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Abstract  
 
Many estimation problems can be modeled using a 
Kalman filter. One of the key requirements for Kalman 
filtering is to characterize various error sources, 
essentially for the quality assurance and quality control of 
a system. This characterization can be evaluated by 
applying the principle of multivariate statistics to the 
system innovations and the measurement residuals. This 
manuscript will systematically examine the test statistics 
in Kalman filter on the ground of the normal, 2χ -, t- and 
F- distributions, and the strategies for global, regional and 
local statistical tests as well. It is hoped that these test 
statistics can generally help better understand and perform 
the statistical analysis in specific applications using a 
Kalman filter. 
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1 Introduction 
 
Since 1980s, Geomatics professionals both in research 
and industry have increasingly shown their profound 
interest in applying the Kalman filter to various 
applications, such as kinematic positioning or navigation 
systems, image processing, and data processing of 
deformation monitoring etc. Undoubtedly, knowledge of 
Kalman filtering has become essential to the Geomatics 
researchers and professionals. 
 
A Kalman filter is simply an optimal recursive data 
processing algorithm that blends all available information, 
including measurement outputs, prior knowledge about 
the system and measuring sensors, to estimate the state 
variables in such a manner that the error is statistically 
minimized [Maybeck, 1979]. In practice, linear equation 
system with white Gaussian noises is commonly taken as 
the standard model of a Kalman filter. However, one must 
generally face the following facts [Maybeck, 1979]: (1) 
no mathematical model is perfect, (2) dynamic systems 
are driven not only by own control inputs, but also by 
disturbances which can neither be controlled nor 

modelled deterministically, and (3) sensors do not provide 
perfect and complete data about a system. 
 
Hence, a Kalman filter can function properly only if the 
assumptions about its model structures, dynamical 
process and measurement noise are correct or realistic. It 
can become divergent if any of the following situations 
occurs [Schlee et al, 1967; Tarn et al, 1970; Gelb, 1974; 
Stöhr, 1986; Loffeld, 1990]: 

• Improper system model; 
• False modeled process noise; 
• False modeled measurement noise or 
• Unexpected sudden changes of the state vectors 

 
Correspondingly, one needs to study the behaviors of the 
errors associated with the system model. This may be 
called as system identification or system diagnostics, one 
of the advanced topics in Kalman filter. 
 
There are different ways to perform system identification. 
Statistic tests belong to the essential methods of system 
identification.  Herewith, the system model under the Null 
hypothesis is tested against one or multiple alternative 
hypotheses. The statistic algorithms can be divided into 
two categories. The first one is to make multiple 
hypotheses about the stochastic characteristics of a system 
(Multiple Hypothesis Filter Detectors) [Willsky, Deyst, 
Crawford, 1974, 1975; Willsky, 1976]. In order to reach a 
statistic decision, the posteriori probabilities of the state 
vectors will be calculated, for instance, through the 
sequential probability ratio test- SPRT [Willsky, 1976; 
Yoshimura, et al, 1979]. The second one is to perform the 
system identification with the help of series of system 
innovations (“Innovation-based detection”) [Mehra, 
Peschon, 1971; Stöhr, 1986; Salzmann, Teunissen, 1989; 
etc.]. With this method, the signal is filtered using a 
normal model, until a failure is found through the statistic 
tests, for example, through GLR (Generalized likelihood 
ratio) method [Willsky, 1976; Huep, 1986] or more often 
through the specific test statistics based on normal, , 
t - or F - distribution.  
 
Since the Kalman filter was introduced, how to 
characterize the error sources of a system, especially the 
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series of the system innovation, has caught certain 
research attention. [Stöhr, 1986] studied the statistic tests 
on the ground of Normal Distribution and - 
Distribution using system innovation. [Salzmann, 1993] 
summarized a three-part test procedure as Detection, 
Identification and Adaptation (DIA) using system 
innovation for Kalman filter, in which the construction of 
test statistics is essential. [Wang, 1997] further discussed 
the test statistics not only on the basis of normal and - 
distributions, but also on the basis of t - and F - 
distributions using both of the system innovation and 
measurement residuals in Kalman filter. 

