Test Set Compaction Algorithmsfor Combinational Circuits*

Ilker Hamzaoglu and Janak H. Patel
Center for Reliable & High-Performance Computing
University of Illinois, Urbana, IL 61801

Abstract
This paper presents two new algorithms, Redundant \iec-
tor Elimination (RVE) and Essential Fault Reduction (EFR),
for generating compact test sets for combinational circuits
under the single stuck at fault model, and a new heuristic
for estimating the minimum single stuck at fault test set size.
These algorithmstogether with the dynamic compaction al-
gorithmareincorporated into an advanced ATPG system for
combinational circuits, called MinTest. MinTest found better
lower bounds and generated smaller test setsthan the previ-
oudly published results for the |ISCAS85 and full scan version

of the ISCAS89 benchmark circuits.

1 Introduction

Compact test setsare very important for reducing the cost
of testing the VLSI circuits by reducing the test application
time. Thisisespecially important for the scan-based circuits
as the test application time for these circuitsis directly pro-
portional to product of thetest set sizeand the number of stor-
age elements used in the scan chain. Small test setsaso re-
duce the test storage requirements.

Since even the problem of estimating the size of a min-
imum single stuck at fault test set for a given irredundant
combinational circuit is proven to be NP-hard [10], severd
test set compaction agorithms based on different heuristics
are proposed in the literature, e.g. static compaction [6], dy-
namic compaction [6], independent and compatiblefault sets
based test generation [1, 9, 12, 14], reverse order fault sim-
ulation [13], maximal compaction [12], rotating backtrace
[12], doubledetection [8, 9], Two_by_one[9], Three by two
[9], forced pair merging [4] and essential fault pruning [4].

Although these algorithms are successful in producing
small test sets, the resulting test sets are still larger than
the known lower bounds. This is because of the following
two reasons; the previously published test set compaction

*This research was supported in part by the Semiconductor Research
Corporation under contract SRC 96-DP-109 and in part by DARPA under
contract DABT63-95-C-0069.

algorithms are unable to compact the test sets any further,
and the known lower bounds are not tight. In order to close
thisgap further, this paper addresses both of these problems.
We present two new test set compaction a gorithms, Redund-
ant Vector Elimination (RVE) and Essential Fault Reduc-
tion (EFR), and a new heuristic for estimating the minimum
single stuck at fault test set size. These agorithms and the
dynamic compaction algorithm proposed in [6] are incorpor-
ated into an advanced ATPG system for combinational cir-
cuits[7], called MinTest. MinTest found better lower bounds
and generated smaller test sets than the previously published
resultsfor thel SCAS85 and full scan version of thel| SCAS89
benchmark circuits[2, 3].

The rest of the paper is organized as follows. Section 2
presents the definitions that will be used in this paper. Sec-
tion 3 presents the RVE agorithm. The EFR agorithm is
presented in Section 4. Minimum Test Set Size estimation
heuristic isdescribed in Section 5. The experimental results
aregivenin Section 6. Finally Section 7 presentsthe conclu-
sions.

2 Preliminaries

In thissection, we present the definitionsthat will be used
in this paper. A test vector in agiventest setiscalled an es-
sential vector, if it detects at least one fault that is not detec-
ted by any other test vector inthistest set. A fault is defined
to be an essential fault of atest vector, if it is detected only
by this test vector in a given test set [4, 9]. In other words
an essential vector detects at least one essential fault. A test
vector isredundant with respect to agiven test set, if it does
not detect any essential faults, i.e. al thefaultsdetected by it
are also detected by the other test vectorsin thistest set [9].

An essentia fault ef; of a test vector ¢; is said to be
pruned, if atest vector ¢; # ¢; inthetest set isreplaced by a
new test vector ¢, which detectse f;, the essentia faultsof ¢;
and the faults detected only by ¢; and ¢; [4].

If two faults can be detected by asingletest vector, they
are called compatible. Similarly two faultsare called incom-
patible, if they cannot be detected by a singletest vector. An
incompatibility graph for agiven set of faults, FS={ f; | 1
<i < n},isdéfined as IG(FS) = (V, E) where V = { v; =
fi | 1§ i < n}andE:{ej = (vk,vl) | Vg andvl arein-
compatible, 1 <k <nand1<1<n}[1409 14]. Afault
set is called an independent fault set, if al the faultsin this

REDUNDANT VECTOR ELIMINATION (t : test vector)

Fault simulate test vector t for each fault that is not provento be redundant
For each fault f; that is detected by vector t
{
detection_count[f;]++
if (detection_count[f;] == 1) then
number_of _essential faults[t]++
elseif (detection_count[f;] == 2) then

Identify the vector ¢; # t that detects f;
number_essential faults[z,;]——
if (number_of _essential faults[t;] == 0) then

drop vector ¢; from the test set
For each fault f, that is detected by #;

detection_count[fr.]——
if (detection_count[/] == 1) then

Identify the vector ¢, # ¢; that detects f;,
number_of _essential faults[¢;]++

Figure 1: RVE agorithm

set are pairwiseincompatible[1]. For agiven combinational
circuit an independent fault set of maximum sizeiscalled a
maxi mumindependent fault set. Sincethe problem of finding
a maximum independent fault set is NP-hard [10], maximal
independent fault sets are used in practice.

