of the remaining
N-K test vectors in TS, then each one of them is an essential
fault of a different test vector in TS. In the worst case, each
one of the remaining N-K test vectors detects a different fault
in MIFS. Since these N-K faults are detected by two vectors,
they are not essential faults. Therefore, in the worst case, K-
(N-K) = 2K-N of the faults in MIFS is an essential fault of a
different test vector in TS. In other words, MIFS contains at
least 2K-N essential faults each from a different test vector.
2

Corollary: Given a complete single stuck at fault test set
TS of size N for a combinational circuit, if there exists a max-
imal independent fault set MIFS of size N for this circuit,
then that MIFS contains one essential fault from each test
vector in TS.

Proof: According to Theorem 1, MIFS should contain
one essential fault from at least 2K-N test vectors in TS where
K is the size of the maximal independent fault set. For K=N
the expression 2K-N is equal to N. Since TS has N test vec-
tors, this means that MIFS should contain one essential fault
from each test vector in TS. 2

Theorem 1 shows that the maximal clique in the incom-
patibilitygraph of a small test set is likely to contain many es-
sential faults, and the corollary indicates that for a minimum
size test set if there exists a clique of this size in the incom-
patibility graph then the clique contains only essential faults.
Since EFR algorithm produces test sets that are either min-
imum size or very close to it, based on this theorem, we com-
pute the lower bound for MTSS by searching for the maximal
clique that includes one essential fault from as many test vec-
tors as possible in the test set produced by EFR algorithm and
then enlarging this clique by considering the other faults in
the given fault list.

Since the size of the search space for computing the max-
imal clique by choosing one essential fault from as many test
vectors as possible is very large, it is computationally too ex-
pensive to search it exhaustively. If there are n vectors ft1,
t2, : : :, tng in the test set, and if the sizes of their essential
fault sets are efs1, efs2 , : : :, efsn respectively, then the size

of the search space is O(
Qn

i=1 efsi). Therefore, we propose
the following new heuristic to guide the branch and bound
search algorithm. When trying to choose an essential fault
from each test vector, consider the vectors in ascending order
of the number of essential faults that they have, and explore
more branches for the initial test vectors.

This heuristic increases the probability of computing the
maximal clique in a short amount of time because of the fol-
lowing reason. Once an essential fault is included in a clique,
this reduces the number of essential faults of the remaining
test vectors that can be included in this clique. If a test vector
ti has efsi essential faults and if each one of these essential
faults is equally likely to be in the maximal clique, then when
trying to select an essential fault of this test vector the prob-
ability of choosing the essential fault that is in the maximal
clique is 1=efsi. If the number of essential faults of ti that
can be included in the maximal clique decreases, the prob-
ability of selecting the essential fault that is in the maximal
clique increases. Since for the test vectors with small num-
ber of essential faults the probabilityof selecting the essential
fault that is in the maximal clique is already high, and after
selecting these essential faults, for the test vectors with lar-
ger number of essential faults the probability of selecting the
essential fault that is in the maximal clique increases, consid-
ering the vectors with smaller number of essential faults first
increases the overall probability of computing the maximal
clique in a short amount of time.

6 Experimental Results
We incorporated the minimum test set size estimation,

RVE and EFR algorithms that we propose and the dynamic
compaction algorithm proposed in [6] into our advanced
ATPG system for combinational circuits [7], called MinTest.
MinTest is designed in an object-oriented style and imple-
mented in C++. We tested MinTest on the ISCAS85 and full
scan version of the ISCAS89 benchmark circuits [2, 3]. The
performance results for MinTest are obtained on a 200 MHz
Pentium Pro PC with 128MB RAM running Linux 2.0.0 us-
ing GNU CC version 2.8.0.

We compared the performance of MinTest on minimum
test set size estimation with the previously published results
and presented the comparision of the performance results in
Table 1. The “–” sign in the table indicates that the lower
bound for this circuit is not reported. The results show that
our algorithm computed better lower bounds than the previ-
ously published ones. For 38 out of 40 circuits, the lower
bounds computed by our algorithm are greater than or equal
to the best published lower bounds. For 14 of these 38 cir-
cuits our algorithm computed as much as 33% larger lower
bounds than the previously published results, e.g. 25% larger
for c7552, 33% larger for s1423 and 11% larger for s9234.
These 14 new lower bounds are indicated by an asterisk (*)
in the table.