2χ

2χ

 
A statistical test is no thing else, but a method of making 
statistical decisions based on the existing system model 
using experimental data. One needs statistic tests, for 
example, to identify abnormal dynamic changes of the 
system states, or to statistically verify the significance of 
the additional parameters, such as different sensor biases, 
in an integrated navigation system. Statistic tests can also 
help with studying the whiteness of system innovation. 
The detection of measurement outliers definitely needs 
statistic tests. A lot more examples exist in practice. They 
show how essential statistic tests are in Kalman filter so 
that a developer has to be capable of constructing the 
proper test statistics and applying them to practice.  
However, there is still a lack of systematic description of 
fundamentals of test statistics for Kalman filter in 
textbooks. Most of the available works have missed out 
this topic or, if not the case, the test statistics is mostly 
based on the Normal Distribution and the - 
Distribution only using system innovation. Applying of 
the t - and - tests is not common. 

2χ

F
 
From the perspective of both research and industry, it 
could be helpful to have a systematical understanding to 
the fundamentals of test statistics for Kalman filter, in 
order to use a Kalman filter well or develop new 
algorithms. However, the existing textbooks about 
Kalman filtering and applications do not normally talk 
about testing statistics, although they may be found 
miscellaneously in scientific publications of different 
fields. This manuscript aims to fill the gaps between the 
textbooks and scientific papers in the context of Kalman 
filter theory and applications. 
 
This manuscript is organized as follows. The  algorithm 
of Kalman filter is summarized in Section 2. Section 3 
gives the estimation of the variance factor, or more 
precisely, the variance of unit weight. The statistic 
characteristics of filtering solutions are described in 
Section 4. Sections 5 and 6 are dedicated to building up 
various test statistics for system innovation and 
measurement residuals. The concluding remarks are given 
in the last section. 

 
2. ALGORITHM OF KALMAN FILTERING  
 
The Kalman filter is a set of mathematical equations that 
provide an efficient recursive means to estimate the state 
of a process through minimizing its mean squared errors. 
This section is to provide a brief introduction to the 
discrete Kalman filter, which includes its description and 
some discussion of the algorithm.  
 
2.1. The Model 
 
We consider a linear or linearized system with the state-
space notation and assume that the data are available over 
a discrete time series },,, 10 Nttt K{ , which will often be 
simplified to },,1,0 NK{ . Without loss of generality, a 
deterministic system input vector will be droped in all of 
the expressions in this paper. Hence, at any time instant 
k ( k N≤ ≤1 ) the system can be written as follows: 
 
x )()()(),1()1( kwkkkAk x k B+ = + +   (1) 

)1()1()1()1( ++ = + + + kkxkCkz Δ   (2) 
 
where x )(k is the n-dimensional state-vector, )(kz is the 
p-dimensional observation vector, )(kw is the m-
dimensional process noise vector, )(kΔ is the p-
dimensional measurement noise vector, ),1( kkA +  is the 

nn×  coefficient matrix of x )(k )(kB, is the n m×  
coefficient matrix of )(kw , )(kC is the np×  
coefficient matrix of )(kz . The random vectors )(kw and 

)(kΔ  are generally assumed to be Gaussian with zero-
mean:  
 

))(,(~)( kQoNkw     (3) 
))(,(~)( kRoNk     (4) Δ

 
where )(kQ )(kR and  are positive definite variance 
matrices, respectively. Further assumptions about the 
random noise are made and specified as follows ( i j≠ ): 
 

OjwiwCov =     (5) ))(),((
OjiCov =     (6) ))(),((Δ Δ
OjiwCov =     (7) ))(),(( Δ

 
Very often, we also have to assume the initial mean and 
variance-covariance matrix )0(x  and )0(xxD  for the 
system state at the time epoch 0. In addition, the initial 
state x )0(  is also assumed to be independent of )(kw  
and )(kΔ  for all k.  
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2.2. Kalman Filtering Equations 
 
To derive the optimal estimate )(ˆ kx of )(kx , one may 
use one of several optimality criterions to construct the 
optimal filter. For example, if the least-squares method is 
used, the optimality is defined in the sense of linear 
unbiased minimum variance, namely,  
 

⎪⎭

⎪
⎬
⎫

=−−

=

min})ˆ)(ˆ{(

}ˆ{
TxxxxE

xxE
   (8) 

 
where x̂  is the unbiased minimum variance estimate of 
x . 