Minimumtest set size of a given combinational circuit un-
der the single stuck at fault model is defined to be the min-
imum number of test vectorsrequiredto detect al thetestable
single stuck at faultsin thiscircuit.

3 Redundant Vector Elimination

During automatic test pattern generation, some of the
faults detected by the earlier test vectors may aso be acci-
dentally detected by the test vectors generated later. As a
result as more vectors are generated during the ATPG pro-
cess, a test vector generated earlier may become redund-
ant. Redundant Vector Elimination (RVE) agorithm iden-
tifies these redundant vectors during test generation and dy-
namically dropsthem fromthetest set. AsitisshowninFig-
urel, RVE fault smulatesal thefaultsinthefault list except
the ones that are proven to be untestable, and it keeps track
of the faults detected by each vector, the number of essentia
faults of each vector and the number of times afault isdetec-
ted. During test generation if the number of essentia faults
of avector reduces to zero, i.e. the vector becomes redund-
ant, it isdropped from the test set.

Asillustrated in the example below, RVE agorithm can
reduce the size of atest set more than Reverse Order Fault
Simulation (ROFS) [13]. This is because ROFS cannot
identify aredundant test vector if some of the faults detected
by it are only detected by thetest vectorsgenerated earlier. It
can only identify aredundant vector, if al the faultsdetected
by it are al so detected by the test vectors generated later.

ESSENTIAL FAULT REDUCTION (T : test set, Numlteration: int,
MFL : int, MEFL : int)
{

For Numiteration times
For each test vector ¢; in T with less than MEFL essential faults

{
al_ef_pruned = true
failure_limit=0
For each essential fault f; of ¢;
{
pruned = false
For each test vector ¢5 # ¢;

pruned = Multiple_Target_Test_Generation(tg, t;, f;)
if (pruned == true) then break

)
if (pruned == true) then

Update T by replacing ¢, with the new test vector
Fault simulate the new test vector
}
else
o
failure_limit++
al_ef_pruned = false
if (failure_limit == MFL) then break

J
if (al_ef_pruned == true) then drop vector ¢; from T

Figure2: EFR agorithm

Example: Consider the fault set {f1, f2, f3, fa}. Sup-
pose that for this fault set the ATPG system generated the
test set { ¢4, t2, t3 } in the given order, and ¢; detects the
faults f; and f-, ¢5 detects the faults f3 and f,, and ¢35 de-
tectsthefaults f4 and f5. Inthisexample, after ¢5 is gener-
ated, RVE agorithm detects that ¢, becomes redundant and
dropsit from thetest set. Thusit reduces thetest setto { ¢4,
t3 }. However, ROFS cannot reduce the size of thistest set.

The performance of the RVE agorithm is similar to the
Double Detection (DD) agorithmintroduced in [8, 9], even
though dlightly different results may be produced because
of the order of dropping redundant vectors. However, we
are not proposing RVE as a standalone test set compaction
algorithm, rather as the first step of a two-step compaction
framework that includes both RVE and Essential Fault Re-
duction (EFR) algorithms. In addition to the number of es-
sential faults for each test vector, which is aso obtained by
DD, EFR needs the additional information that is produced
by RVE; faults detected by each test vector and the exact
number of times each fault is detected by the current test set.
If DD isused instead of RVE, then EFR itself should obtain
this information. Since RVE spends most of its execution
time for computing this information, the execution time of
the RVE and EFR agorithms combined is smaler than the
DD and EFR a gorithms combined.

4 Essential Fault Reduction

Since pruning an essentia fault of atest vector decreases
the number of its essential faultsby one, if al the essentia
faults of atest vector is pruned then it becomes redundant,

and it can be dropped from thetest set. AsitisshowninFig-
ure 2 after theinitial test set isgenerated, Essentia Fault Re-
duction (EFR) agorithm is used iteratively to further com-
pact the test set by pruning the essential faults of each vec-
tor as much as possible. EFR uses the Multiple Target Test
Generation (MTTG) procedure[4, 9] to generate atest vector
that will detect agiven set of faults. EFR agorithmimproves
the Two_by_One (TBO) [9] and the Essentia Fault Pruning
(EFP) algorithms|[4].

