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Abstract: Resulting from the short production cycle and rapid design technology development,
traditional prognostic and health management (PHM) approaches become impractical and fail to
match the requirement of systems with structural and functional complexity. Among all PHM designs,
testability design and maintainability design face critical difficulties. First, testability design requires
much labor and knowledge preparation, and wastes the sensor recording information. Second,
maintainability design suffers bad influences by improper testability design. We proposed a test
strategy optimization based on soft-sensing and ensemble belief measurements to overcome these
problems. Instead of serial PHM design, the proposed method constructs a closed loop between
testability and maintenance to generate an adaptive fault diagnostic tree with soft-sensor nodes. The
diagnostic tree generated ensures high efficiency and flexibility, taking advantage of extreme learning
machine (ELM) and affinity propagation (AP). The experiment results show that our method receives
the highest performance with state-of-art methods. Additionally, the proposed method enlarges the
diagnostic flexibility and saves much human labor on testability design.

Keywords: prognostic and health management; extreme learning machine; soft sensors

1. Introduction

With the increasing use of electric devices, prognostic and health management engi-
neering (PHM engineering) has played an extremely significant role in product lifetime
management over decades [1]. PHM engineering ensures electric devices’ lifetime healthy
operation and provides appropriate resource assignment for product management [2]. In
recent years, the production cycle has shortened because circuit technology and system de-
sign have rapidly developed [3–6]. The system structures have become more complicated,
more integrated, more intelligent, and highly intensive [7]. Additionally, the potential test
procedures and fault cases grow exponentially. As a result, PHM engineering has received
active demand and new challenges. Practical conditional maintenance (CM) solutions
become difficult to generate on modern system applications. On another hand, CM must
be flexible enough to math structure complexity and system function complexity. Hence,
efficient PHM engineering solutions for modern devices become an urgent problem for
academic researchers and industrial engineers.

Under the CM design, testability design and maintainability design are two essential
projects to determine supportability, enhance reliability, and guarantee safety during life-
time device management [8]. Testability design analyses the system’s internal structures,
selects test projects and arranges test procedures, estimates the system operation condition,
and locates failure modes. The key difficulty for testability design is balancing the system’s
high structural complexity and the solution efficiency properly. Classical testability design
approaches use dynamic programming (DP) to assess optimal solutions [9,10]. However,
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classic methods suffer from high time complexity when either the number of test projects
or failures is larger than 12.

In recent years, the AO* method [11], a sequential testing generation method, balances
the generation complexity of test solutions and detection performance for diagnostic pro-
cedures with heuristic searching and AND/OR graph topology. Thus, the AO* method
became the most popular testability design technique. To match the growing electric system
complexity, AO* has been improved to optimize searching mechanisms with information
theory [12], evolution algorithms [13,14], dynamic design [15], etc. Additionally, advanced
research has simplified searching procedures with rollout strategy [16] and bottom-up
decision tree [17] to achieve practical large-system testability solutions. Despite good
application results, these testability design approaches need to assign logic relationships
between test procedures and failure modes. Hence, all these methods assume that depen-
dent single-signal operations and sequential procedures can make all diagnostic decisions.
However, modern devices contain highly complicated logistic relationships [18] between
test procedures and potential failure modes under many scenarios. Consequently, the testa-
bility design consumes too much human power and affects the testability design efficiency
to prepare prior knowledge, especially under short production cycles. Furthermore, the
testability design wastes the entailed sensor recording information from test procedures as
the existing methods rely on human-selected binary information.

The maintainability estimation model provides real-time operation condition diag-
nosis and realizes system health management along with testability design. In general,
existing maintainability design approaches can be divided into physics-of-failure (PoF)
approaches [19–22] and data-driven (DD) approaches [23–25]. PoF approaches use rules
from physics or chemical dynamics to estimate electric system failure conditions [26]. With
accelerated aging of experimental records and prior modeling knowledge, PoF approaches
generate an accurate dynamic model under specific stress influences such as thermal, elec-
trical, and humidity. However, most PoF approaches are only suitable under one stress
function, and the methods face high limitations with real applications.