 
Under the given stochastic conditions in Section 2.1, one 
can derive the Kalman filtering for the state vector at 

1+k :  
 

)/1()1()/1(ˆ)1(ˆ kkdkGkkxkx ++++=+   (9) 
 
and its variance-covariance matrix 
 

)1()1()1()1()1({

)/1()}1()1({)1(

++++++−

+++−=+

kGkRkGkCkGE

kkDkCkGEkD
T

xxxx   (10) 

 
where 

)(ˆ),1()/1(ˆ kxkkAkkx +=+    (11) 

)()()(                             

),1()(),1()/1(

kBkQkB

kkAkDkkAkkD
T

T
xxxx

+

++=+
 (12) 

)/1(ˆ)1()1()/1( kkxkCkzkkd ++−+=+   (13) 

)1(
)1()/1()1()/1(

++
+++=+

kR
kCkkDkCkkD T

xxdd  (14) 

)/1()1()/1()1( 1 kkDkCkkDkG dd
T

xx +++=+ −  (15) 
 
Here )/1(ˆ kkx +  is the one-step prediction of the state 
vector from the past epoch k  with its variance matrix 

)/1( kkDxx + , )/1( kkd +  is the system innovation 
vector with its variance matrix )/1( kkDdd + , and 

)1( +kG  is the Kalman gain matrix. 
 
An essential characteristic of the sequence )0/1(d , …, 

)/1( iid + , …, )/1( kkd +  is that they are independent 
from each other epochwise [Stöhr, 1986; Chui, Chen, 
1987]: 
 
 OjjdiidCov =++ )}/1(),/1({  for  ( ji ≠ ) (16) 
 

The stochastic characteristics of )/1( kk +d  are 
obviously the mixture of the stochastic information from 
the real observation noise { }),2(),1( KΔΔ  and the system 
noise }),1(),0({ Kww . Traditionally, the system 
innovation sequences are analyzed and used to build up 
the test statistics. 
 
2.3.  An alternate Derivation of Kalman Filtering 
 
Let us analyze the error sources in Kalman filter in a 
different way. The optimal estimate )1(ˆ k +x  of 

)1(kx + at the instant k is always associated with the 
stochastic information, which may be divided into three 
independent groups: 
 

a. The real observation noise )1( +kΔ , 
b. The system noise )(kw , 
c. The noise from the predicted )/1( kkx +  through ˆ

)(ˆ kx , on which the stochastic characteristics of 
)}(, k),2(),1({ ΔΔΔ K , )}1(,),1(),0({ −kw are 

propagated through the system state model. 
ww K

 
If these different error resources could be studied 
separately, it could be very helpful to evaluate the 
performance of a system in Kalman filter. Along with this 
line of thinking, the system model as in 2.1 can be 
reformulated through the three groups of the observation 
or residual equations as follows: 
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where the independent (pseudo-)observation groups are 
simply listed by 
 

)1()1(
)()1(

)(ˆ),1()1(

0

+=+
=+

+=+

kzkl
kwkl

kxkkAkl

z

w

x

                 
)22(
)21(
)20(

 

 
with their variance-covariance matrices by 
 

),1()(),1()1( kkAkDkkAkD T
xxll xx

++=+            (23) 

)()1( kQkD
wwll + =                 (24) 

)1()1( + = kRkD
zzll +                 (25) 

 
)1(kl x + , )1(klw +  and )1()1( +=+ kzkl z  are the n-, 

m- and p-dimentional measurement or pseudo-
measurement vectors, respectively. Usually okw =)(0 . 
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Again, by applying the least squares method, the identical 
estimate )1(ˆ +kx  of )1( +kx  as in the section 2.2 can be 
obtained. For more details on this alternate derivation of 
Kalman filter and its advantages, the reader is referred to 
[Wang, 1997; Caspary and Wang, 1998]. 