Our minimum test set size estimation algorithm is applic-
able to large circuits, and its execution time is similar to the

[8] MinTest
Circuit [4] Loc Glb [9] [11] LB Time
c432 24 20 20 – 27 27 15.0
c499 52 50 50 – 52 52 0.1
c880 12 9 10 – – 13� 21.9
c1355 84 82 82 – – 84 0.9
c1908 94 91 68 99 – 106� 88.1
c2670 40 38 39 42 – 44� 47.1
c3540 80 67 65 – – 78 174.5
c5315 37 22 36 – – 37 748.6
c6288 5 6 6 – – 6 347.7
c7552 49 26 28 52 – 65� 663.8

TOTAL 477 411 404 – – 512 2107.7

s208 – 26 27 – 27 27 0.1
s298 – 19 20 – 23 23 0.1
s344 – 13 13 – 13 13 0.3
s349 – 13 12 – 13 13 1.1
s382 – 25 25 – 25 25 0.1
s386 – 62 62 63 63 63 0.1
s400 – 24 23 – 24 24 0.1
s420 – 42 43 – 43 43 0.3
s444 – 24 23 – 24 24 0.1
s510 – 53 53 – 54 54 1.9
s526 – 34 35 – 49 49 2.5
s526n – 34 35 – 49 49 2.2
s641 – 19 19 – 21 21 2.0
s713 – 19 19 – 21 21 2.7
s820 – 90 90 – 93 93 86.3
s832 – 91 91 – – 94� 21.6
s838 – 74 75 – – 75 430.7
s953 – 65 68 73 – 76� 84.7
s1196 – 59 99 105 – 112� 161.0
s1238 – 61 107 115 – 121� 920.7
s1423 – 14 15 – – 20� 9.9
s1488 – 98 98 100 – 101� 28.7
s1494 – 97 97 100 – 100 62.3
s5378 – 85 92 – – 97� 198.4
s9234 – 84 88 90 – 100� 6319.4

s13207 – 233 233 – – 233 722.7
s15850 – 89 85 90 – 91� 938.9
s35932 – – – 9 – 9 5687.4
s38417 – 50 60 – – 62� 12287.9
s38584 – – – 93 – 89 10134.5
TOTAL – 1597 1707 – – 1922 38108.7

Table 1: Lower Bounds on Minimum Test Set Size

algorithms presented in [8, 9]. The algorithm presented in
[11] can only be applied to small circuits, and for these cir-
cuits our algorithm computed the same lower bounds with
this algorithm. The algorithm presented in [4] is a computa-
tionally expensive algorithm, and neither its execution time
for ISCAS85 circuits nor its performance for ISCAS89 cir-
cuits is reported.

The performance of MinTest on test set compaction is
compared against the two best test set compaction algorithms
published in the literature, CompacTest (CT) [8, 9, 12] and
TSC [4]. The comparison of the performance results is
presented in Table 2. In the table, the smallest known test
size for each circuit is marked by an asterisk (*). The largest
known lower bound on the minimum test set size of each
circuit is presented in the LB column. Some of these lower
bounds are computed by our minimum test set size estima-
tion algorithm and the rest is taken from [9]. In all the exper-
iments, a backtrack limit of 6 is used in MinTest. The exe-

cution times of MinTest include fault simulation and initial
test set generation times, and all the test sets generated by
MinTest have 100% fault coverage. The performance results
for CT and TSC are taken from [9] and [4] respectively. The
performance of TSC for ISCAS89 circuits is not reported.

The following observations can be made from the ex-
perimental results. For all the circuits, sizes of the test sets
generated by MinTest are smaller than or equal to the best
published results. For 31 out of 40 circuits, sizes of the
test sets generated by MinTest are equal to the known lower
bounds for these circuits. Even by executing only one iter-
ation of EFR algorithm, MinTest generated smaller test sets
than both CT and TSC for both ISCAS85 and ISCAS89 cir-
cuits. Moreover, for some circuits MinTest produced even
smaller test sets by executing EFR algorithm iteratively. The
test sets generated by MinTest are as much as 23% smaller
than the previously published results, e.g. 16% smaller for
c5315, 23% smaller for s1423, and 20% smaller for s38417.