Unlike PoF methods, DD approaches rely on historical sensor information and build
maps from sensor recording to failure modes. Hence, DD approaches become more flexible
compared to PoF methods. Classical DD approaches use statistic methods such as stochastic
methods, regression methods, distance estimation, and similarity estimation [27–30]. These
methods require large samples to ensure unbiased estimation and model robustness, and
are constrained in off-line modeling. Therefore, statistical approaches have limitations on
maintainability design with few sampling records and short time constraints. In recent
years, machine learning (ML) methods [31,32] have attracted research attention because
of its high accuracy, strong adaptive ability, powerful robustness, and fast computation
time. As a result, ML methods, such as neural networks (NN) [33], support vector machine
(SVM) [34,35], k-nearest neighbors (KNN) [36], K-means clustering [37], and particle filters
(PF) [38], have been used for maintenance design and tuned to successfully extract hidden
rules from failure mode and recording information [39]. However, these methods require
prior information selection and the preprocessing system degradation features. The perfor-
mance of testability and maintainability may affect the preprocessing model input due to
the complicated system structure and the complex recording information relationships.

We propose a test strategy optimization based on this paper’s soft-sensing and ensem-
ble belief measurement to overcome this weakness described above. We suggest a closed
loop framework for PHM design to replace the sequential framework between testability
and maintenance design. Instead of experienced knowledge, our method uses ensemble
learning based on direct sensor recordings to gain the system state estimation. Additionally,
we connect the testability and maintenance design by the minimal conditional criterion
to optimize the test strategy. Consequently, the proposed method improves the flexibility
of PHM design, saves labor, and enhances diagnostic efficiency. The contributions of our
work follow.
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• Our model builds diagnostic strategies without much prior knowledge and human-
elected features. The diagnostic tree is constructed with ELM-based soft-sensor nodes.
Instead of experienced features, ELM-based soft-sensor nodes provide basic probability
assignment (BPA) directly from the sensor records. Hence, our methods cut the
testability design human labor since the method needs no system mechanisms analysis.

• We build a closed loop between testability design and maintenance design. Thus, the
maintenance design makes full use of testability design information and improves the
testability design efficiency with the advantage of ELM-based construction modules.

• Our model divides the fault set adaptively into several fuzzy sets with affinity propa-
gation and improves the diagnostic efficiency of single test procedures.

The experiment proves that our method has better diagnostic accuracy and lower
false alarm ratios than other state-of-art diagnostic methods. Additionally, our diagnostic
strategies take only a few tests with little test assignment consumption. For each fault
state, the diagnostic procedures provide one efficient test sequence. Thus, the diagnostic
procedure enjoys high efficiency for applications. Finally, affinity propagation enlarges the
diagnostic flexibility and significantly reduces human labor used on testability design.

The rest of this paper is organized as follows. We introduce the PHM design problem
and provide the general framework in the next section. Section 3 presents the details of
the algorithms and Section 4 provides the experiment results and discussions. Finally,
conclusions are drawn in Section 5.

2. Problem Formulation and General Framework

PHM engineering estimates the degradation processes and recognizes failure modes
over the product’s full lifetime. Based on experimental research and application surveys,
PHM engineering provides fault analysis and maintenance advice to prevent failure occur-
rence. PHM engineering elements and the corresponding relationships are presented in
Figure 1.
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Figure 1. Element and the corresponding relationship of PHM engineering. Figure 1. Element and the corresponding relationship of PHM engineering.

To study the target systems, engineers analyze potential failure modes and find
unsafe and unreliable features. Thus, the target system’s safety and reliability, reflected
by its failure features, draw attention to system failure physical characteristics. For higher
reliability and safety, the PHM platform provides maintenance procedures and diagnostic
approaches for the system’s supportability. The diagnostic approach depends on testability
and the maintenance procedures that rely on maintainability.
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Testability is the design characteristic that the health condition can be detected accu-
rately and failure modes can be located successfully. Meanwhile, maintainability is the
ability to repair and recover the system under certain conditions within a certain time.
The PHM services can ensure healthy system operation and achieve the PHM engineering
purpose with proper maintenance and testability design. In general, supportability is the
key PHM engineering purpose influenced by testability and maintainability; thus, the
PHM must meet the environmental stability needs. The physical system structure directly
influences safety and reliability while system elements reflect safety and reliability critically.
High testability and maintainability quality improve the system reliability and safety with
good maintenance design procedures and diagnostic approaches. Hence, testability design
and maintenance design are two significant PHM platform parts.