})(),(),(diag{)( kDkDkDkD
zzwwxx llllllll =

 
This alternate derivation of Kalman filtering will directly 
make the measurement residual vectors available for error 
analysis and possibly to build up the test statistics in 
Kalman filter, since it is based on the measurement 
residual vectors. One can now analyse any of three 
measurement vectors through their own residual vectors. 
The measurement residual vectors are the functions of the 
system innovation vector epochwise  
 

)1/()()1/()()( 1 −−= − kkdkKkkDkDkv xxllll xxxx
 (26) 

)1/()()1/()1()1()( 1 −−−−= − kkdkKkkDkBkQkv xx
T

ll ww

              ......(27) 
)1/(})()({)( −−= kkdEkKkCkv

zzll   (28) 
 
Similar to (16), we can readily prove the following results 
of independence:  
 

OjvivCov =)}(),({   for  ( ji ≠ )   (29) 
 
3. VARIANCE OF WEIGHT UNIT 
 
The posteriori estimation of the variance of weight unit 

2
0σ  is essential in Geomatics. Some confusion has been 

out there in applications of Kalman filer, because the 
variance-covariance matrices are directly used in Kalman 
filter. Surely the variance of weight unit, also called as 
variance factor, should be close to unity for a perfect 
model of system. However, this barely happens in 
practice. 
 
An algorithm for the estimation of unknown variance 
factor 2

0σ  was constructed on the ground of the normal-
Gamma distribution in [Koch, 1990]. It allows estimating 
the variance factor together with the state vector in 
Kalman filter. Alternatively, 2

0σ  can also be estimated by 
taking advantages of the sequences of the system 
innovation or the measurement residual vectors in [Wang, 
1997 etc]. The single epoch estimate of 2

0σ , also called as 
the local variance of unit weight, is given by 
 

)(
)()()(

)(ˆ
1

2
0 kr

kvkDkv
k ll

T

l

−

=σ       (30) 

 
where 

T])(),(),([)( kvkvkvkv T
l

T
l

T
l zwx

=    (31) 

  (32) 

and )(kr  is the number of the redundant measurements at 

epoch k ( t Nk tt< ≤0 ). An alternate expression exists: 
 

)(
)1/()1/()1/(

)(ˆ
1

2
0 kr

kkdkkDkkd
k dd

T

l
−−−

=
−

σ     (33) 

 
The proof of equivalence between (30) and (33) can be 
referred to [Pelzer, 1987; Tao, 1992; Wang, 1997]. One 
can also estimate the variance factor 2

0σ  over a specific 
time interval as the regional estimate of variance of unit 
weight. For example, over a certain specified time interval 
from epoch ( − sk +1 ) to epoch k , one can order the 
system innovation for these s epochs as follows 
 

T])1/(),...,3/2(

),2/1([(s)

−−+−+

−+−+=

kkdskskd

skskdd
TT

T
r  (34) 

 
with its variance matrix 

})1/(),...,3/2(

),2/1(diag{(s)(s)

−−+−+

−+−+=

kkDskskD

skskDD

dddd

dddd rr (35) 

 
The regional estimate of 2

0σ  is then equal to 
 

(s)
(s)(s)

)(ˆ
1

)()(2
0

r

sdsd
T

r f
dDd

k rr

−

=σ       (36) 

 
(s)rfwhere  is the total number of the redundant 

measurements of s epochs: 
 

∑
=

+−=
s

j
r jskrf

1

)((s)     (37) 

 
Furthermore, the global estimate of 2

0σ  for all of the past 
k epochs can be calculated by 
 

)(

)()(
)(ˆ

1
)()(2

0 kf

kdDkd
k

g

kdkd
T
g

g
gg

−

=σ       (38) 

 
where 

T])1/(,),1/2(),0/1([)( −= kkdddkd TTT
g K  (39) 

})1/(),...,1/2(),0/1(diag{)()( = kkDDDD ddddddkdkd gg
−

                       … …(40) 

∑
=

=
k

j
g jrkf

1

)()(      (41) 
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4. STATISTIC CHARACTERISTICS OF 
FILTERING SOLUTIONS 

 
In order to evaluate the quality of the solutions and 
construct different test statistics, the statistic distributions 
of various random vectors are used in Kalman filter on the 
ground of the hypothesis: the normal distributed process 
and measurement noise as given in 3.1 will be discussed. 
At an arbitrary epoch k, all of the derived random 
variables or vectors are the functions of the measurement 
vector TT

z
T
w

T
x klklklk )](),(),([) =l(  (see (20) ~ (22)). 