Given an initia test set, TBO tries to reduce the test set
size by replacing two test vectors with a new one. Thisis
achieved by finding a test vector that detects the essential
faultsof theboth vectorsaswell asthefaultsdetected only by
these two vectors. However, even if itisnot possibleto find
such atest vector, it may still be possibleto eliminate these
two test vectors from the test set. This may be achieved by
athree_by_two algorithm (TBT) which triesto replace three
test vectors with two new ones. In generd, theagorithm can
be extended to an N_by_M (M < N) agorithm. However, in
the worst case, TBO needs to check O(V'?) vector pairs for
possiblecompaction, whereV isthe number of test vectorsin
theinitial test set, TBT needs to check O(V'3) vector triplets,
andingenera N_by_M algorithmneedsto check O(V ™) vec-
tor sets. Thus, the N_by_M algorithmis computationally too
expensivefor N > 2, and implementation of an N_by_M &-
gorithmwhere N > 2 isnot reported.

EFP, on the other hand, triesto reduce the test set size by
trying to prune the essential faults of each test vector. If all
the essential faults of atest vector is pruned, then this vec-
tor becomes redundant and it can be dropped from the test
set. TBO can be seen as a specia case of EFP in which a
test vector is alowed to prune its essential faults by repla-
cing only one vector. EFP achieves better performance than
TBO by relaxing thisrestriction and allowing a test vector to
prune its essentid faults by replacing more than one vector
in the test set. In the worst case, EFP will try to generate a
test vector for O(E x V) fault sets, where E is the number of
essential faultsand V isthe number of test vectorsin theini-
tial test set. Sincein almost dl cases E islarger than V, EFP
is computationally more expensive than TBO. However, for
N > 2 in most cases N_by_M agorithm is computationally
more expensive.

The problem of compacting agiventest set can beviewed
as distributing the essential faults of thistest set to the given
test vectorssuch that thenumber of redundant vectorsis max-
imized. Therefore, the search space that should be explored
isall possibledistributionsof the essentia faultsto thegiven
test vectors. Since neither TBO nor EFP agorithms have
this global view of the search space, they carry out alocal-
ized greedy search by concentrating only on removing one
test vector at a time from the test set by pruning its essen-
tia faults. They prune an essentia fault of atest vector only
if this causes this vector to be redundant, otherwise they do
not prunethe essential fault. Because of thisrestriction, they
only explore part of the search space.

Incompatibility Graph

Initial Test Set
fl| 137
f2 | 4157 Test Dgau'ttesd
3| 1567 Vector | D8
fa| 1215 | ff
f5 | f2 31415 N
t6 3 | f5 f6
7] f1f21315 o7

Step 1 Step 2
Test Faults Test Faults
Vector | Detected Vector | Detected
| (U2 | M 213
2 | f3f4 2 | (1314
3 | 15 f6(fD) 3 | f5f6 f1
4 | f7 4 | f7

Step 3
Test Faults
Vector | Detected Q = Detected
t f2 13

= Not Detected

2 | f3 (4 X °
3 | f5 16 f1 [] = Redundant
w | 7

Figure 3: EFR Example

EFR agorithm, on the other hand, has a global view of
the search space. It overcomesthelimitation of the TBO and
EFP agorithmsby carrying out a non-greedy global search
by trying to distribute the essential faults to the given test
vectors such that the number of redundant vectorsis maxim-
ized. Therefore, even if a vector does not become redund-
ant, EFR triesto reduce the number of its essentid faults as
much as possible by trying to prune as many of its essential
faults as possible. Even if it fails to prune one of the essen-
tial faults of atest vector, it still tries to prune its other es-
sential faults. Thisway EFR exploresalarger portion of the
search space than both TBO and EFP. Asillustratedin theex-
ample below, using this new search technique EFR can pro-
duce smaller test sets than the ones produced by TBO, TBT,
and EFP algorithms.

Example: Consider thetest set {¢1, {2, {3, t4}. Suppose
that 3] detects the faults {fl, fz}, ts detects {fg, f4}, i3 de-
tects { f5, fs} and ¢4 detects{ f7}, and the adjacency list rep-
resentation of theincompatibility graph isas givenin Figure
3. EFR canreducethesize of thistest set by oneinthefirstit-
eration. Asitisillustratedin Figure 3, thiscan beachieved by
replacing the test vectorst; with) that detects f> and f3, ¢3
with ¢4 that detects f1, f5, and fs, and ¢4 with¢), that detects
f+ and f7. After these replacements t» becomes redundant,
thus it can be dropped from the test set. None of the TBO,
TBT, and EFP agorithms can reduce the size of thisinitial
test set.