In order to measure the performance of EFR algorithm
when it is used iteratively, we iterated it 3 times for the cir-
cuits for which the lower bound is not achieved after the first
iteration. As it can be seen in the column headed “3 its”, for
some of these circuits MinTest produced even smaller test
sets when EFR is used iteratively. When EFR algorithm is
iterated more than 3 times, MinTest produced even smaller
test sets for nine circuits. These results are presented in the
column headed “> 3 its”. Next to the test set sizes presen-
ted in the columns headed “3 its” and “> 3 its”, we indicated
the iteration number that this test set size is reached in paren-
thesis. The times presented in the column headed “> 3 its”
are the execution times of MinTest only for this many itera-
tions.

The CT and TSC execution times presented in Table 2
are obtained on a SUN SPARC 2 workstation. The com-
paction times presented for CT and MinTest include the ini-
tial test generation time as well. However, the compaction
times presented for TSC only show the execution time of
TSC starting from a given initial test set. Since MinTest is
exploring a larger search space, its execution time is larger
than that of CT. In [4], it is reported that to be within a reas-
onable running time, currently, TSC is only applicable to the
medium size circuits with the largest being c7552. However,
the experimental results show that MinTest is applicable to
large circuits.

7 Conclusions
This paper presented two new algorithms for generating

compact test sets for combinational circuits under the single
stuck at fault model, and a new heuristic for estimating the
minimum single stuck at fault test set size. These algorithms
together with the dynamic compaction algorithm are incor-
porated into an advanced ATPG system for combinational
circuits, called MinTest. MinTest found better lower bounds
and generated smaller test sets than the previously published
results for the ISCAS85 and full scan version of the ISCAS89

Test Set Size Time (secs)
MinTest MinTest

Circuit LB CT TSC 1 it 3 its > 3 its CT TSC 1 its 3 its > 3 its

c432 27 29 29 27� – – 7 13.6 6.2 – –
c499 52 52� 53 52� – – 5 13.2 17.4 – –
c880 13 21 18 20 18(2) 16�(10) 12 36.4 10.4 20.5 50.9
c1355 84 84� 86 84� – – 16 58.5 29.4 – –
c1908 106 106� 106� 106� – – 55 257.8 78.9 – –
c2670 44 45 44� 44� – – 130 246.1 73.3 – –
c3540 80 91 90 87 87 84�(15) 262 423.1 178.1 305.1 1372.9
c5315 37 44 46 41 40(3) 37�(12) 362 1126.3 265.4 573.8 1983.5
c6288 6 14 14 13 13 12�(8) 398 419.4 65.6 134.5 306.9
c7552 65 80 76 73� 73 – 1311 1931.8 794.7 1733.8 –

TOTAL 514 566 562 547 544 535 2558 4526.2 1519.4 – –
s208 27 27� – 27� – – 0.8 – 0.4 – –
s298 23 24 – 23� – – 1.5 – 0.7 – –
s344 13 15 – 13� – – 1.5 – 0.7 – –
s349 13 14 – 13� – – 1.7 – 0.7 – –
s382 25 25� – 25� – – 1.7 – 0.8 – –
s386 63 63� – 63� – – 3.8 – 3.1 – –
s400 24 24� – 24� – – 1.8 – 0.8 – –
s420 43 43� – 44 43�(2) – 3.2 – 2.1 2.9 –
s444 24 24� – 24� – – 2.3 – 0.9 – –
s510 54 54� – 54� – – 6.0 – 3.6 – –
s526 49 50 – 49� – – 4.9 – 3.0 – –
s526n 49 50 – 49� – – 4.9 – 3.3 – –
s641 21 22 – 21� – – 3.1 – 2.1 – –
s713 21 22 – 21� – – 4.6 – 2.8 – –
s820 93 94 – 94 93�(2) – 19 – 27.7 34.1 –
s832 94 94� – 95 95 94�(12) 20 – 23.9 28.7 80.1
s838 75 75� – 76 75�(2) – 13 – 11.9 15.3 –
s953 76 76� – 76� – – 25 – 30.3 – –
s1196 113 118 – 113� – – 48 – 43.6 – –
s1238 121 124 – 122 122 121�(4) 102 – 68.7 90.8 127.4
s1423 20 26 – 22 22 20�(25) 32 – 14.6 31.0 205.3
s1488 101 101� – 101� – – 40 – 75.1 – –
s1494 100 100� – 100� – – 43 – 80.4 – –
s5378 97 103 – 97� – – 216 – 131.5 – –
s9234 100 108 – 106 106 105�(5) 1085 – 1103.6 2020.7 3157.1