Among them, )1−/( kkd , )(ˆ kx , )(kv , )(ˆ 2
0 kσ  are 

essential for quality control of a system. By applying the 
law of error propagation, their distributions are easily 
known as: 
 

))1/(,0(~)1/ −− kkDNkk dd(d    (42) 
))(,(~) kDNk xxx(x̂ μ     (43) 

))(,0(~) kDNk vv(v     (44) 

))((~)()()(

)1/()1/()1/(
21

1

krkvkDkv

kkdkkDkk

ll
T

dd

χ−

−

=

−−−d T

 (45) 

 
where ),( baN  represents a normal distribution with a 
and b as its expectation and variance, respectively. 
 
The i-th component )1/( −kkd i  in )1/( −kkd  is 
normally distributed as follows: 
 

),0(~)1/( 2
)1/( −− kkdi

Nkk σid  
          (i = 1, 2, …, p; k = 1, 2, … N) (46) 
 

Any arbitrary subvector of )1/( −kkd  is also normally 
distributed. Based on the independency of the innovation 
vectors between two arbitrary epochs shown in (16), the 
vectors )(sd r  and )(kd g  as in (34) and (39) belong to 
the following normal distributions: 
 

),0(~)( )()( sdsdr rr
DNsd     (47) 

),0(~)( )()( kdkdg gg
DNkd     (48) 

 
wherein )()( sdsd rr

D  and )()( kdkd gg
D  are as in (35) and 

(40). Analog to (46), any arbitrary components )(kd gi  

and )(sdri  for the i-th type of observations also belong to 
the normal distribution: 
 

),0(~)( )()( kdkdgi gigi
DNkd  (i = 1, 2, …, p) (49) 

),0(~)( )()( sdsdri riri
DNsd   (i = 1, 2, …, p) (50) 

 

where, for  i = 1, 2, …, n+m+p,  
 

( )Tiiigi kkdddkd )1/(,),1/2(),0/1()( −= L     (51) 

( ),1/2(),/1()( = − + − +− − skskdskskdsd iiri +  

)Ti kkd )1/(, −L             (52) 
 
with their corresponding variance-covariance matrices 
 

)()( kdkd gigi
D =   

( )2
)1/(

2
)1/2(

2
)0/1( ,,, −kkddd iii

diag σσσ L  (53) 

( ,, 2
)1/2(

2
)/1()()( +−+−−+−= skskdskskdsdsd iiriri

diagD σσ  

)2
)1/(, −kkdi

σL  (54) 
 
The i-th component )(kiv  of )(kv  is of the normal 
distribution, too: 
 

),0(~)( 2
)(kvi i

Nkv σ  
(i = 1, 2, …, n+m+p; k = 1, 2, …, N) (55) 
 

For any arbitrary subvector of )(kv , e.g. )(k
xlv , )(kv

wl
 

or )(kv
zl , the normal distributions  apply. The global 

cumulative measurement residual vector for all of the past 
epochs can be defined as 
 

( )TTTT
g kvvvkv )(,),2(),1()( L=   (56) 

 
and the regional cumulative from the past s epochs as 
 

( )TTTT
r kvskvskvsv )(,),2(),1()( L+−+−=  

    … … (57) 
 

with the following corresponding variance-covariance 
matrices 

)()( kvkv gg
D =

( ))()()2()2()1()1( ,,, kvkvvvvv DDDdiag L  (58) 

(D ,, )2()2()1()1()()( +−+−+−+−= skvskvskvskvsvsv DDdiag
rr

 
    ))()( kvkv, DL    (59) 
 
So )(kv g  and )(krv  are obviously normally distributed: 
 

),0(~)( )()( kvkvg gg
DNkv     (60) 

),0(~)( )()( svsvr rr
DNsv     (61) 

 
Similar to (49) and (50), the individual components of 

)(kv g  and )(krv : 
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( T
iiigi kvvvkv )(,),2(),1()( L= )   (62) 

( ),2(),1()( +−+−= skvskvsv iiri  

   )Ti kv )(,L      (63) 
 

belong to the following normal distributions  
),0(~)( )()( kvkvgi gigi

DNkv    (64) 

),0(~)( )()( svsvri riri
DNsv     (65) 

 
with i = 1, 2, …, n+m+p, where  

( )2
)(

2
)2(

2
)1()()( ,,, kvvvkvkv iiigigi

diagD σσσ L=  (66) 

( )2
)(

2
)2(

2
)1()()( ,,, kvskvskvsvsv iiiriri

diagD σσσ L+−+−=

               … … (67) 
 
are the variance matrices of )(kv gi  and )(svri .  
 