Asillustrated in the exampl e bel ow, by means of the new
search technique, EFR can further compact a given test set
when it is used iteratively. Thisis not possible with TBO

Incompatibility Graph

f1 | f4f5f67f8f9f10 Initial Test Set
f2 | f3f4f5{7f89f10
Test Faults
f3 | f2f5f67f8f9f10 Vector | Detected
f4 | f1f25f6f910 0 1 1
f5 | fLf2f3f417f8 o 3 14
f6 | f1f34f7f8f9f10 a = 6
f7 | f1f2f3f5f6f9f10 t4 7 t8
f8 | fLf2f3f5f69f10 5 9 110
fo | f1f2f3f416f7f8
f10| f1f2f3f4f617f8
Iteration 1 Iteration 2
Step 1 Step 1
Test Faults Test Faults
Vector | Detected Vector | Detected
| f1f2 RGP
©2 | f3a) 2 | 3 W)
t3 f5 f6 t3 f5 6
w | 17 18(14) | f7 18 f4
t5 f9 f10 t5' f9 f10 f5
Step 2 Step 2
Test Faults Test Faults
Vector | Detected Vector | Detected
t1 f1 f2 t1 f1
©2 f3 f4 2 3 f1
B3 | ({56 3 | ¥4 16
t4 f7 18 f4 t4 7 18 f4
t5 | fo f10(f5) t5 | fo f10 f5
() = peteted X = NotDetected
|:| = Redundant

Figure 4: EFR Iteration Example

and TBT. Althoughit is possible that EFP may further com-
pact a given test set when it is used iteratively, thisis very
unlikely. Because this can only happen if one of the new test
vectors“accidentaly” detects one or more essential faults of
the other test vectors that it is not intended to detect. This
may make it possible to prune the essential faults of a test
vector inthe second iteration, even thoughit was not possible
inthefirst iteration.

Example: Consider thetest set {t1, ¢, {3, L4, {5}. Sup-
pose that ¢; detects the faults { f1, f-}, t» detects { f5, fa},
i3 detects {f5, f6}, 14 detects {f7, fg}, and iy detects {fg,
J10}, and the adjacency list representation of the incompat-
ibility graphisasgiveninFigure4. Asitisillustratedin Fig-
ure 4, inthefirst iteration of the EFR agorithm only f, will
be pruned by replacing ¢4 with ¢/, and f5 will be pruned by
replacing ¢5 witht;. Thus, inthefirst iteration EFR will not
be able to reduce the test set size. However, since after the
first iteration f4 isnot an essentia fault of ¢, and f5 isnot an
essentia fault of ¢35 anymore, in the second iteration f; will
be pruned by replacing ¢» withi}, and f- will pruned berepla

cing ts witht;. Because of theset; will become redundant,
and it will be dropped from the test set. On the other hand,
none of the TBO, TBT, and EFP agorithms can reduce the
size of thisinitial test set.

EFR has the same worst-case computational complexity
as EFPR, i.e. it will try to generate a test vector for O(E x V)
fault sets, where E is the number of essentia faultsand V is
the number of test vectorsin the initid test set. If it isused
iteratively then the worst-case complexity becomes O(l x E
x V), where | isthe number of iterations.

An incompatibility graph is used for reducing the aver-
age case execution time of TBO and EFP agorithms[4, 9].
However, the incompatibility graph definition used in [1, 4,
9, 14] cannot represent thefollowingincompatibility relation
between stuck at faults. It ispossiblethat even though afault
ispairwisecompatiblewithall thefaultsinagivenfault s, it
may beincompatiblewiththese faultswhen they aretargeted
together. Therefore, we extended the definition of theincom-
patibility graph by alowing a graph node to represent a set
of faults. Thisnew incompatibility graph is constructed in a
demand-driven way during compaction. We have observed
that using this incompatibility graph reduced the execution
time of EFR agorithm.

5 Minimum Test Set Size Estimation

To be able to assess the effectiveness of test set compac-
tion algorithmsfor a combinational circuit, it is necessary to
know the Minimum Test Set Size (MTSS) for this circuit.
In addition if the MTSS is known, test set compaction time
can be reduced by stopping the iteration of EFR agorithm
whenever the minimumtest set sizeisreached rather than it-
erating a predetermined number of times. Since the problem
of computing the size of aminimum single stuck at fault test
set for agivenirredundant combinational circuit is provento
be NP-hard [10], heuristic techniques are used for finding a
lower bound for MTSS.

One of the most commonly used heuristics for finding a
lower bound is finding the size of the maximal independent
fault set. Thesize of themaximal independent fault set isless
than or equal to the minimum test set size. The maximal in-
dependent fault set can be computed by finding the maximal
clique in the incompatibility graph of the given single stuck
at fault set [1, 4, 8, 9, 11, 14].