s13207 233 235 – 233� – – 1096 – 1178.4 – –
s15850 91 95� – 96 96 95�(17) 1375 – 1406.1 2189.3 9252.2
s35932 9 13 – 12� 12 – 8388 – 10075.7 11334.5 –
s38417 62 85 – 70 68� – 13210 – 11773.6 28955.8 –
s38584 93 115 – 111 110� – 14446 – 17219.7 38538.9 –
TOTAL 1927 2019 – 1974 1968 1962 40199.8 – 43289.8 – –

Table 2: Compaction Results

benchmark circuits.

References
[1] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the Role of Inde-

pendent Fault Sets in the Generation of Minimal Test Sets”, in Proc.
of the Int. Test Conf., pp. 1100-1107, August 1987.

[2] F. Brglez and H. Fujiwara, ”A Neutral Netlist of 10 Combinational
Benchmark Designs and a Special Translator in Fortran”, in Proc. of
the Int. Symp. on Circuits and Systems, June 1985.

[3] F. Brglez, D. Bryan, and K. Kozminski, ”Combinational Profiles of
Sequential Benchmark Circuits”, in Proc. of the Int. Symp. on Circuits
and Systems, pp. 1929-1934, May 1989.

[4] J.-S. Chang and C.-S. Lin, “Test Set Compaction for Combinational
Circuits”, IEEE Trans. on Computer-Aided Design, pp. 1370-1378,
November 1995.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. FreeMan, 1979.

[6] P. Goel and B.C. Rosales, “Test Generation and Dynamic Compaction
of Tests”, in Digest of Papers 1979 Test Conf., pp. 189-192, October
1979.

[7] I. Hamzaoglu and J. H. Patel, “New Techniques for Deterministic Test
Pattern Generation”, in Proc. of the IEEE VLSI Test Symp., pp. 446-
452, April 1998.

[8] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, “Cost Ef-
fective Generation of Minimal Test Sets for Stuck at Faults in Com-
binational Logic Circuits”, in Proc. of the Design Automation Conf.,
pp. 102-106, June 1993.

[9] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, “Cost Ef-
fective Generation of Minimal Test Sets for Stuck at Faults in Com-
binational Logic Circuits”, IEEE Trans. on Computer-Aided Design,
pp. 1496-1504, December 1995.

[10] B. Krishnamurthy and S. B. Akers, “On the Complexity of Estimat-
ing the Size of a Test Set”, IEEE Trans. on Computers, pp. 750-753,
August 1984.

[11] Y. Matsunaga, “MINT - An Exact Algorithm for Finding Minimum
Test Sets”, IEICE Trans. Fundamentals, pp. 1652-1658, October
1993.

[12] I. Pomeranz, L. Reddy, and S. M. Reddy, “Compactest: A Method To
Generate Compact Test Sets for Combinational Circuits”, in Proc. of
the Int. Test Conf., pp. 194-203, October 1991.

[13] M. H. Schulz, E. Trischler, and T. M. Sarfert, ”SOCRATES: A highly
efficient automatic test pattern generation system”, IEEE Trans. on
Computer-Aided Design, pp. 126-137, January 1988.

[14] G.-J. Tromp, “Minimal Test Sets for Combinational Circuits”, in
Proc. of the Int. Test Conf., pp. 204-209, October 1991.