For multiple components in )(kd g , )(sd r , )(kv g  or 

)(kvr , the same rule applies. 
 
5. TEST STATISTICS FOR SYSTEM 

INNOVATION 
 
This section will construct test statistics using system 
innovation. Under the assumption that no outliers exist in 
measurements, one could diagnose the possible failure 
caused by inappropriate state equations. Contrarily, one 
can identify the possible outliers under the assumption if 
the system model is assumed to be correct. The cause of a 
failure may be ambiguous and need to be analyzed in 
more details. 
 
In this and next sections, we turn to perform statistic tests 
the epoch k = 1, 2, … from the very beginning to an 
arbitrary epoch. The statistic tests will be introduced in 
three different levels, namely, global for all of the past k 
epochs, regional for an arbitrary continuous epoch group, 
e.g., the s epochs in the past, and local for a single epoch 
(often the current epoch). The first two tests are very 
meaningful for the identification of systematic errors and 
the local one aims directly at the potential outliers or the 
unexpected sudden state changes.  
 
5.1. Global Test Statistics 
 
Global tests can be introduced in two different ways to 
investigate the system behaviors. Right after the first k 
epochs are completed, one can perform the statistic tests 
with all of the system innovation information from the 
past and with their individual components by constructing 
the corresponding – test statistics. 2χ
 

With all of the past k epochs together (k = 1, 2, …, N), the 
null hypothesis about )(kdg  
 

0)(0 : =kd gH  or ~)(: 2
0

2
)(0 == σχ kd g

EH 0.1  (68) 

 
and its alternative 
 
 0)(1 : ≠kd gH  or ~)(: 2

0
2

)(1 =≠σχ kd g
EH 0.1      (69) 

 
can be performed  according to (48) by using the test 
statistic [Salzmann, Teunissen, 1989] 
 

))(,(~)()( 21
)()(

2
)( kfkdDkd gggkdkd

T
gkd ggg

αχχ −=

g

     (70) 

 
at a significance level with the Type I error α . 

),(2 fαχ  is the )1( α− - critical value from –
Distribution with the degrees of freedom of f after (41). 
The null hypothesis (68) will be rejected if 

2χ

 
))(,(22

)( kf ggkd g
αχ>χ     (71) 

 
The test can easily be extended to the i-th component 

)(kd gi  in )(kd g  for i = 1, 2, …, p and k = 1, 2, …, N. 
Under the null hypothesis 
 

0)(:0 kdH gi =      (72) 
 
against its  alternative 
 
                (73) 0)(:1 kdH gi ≠

 
Based on (49), the test statistic can be given by  
 

)(~)()( 21
)()(

2
)( kkdDkd gikdkd

T
gikd gigigi

χχ −=   (74) 

If 
),(22

)( kgikd gi
αχχ >

gi

 (i = 1, …, p)  (75) 

 
under the given significance level α , the null 
hypothesis will be rejected. 
 
5.2. Regional Tests 
 
For the regional system diagnose, the processed k epochs 
can be grouped at the user’s wish. Without loss of the 
generality, the discussion here will be limited to two 
groups. We consider having the first group for the first k – 
s epochs (from 1 to epoch k – s) and the second group for 
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the rest of the epochs (from epoch k – s + 1 to epoch k) as 
)( sk −dr  (equivalent to )s(kgd − ) and )(sd r . 