Since the problem of finding the maximal clique in a
given graph is proven to be NP-complete [5], severa heur-
istics are proposed for finding a maximal clique in a given
incompatibility graph. Since the essentia faults of the test
vectorsin agiven test set are highly incompatible, in [4] itis
suggested to compute the maximal clique by first consider-
ing only the essentid faultsand then enlarging thisclique by
consideringtheother faults. In[9], itisreportedthat for some
circuits computing the maximal clique in the incompatibil-
ity graph that is constructed only by using the essentid faults
found larger cliques than computing the maximal clique in
the incompatibility graph that is constructed by considering

all the faults. Based on the following theorem and the corol -
lary, we also compute the maximal clique by first consider-
ing only the essentid faultsand then enlarging thisclique by
considering the other faultsin the given fault list.

Theorem 1: Given a complete single stuck at fault test
set TS of size N for a combinationa circuit, if there exists
amaxima independent fault set MIFS of sizeK (N/2 < K
< N) for thiscircuit, then that MIFS contains at |east 2K-N
essential faults each from adifferent test vector.

Proof: If there exists a maximal independent fault set
MIFS of size K, then by definition there are K pairwise in-
compatiblefaultsin MIFS. Sincethefaultsin MIFSare pair-
wise incompatible, no test vector can detect more than one
faultin MIFS. Therefore each faultin MIFS should be detec-
ted by adifferent test vector in TS. Since thetest set is com-
plete, at least K test vectorsin TS detect these K faults. If
none of these K faults are detected by any of the remaining
N-K test vectorsin TS, then each one of them isan essential
fault of adifferent test vector in TS. In the worst case, each
one of theremaining N-K test vectors detectsadifferent fault
in MIFS. Sincethese N-K faultsare detected by two vectors,
they are not essential faults. Therefore, in theworst case, K-
(N-K) = 2K-N of thefaultsin MIFSisan essentia fault of a
different test vector in TS. In other words, MIFS contains at
least 2K-N essential faults each from a different test vector.
O

Coroallary: Givenacomplete singlestuck at fault test set
TSof sizeN for acombinational circuit, if there existsamax-
ima independent fault set MIFS of size N for this circuit,
then that MIFS contains one essential fault from each test
vector in TS.

Proof: According to Theorem 1, MIFS should contain
oneessential fault from at least 2K-N test vectorsin TSwhere
K isthe size of the maximal independent fault set. For K=N
the expression 2K-N isequal to N. Since TS has N test vec-
tors, thismeans that MIFS should contain one essential fault
from each test vector in TS. O

Theorem 1 shows that the maximal clique in the incom-
patibility graph of asmall test setislikely to contain many es-
sentia faults, and the corollary indicatesthat for aminimum
sizetest set if there exists aclique of thissizein the incom-
patibility graph then the clique containsonly essential faults.
Since EFR agorithm produces test sets that are either min-
imum size or very closeto it, based on thistheorem, we com-
putethelower boundfor MTSS by searching for the maximal
cliquethat includesone essentia fault from as many test vec-
torsaspossiblein thetest set produced by EFR a gorithmand
then enlarging this clique by considering the other faultsin
the given fault list.

Sincethe size of the search space for computing the max-
imal clique by choosing one essential fault from as many test
vectorsaspossibleisvery large, itiscomputationally too ex-
pensive to search it exhaustively. If there are n vectors {t,
ta, ..., t,} inthetest sat, and if the sizes of their essentia
faultsetsareefsy,efso, ..., efs, respectively, thenthesize

of the search space isO([];_, e/s;). Therefore, we propose
the following new heuristic to guide the branch and bound
search agorithm. When trying to choose an essential fault
from each test vector, consider the vectorsin ascending order
of the number of essential faultsthat they have, and explore
more branches for the initial test vectors.

This heuristic increases the probability of computing the
maximal cliguein ashort amount of time because of thefol-
lowingreason. Oncean essential faultisincludedinaclique,
this reduces the number of essential faults of the remaining
test vectorsthat can beincluded inthisclique. If atest vector
t; hasefs; essentia faultsand if each one of these essential
faultsisequally likely to beinthe maximal clique, thenwhen
trying to select an essentia fault of thistest vector the prob-
ability of choosing the essential fault that isin the maximal
cliqueis1/efs;. If the number of essentia faults of ¢; that
can be included in the maxima clique decreases, the prob-
ability of selecting the essential fault that isin the maximal
cliqueincreases. Since for the test vectors with small num-
ber of essential faultsthe probability of selecting the essential
fault that isin the maximal clique is already high, and after
selecting these essentia faults, for the test vectors with lar-
ger number of essential faultsthe probability of selecting the
essentia fault thatisinthemaximal cliqueincreases, consid-
ering the vectors with smaller number of essential faultsfirst
increases the overall probability of computing the maximal
cliquein ashort amount of time.