 
The null hypothesis about )(sd r  is 
 

0.1)(:0 =sd rH          (76) 
against the alternative 

0)(:1 ≠sdrH           (77) 
 
On the ground of the test statistic [Willsky, 1976; Stöhr, 
1986; Salzmann, Teunissen, 1989], the following test is 
performed 
 

))((~)()( 21
)()()( sfsdDsd rrsdsd

T
rs rrr

χ−=2
dχ   (78) 

 
at the significance level of rα , where the number )(sf r  
is the degrees of freedom as in (37). For the second group 

)( skdr − 2χ also has the - distribution as 
 

)()( 1
)()()( skdDskd gskdskd

T
gsk ggg

−−= −
−−−

2
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An additional F–test statistic can be constructed to test the 
variance homogeneity between (78) and (79) or (70) 
because )(sd r  is independent from )( skdr − . This F–
Test is given by 
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),( baF  in (80) is the critical value of the Fisher 

distribution with the 1st degrees of freedom a for the 
numerator and the 2nd one b for the denominator. This test 
is always one-sided under a user- specified Type I error 
α  as the significance level. An exchange between the 
numerator and the denominator may need in case 

)(ˆ 2
0gσ sk −  greater than )(ˆ 2

0 srσ . This test is commonly 
employed to diagnose the significant difference between 
the first k – s epochs and the rest of s epochs. 
For the i-th component )(sdri  in )(sd r , one can also 

construct a test based on (50) and another F–test 
analogue to (80). It runs 

2χ

 

0)(:0 sdH ri =      (83) 
against the alternative 
 0)(:1 ≠sdH ri

2χ

                      (84) 

by using the  test statistics 
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An F-test runs for their variance homogeneity between 
(85) and (79) or (70) as follows 
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for i = 1, …, p at the significant level of α . 
 
5.3. Local Tests 
 
Through the local system diagnose, the tests can be 
introduced for the innovation vector as a whole and for its 
components, respectively. 
 
At an arbitrary epoch k, the null hypothesis for 

)1/( kkd −  
 

0)1/(:0 kkdH − =        (86) 
against the alternative  
 0)1/(:0 kkdH − ≠              (87) 
 
can be given. Its test statistic runs 
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at the significance level of α  with the degrees of 
freedom r(k). 
 
A further F–test statistic can be introduced as 
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for the variance homogeneity between (81) and (33) or 
(88). s means arbitrary specific epochs between epoch 1 
and epoch k – 1. 
 
The quadratic form in (45) contains the entire information 
from the system innovation for an arbitrary epoch. 
Therefore, the causes of a system failure must be 
localized after the rejection of a 2

)1/( −kkdχ )1/( −kkdF or  
test. It should orient to the individual error sources, e.g. 
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the individual measurements or the individual process 
noise factors etc. in kinematic positioning or navigation. 
One should perform the further statistic tests for the 
individual measurements. 
 
In order to perform the statistic tests for multiple 
components in )1/( −kkd , the method for detection of 
position displacements in deformation analysis can be 
employed. More on this can be found in [Chrzanowski, 
Chen, 1986].  
 
The test statistic for single component of )1/( −kkd  can 
directly be constructed on the ground of the normal 
distribution or the t–distribution. The null hypothesis is 
 

0))1/((:0 =−kkdE iH       (90) 
with its alternative 
 0))1/((:1 ≠−kkdE iH                   (91) 
 
for i = 1,2, …, p and k = 1, 2, …, N. According to (46) the 
test is performed 
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at the significant level of α . The null hypothesis will be 
accepted if the two-sided test satisfies 
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where 
2

1 liα
−

u  is a )
2

1( liα
− -critical value from the 

standard normal distribution. Furthermore, based on the 
past system information, (93) can be extended to the 
following t–test 
 

))((~
)(ˆ

/)1/(

0

)1/(
)1/( sft

s
kkd

r
r

kkdi
kk

i

σ

σ −
−

−
=Tdi

 

  (i = 1, 2, …, p; k = 2, 3, …, N)   (94) 
 

The most common case is to test the current epoch k vs. 
the past k – 1 epochs. 
 
The differences between (93)-(94) and (88)-(89) are 
obvious. However, which one is preferable will absolutely 
depend on the user. A t-test or an F-test may deliver the 
more reliable results of fit to the real data, while a normal 
or a 2χ
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)(k

)(kgi )(kv g
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 test is introduced with respect to the a-priori 
assumption. 

6. TEST STATISTICS FOR MEASUREMENT 
RESIDUALS 

 
As it can be seen, the system innovation mixes up 
different types of information. But it is transferred to the 
individual measurement residuals epoch by epoch through 
(26) ~ (28), i.e., the residual vector v  for the 

predicted state vector, the residual vector v  for the 

process noise and the residual vector v  for the direct 
measurements. In this way, these different types of 
random information can separately be studied. On the 
basis of the fact that (30) and (33) are equivalent, the test 
statistics ,  and  in (70), (78) and 

(88) can also be derived using the measurement residual 
vector v . But it is not necessary to be repeated here. 
Therefore, only the test statistics for the individual 
components will be discussed in this section.  
 
6.1.  Global Tests 
 
For the i-th component v  in , the null 
hypothesis is 
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               (96) 
The test statistic is given by 

  (97) 

 
with the degrees of freedom of k. The null hypothesis will 
be rejected if  
 

 (i = 1, 2, …, n+m+p)        (98) 

 
at the significant level of giα

)(sri )(sr

0)(:0

. 
 
6.2.  Regional Tests 
 
For the i-th component v  from v , a χ2–test and 
a F–test can be constructed. The null hypothesis is 
 

=svH ri
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     (99) 
with the alternative 
 ≠svH ri
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                                  (100) 
The corresponding test statistic is given by 
 

 
  (i = 1, 2, …, n+m+p)                     (101) 
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with the degrees of freedom of s. For the variance 
homogeneity between the independent  and 

 similar to (80), the F–test statistic can be 

introduced as 
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χ
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6.3.  Local Tests 
 
The single outlier detection at a single epoch can be 
modeled through the null hypothesis 
 

0)(:0 =kvi                 (103) 
against the alternative 
                 (104) 0)(:1 ≠kvi

 
for i = 1, 2, …, m+n+p and k = 1, 2, … after the test of its 
standardized residual 
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at the significant level of liα . The null hypothesis (102) 
will be accepted if 
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Besides a t-test between (105) and (78) or (70) can be 
introduced as follows 
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 (i = 1, 2, …, n+m+p; k = 2, …, N)             (107) 
 

For any epoch k, one can use v ,  and v , 

along with v  to investigate the statistic characteristics 
of measurement vectors ,  and , 
especially two latter ones. Multiple components are 
possibly diagnosed together in the same way as 
mentioned in 5.3. 
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7. CONCLUDING REMARKS 
 
Based on the standard model of Kalman filter, different 
test statistics have been elaborated on the basis of the 

normal, -, t - and F -distributions in this manuscript. 
This work can be conducive to better understanding of the 
statistic fundamentals in Kalman filter, provides some 
insights into statistic testing methods and applications. 
 
In particular, the system innovation vector is transformed 
to the residual vectors of three measurement and pseudo-
measurement groups by the aid of an alternative 
derivation of Kalman filter algorithm. This makes 
possible to construct test statistics directly using the 
measurement residual vectors so that the system diagnosis 
can directly aim at different error sources of interests to 
users. The given posteriori estimate of variance of weight 
unit in Section 3 can be used either to scale the variance 
and covariance matrices, or to reveal the difference 
between the model and the processed data set. On the 
ground of statistic characteristics of filter solutions 
summarized in the section 4, the test statistics using the 
series of system innovation are constructed in the section 
5 globally with - test, regionally either with - test 
or 

2χ 2χ
F - test, and locally either with t - test or the normal 

test according to the normal distribution. Analogous to the 
section 5, the section 6 constructs the corresponding test 
statistics using the measurement residuals. Fortunately, 

- test, 2χ F - test, t - test and the normal test are four 
most commonly used statistic tests. The choice between 
a - test and a 2χ F - test, or between a t - test and a 
normal test, wherever two parallel tests are available, is 
left to the user. 
 
How to construct a test statistics is more or less a 
theoretical task. But how to efficiently design the 
procedures to introduce the statistic tests in practice 
mostly depends on the understanding about the theory and 
the application. Practical experience plays an essential 
role in helping deliver a realistic and reliable test scheme. 
This manuscript however has limited to the testing 
statistics for general purposes instead of a specific 
application.  
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