6 Experimental Results

We incorporated the minimum test set size estimation,
RVE and EFR algorithmsthat we propose and the dynamic
compaction algorithm proposed in [6] into our advanced
ATPG system for combinationd circuits[7], called MinTest.
MinTest is designed in an object-oriented style and imple-
mented in C++. We tested MinTest on the ISCAS85 and full
scan version of the ISCAS89 benchmark circuits[2, 3]. The
performance resultsfor MinTest are obtained on a 200 MHz
Pentium Pro PC with 1228MB RAM running Linux 2.0.0 us-
ing GNU CC version 2.8.0.

We compared the performance of MinTest on minimum
test set size estimation with the previously published results
and presented the comparision of the performance resultsin
Table 1. The “~” sign in the table indicates that the lower
bound for this circuit is not reported. The results show that
our agorithm computed better lower bounds than the previ-
oudy published ones. For 38 out of 40 circuits, the lower
bounds computed by our agorithm are greater than or equal
to the best published lower bounds. For 14 of these 38 cir-
cuits our agorithm computed as much as 33% larger lower
boundsthan the previously published results, e.g. 25% larger
for 7552, 33% larger for s1423 and 11% larger for s9234.
These 14 new lower bounds are indicated by an asterisk (*)
inthetable.

Our minimum test set size estimation algorithmisapplic-
ableto large circuits, and its execution timeis similar to the

[8] MinTest
Circuit [4] Loc [GIb [91 | [11] LB [Time
c432 24 20 20 - 27 27 15.0
c499 52 50 50 - 52 52 0.1
c880 12 9 10 - - 13* 219
c1355 84 82 82 - - 84 0.9
c1908 94 91 68 99 - 106* 88.1
c2670 40 38 39 42 - 44* 471
¢3540 80 67 65 - - 78 1745
c5315 37 22 36 - - 37 748.6
6288 5 6 6 - - 6 347.7
c7552 49 26 28 52 - 65* 663.8
TOTAL 477 | 411 404 - - 512 2107.7
208 — [26 | 27 | - | 27 27 0.1
s298 - 19 20 - 23 23 0.1
s344 - 13 13 - 13 13 0.3
$349 - 13 12 | - | 13 13 11
s382 - 25 25 - 25 25 0.1
s386 - 62 62 63 63 63 0.1
400 - 24 23 - 24 24 0.1
420 - 42 43 - 43 43 0.3
444 - 24 23 - 24 24 0.1
s510 - 53 53 - 54 54 1.9
526 - 34 35 - 49 49 25
s526n - 34 35 — | 49 49 22
641 - 19 9 | - | 21 21 2.0
S713 — |19 | 19 | - | 21 21 2.7
s820 - 90 90 - 93 93 86.3
s832 - 91 91 - - 94* 21.6
s838 - 74 75 - - 75 430.7
953 - 65 68 73 - 76* 84.7
s1196 - 59 99 [105] - 112% 161.0
s1238 | — | 61 | 107 | 115 | — | 121* | 9207
s1423 - 14 5 | - | - 20% 9.9
51488 - 98 98 [100 | - 101% 28.7
s1494 - 97 97 [100 | - 100 62.3
s5378 - 85 92 - - 97* 198.4
9234 - 84 88 90 - 100* | 6319.4
s13207 - 233 233 - - 233 722.7
515850 - 89 85 90 - 91* 938.9
s35932 - - - 9 - 9 5687.4
s38417 - 50 60 - - 62* 12287.9
s38584 - - - 93 - 89 10134.5
TOTAL - 1597 | 1707 - - 1922 | 38108.7

Table 1: Lower Bounds on Minimum Test Set Size

algorithms presented in [8, 9]. The adgorithm presented in
[11] can only be applied to small circuits, and for these cir-
cuits our agorithm computed the same lower bounds with
thisalgorithm. The algorithm presented in [4] isa computa
tionally expensive algorithm, and neither its execution time
for ISCAS85 circuits nor its performance for ISCAS89 cir-
cuitsisreported.

The performance of MinTest on test set compaction is
compared against thetwo best test set compaction algorithms
published in the literature, CompacTest (CT) [8, 9, 12] and
TSC [4]. The comparison of the performance results is
presented in Table 2. In the table, the smallest known test
sizefor each circuitismarked by an asterisk (*). The largest
known lower bound on the minimum test set size of each
circuit is presented in the LB column. Some of these [ower
bounds are computed by our minimum test set size estima
tion algorithmand therest istaken from[9]. Inall the exper-
iments, a backtrack limit of 6 isused in MinTest. The exe-

cution times of MinTest include fault simulation and initial
test set generation times, and al the test sets generated by
MinTest have 100% fault coverage. The performance results
for CT and TSC aretaken from[9] and [4] respectively. The
performance of TSC for ISCAS89 circuitsis not reported.

The following observations can be made from the ex-
perimenta results. For al the circuits, sizes of the test sets
generated by MinTest are smaller than or equal to the best
published results. For 31 out of 40 circuits, sizes of the
test sets generated by MinTest are equal to the known lower
bounds for these circuits. Even by executing only one iter-
ation of EFR agorithm, MinTest generated smaller test sets
than both CT and TSC for both ISCAS85 and ISCAS89 cir-
cuits. Moreover, for some circuits MinTest produced even
smaller test setsby executing EFR agorithmiteratively. The
test sets generated by MinTest are as much as 23% smaller
than the previoudy published results, eg. 16% smaller for
€5315, 23% smaller for s1423, and 20% smaller for s38417.

In order to measure the performance of EFR agorithm
when it is used iteratively, we iterated it 3 times for the cir-
cuitsfor which thelower bound isnot achieved after thefirst
iteration. Asit can be seen in the column headed “ 3 its’, for
some of these circuits MinTest produced even smaller test
sets when EFR isused iteratively. When EFR agorithmis
iterated more than 3 times, MinTest produced even smaller
test sets for nine circuits. These results are presented in the
column headed “> 3its’. Next to the test set sizes presen-
ted in the columnsheaded “3its’ and “ > 3its’, weindicated
theiteration number that thistest set sizeisreached in paren-
thesis. The times presented in the column headed “ > 3 its’
are the execution times of MinTest only for this many itera-
tions.

The CT and TSC execution times presented in Table 2
are obtained on a SUN SPARC 2 workstation. The com-
paction times presented for CT and MinTest includetheini-
tial test generation time as well. However, the compaction
times presented for TSC only show the execution time of
TSC starting from a given initid test set. Since MinTest is
exploring a larger search space, its execution time is larger
than that of CT. In [4], it isreported that to be within areas-
onable running time, currently, TSC isonly applicableto the
medium size circuitswiththe largest being c7552. However,
the experimental results show that MinTest is applicable to
large circuits.

7 Conclusions

This paper presented two new algorithmsfor generating
compact test sets for combinational circuitsunder thesingle
stuck at fault model, and a new heuristic for estimating the
minimum singlestuck at fault test set size. These agorithms
together with the dynamic compaction agorithm are incor-
porated into an advanced ATPG system for combinational
circuits, called MinTest. MinTest found better lower bounds
and generated smaller test sets than the previously published
resultsfor thel SCAS85 and full scan version of thel| SCAS89

Test Set Size Time (secs)
MinTest MinTest
Circuit || LB CT | TsC | 1it | 3its [> 3its CT TSC lits | 3its [> 3its
c432 27 29 29 27" - - 7 136 6.2 - -
c499 52 | 52% 53 | 52F - - 5 132 174 - -
c880 13 21 18 20 18(2) | 16*(10) 12 36.4 104 205 50.9
c1355 84 | 84* 86 | 84% - - 16 58.5 294 - -
€1908 106 | 106* | 106* | 106* - - 55 257.8 78.9 - -
c2670 44 45 44" 44" - - 130 246.1 73.3 - -
€3540 80 91 90 87 87 84*(15) 262 423.1 178.1 305.1 | 1372.9
c5315 37 44 46 41 4013) | 37*(12) 362 11263 | 2654 5738 | 19835
€6288 6 14 14 13 13 12*%(8) 398 4194 65.6 1345 | 306.9
c7552 65 80 76 73* 73 - 1311 1931.8 | 7947 1733.8 -
TOTAL || 514 | 566 | 562 | 547 544 535 2558 | 4526.2 | 15194 - -
s208 27 27* - 27* - - 0.8 - 0.4 - -
$298 23 24 - 23* - - 15 - 0.7 - -
s344 13 15 - 13* - - 15 - 0.7 - -
s349 13 14 - 13* - - 17 - 0.7 - -
s382 25 25% - 25% - - 17 - 0.8 - -
s386 63 | 63* - 63* - - 38 - 31 - -
400 24 24* - 24* - - 18 - 0.8 - -
420 43 43* - 44 | 43*(2) - 32 - 21 2.9 -
A44 24 24* - 24* - - 2.3 - 0.9 - -
s510 54 54* - 54* - - 6.0 - 3.6 - -
$526 49 50 - 49* - - 4.9 - 30 - -
s526n 49 50 - 49* - - 4.9 - 33 - -
641 21 22 - 21* - - 31 - 21 - -
s713 21 22 - 21* - - 4.6 - 2.8 - -
820 93 94 - 94 | 93*(2) - 19 - 277 341 =
s832 94 94* - 95 95 94*(12) 20 - 239 28.7 80.1
838 75 | 75° - 76 | 7572 - 13 - 11.9 15.3 -
$953 76 | 76F - 76* - - 25 - 30.3 - -
s1196 113 118 - 113* - - 48 - 43.6 - -
51238 121 | 124 - 122 122 121*(4) 102 - 68.7 90.8 1274
s1423 20 26 - 22 22 20%(25) 32 - 146 31.0 2053
s1488 101 | 101* - 101* - - 40 - 75.1 - -
s1494 100 | 100* - 100* - - 43 - 80.4 - -
s5378 97 [103 - 97* - - 216 - 1315 - -
s9234 100 | 108 - 106 106 105*(5) 1085 - 1103.6 | 2020.7 | 3157.1
s13207 233 | 235 - 233* - - 1096 - 11784 - -
s15850 91 95* - 96 96 95*(17) 1375 - 1406.1 | 21893 | 9252.2
s35932 9 13 - 12% 12 - 8388 - 10075.7 | 113345 -
s38417 62 85 - 70 68* - 13210 - 11773.6 | 28955.8 -
s38584 93 115 - 111 110* - 14446 - 17219.7 | 38538.9 -
TOTAL | 1927 | 2019 - 1974 | 1968 1962 40199.8 - 43289.8 - -

Table 2: Compaction Results

benchmark circuits.

References

(1

(2

(3l

(4

(5]
(6]

(7

S. B. Akers, C. Joseph, and B. Krishnamurthy, “ On the Role of Inde-
pendent Fault Sets in the Generation of Minimal Test Sets’, in Proc.
of the Int. Test Conf., pp. 1100-1107, August 1987.

F. Brglez and H. Fujiwara, "A Neutral Netlist of 10 Combinational
Benchmark Designs and a Special Translator in Fortran”, in Proc. of
the Int. Symp. on Circuits and Systems, June 1985.

F. Brglez, D. Bryan, and K. Kozminski, " Combinational Profiles of
Sequential Benchmark Circuits’, in Proc. of the Int. Symp. on Circuits
and Systems, pp. 1929-1934, May 1989.

J.-S. Chang and C.-S. Lin, “Test Set Compaction for Combinational
Circuits’, IEEE Trans. on Computer-Aided Design, pp. 1370-1378,
November 1995.

M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guideto the Theory of NP-Completeness, W. H. FreeMan, 1979.

P. Goel andB.C. Rosales, “ Test Generation and Dynamic Compaction
of Tests’, in Digest of Papers 1979 Test Conf., pp. 189-192, October
1979.

I. HamzaogluandJ. H. Patel, “ New Techniquesfor Deterministic Test
Pattern Generation”, in Proc. of the IEEE VLS Test Symp., pp. 446-
452, April 1998.

(9

[10]

[11]

[12]

[13]

[14]

[8] S. Kajihara, |I. Pomeranz, K. Kinoshitaand S. M. Reddy, “Cost Ef-

fective Generation of Minimal Test Sets for Stuck at Faultsin Com-
binational Logic Circuits’, in Proc. of the Design Automation Conf.,
pp. 102-106, June 1993.

S. Kgjihara, |. Pomeranz, K. Kinoshitaand S. M. Reddy, “Cost Ef-
fective Generation of Minimal Test Sets for Stuck at Faultsin Com-
binational Logic Circuits’, IEEE Trans. on Computer-Aided Design,
pp. 1496-1504, December 1995.

B. Krishnamurthy and S. B. Akers, “On the Complexity of Estimat-
ing the Size of aTest Set”, |IEEE Trans. on Computers, pp. 750-753,
August 1984.

Y. Matsunaga, “MINT - An Exact Algorithm for Finding Minimum
Test Sets’, IEICE Trans. Fundamentals, pp. 1652-1658, October
1993.

|. Pomeranz, L. Reddy, and S. M. Reddy, “ Compactest: A Method To
Generate Compact Test Sets for Combinational Circuits’, in Proc. of
the Int. Test Conf., pp. 194-203, October 1991.

M. H. Schulz, E. Trischler, and T. M. Sarfert, " SOCRATES: A highly
efficient automatic test pattern generation system”, |EEE Trans. on
Computer-Aided Design, pp. 126-137, January 1988.

G.-J. Tromp, “Minimal Test Sets for Combinational Circuits’, in
Proc. of the Int. Test Conf., pp. 204-209, October 1991.