Since testability and maintenance are important, various techniques provide practical
testability design and maintenance design. To our best knowledge, existing methods build
a sequential approach to generate the PHM service. As Figure 2 shows, the traditional
framework arranges the test procedures to assess the sensor recording and create mainte-
nance design with the assigned sensor records. The framework is applicable for many large
systems. However, the testability design uses human experience binary information such as
information flow chart, dependence matrix and AND/OR graph. Therefore, the testability
design suffers from extended time and the financial burden with modern complex systems,
ignores the coupling effects between test procedures, and wastes valuable sensor recording
information. As a result, the maintenance design receives poor performance and low
efficiency because of poor information usage and low knowledge transmission efficiency
from testability design and maintenance design.
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We introduce a closed-loop test strategy optimization method on soft-sensor informa-
tion and ensemble learning to overcome the weakness. Similar to traditional PHM design
approaches, the proposed method aims to generate a fault diagnostic tree and cut the fault
set with testability sensor information and maintenance signal processing. In contrast, our
fault tree grows with direct sensor recording information directly along with the processing
module and extends with basic probability assignments. On the other hand, the PHM
design process contains a cooperative closed loop between testability and maintenance
design to improve information usage and transmission efficiency during fault detection.

The general framework of the proposed method is presented in Figure 3. For mainte-
nance design, the soft sensor integrates the recording information from assigned sensors
and the processing signal, such as statistical method, support machine, and learning ma-
chine to extract suitable test features. Considering the requirement of fast diagnosis and
detection, we use extreme learning machine (ELM) [34], a noniterative single-layer learning



Sensors 2022, 22, 2138 5 of 22

machine, to generate accurate fast processing modules of soft-sensing nodes. The details
are introduced in the next section.
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Suppose there exists N possible sensors with the PHM system design; therefore, the
potential test procedures set is denoted as Tpotential = {t1, t2, . . . , ti, . . . tN−1, tN}, where ti
means the test procedures with i-th sensors. As each sensor contains a vector of information
xi = {xi,1, xi,2, . . . , xi,K}, i = 1, 2, 3, . . . , N with M existing samples from the targeted system,
the training information is regarded as:

Xtrain =


x1,1 x1,2 . . . x1,N
x2,1 x2,2 . . . x2,N

...
...

. . .
...

xM,1 xM,2 . . . xM,N

 (1)

where xij is the recording information vector from the j-th sensor for i-th sample, j = 1,2,3,
. . . , N, and i = 1,2,3, . . . , M.

With the sampling information, the potential fault tree soft-sensor node structure is
denoted as following:

Node =
{

S f ather, Sson, Tnode, Xnode, Ynode, ELMnode, mexemplar

}
(2)

where the Tnode is the assigned test procedures from previous selected soft-sensor nodes
and the potential selected test procedure, and Xnode is the training sample sensor recording
information to detect under the node, as follows:

Xnode =
[
x1,Tnode , x2,Tnode , . . . , xMnode ,Tnode

]T (3)

xi,Tnode =
{

xi,j
∣∣tj ∈ Tnode

}
(4)
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where Mmode is the number of the sampling data. Ynode provides the corresponding sample
failure conditions. Suppose the whole set of failure mode is Snode = {s1, s2, . . . , sK}, where K
is the number of fault modes considered, then Ynode is determined with the actual condition
of training samples as follows:

Ynode =
[
y1, y2, . . . , yMnode

]T
(5)

yi = [yi,1, yi,2, . . . , yi,K] (6)

yi,j =

{
1 ssi = sj

0 ssi 6= sj
(7)

where ssi is the actual i-th sample fault mode. Additionally, S f ather is the fault mode set of
the soft-sensor node, represented as follows:

S f ather =
{

sj
∣∣∃xi ∈ Xnode and sj ∈ S, ssi = sj

}
(8)

With Xnode and Ynode, the ELM serves as the soft-sensor signal processing part and
aims to provide the fuzzy set of fault states as much as possible. To achieve the goal, ELM
builds a map f : R1×N → R1×K from the training sample signals to estimate the fault states
and provides the training sample prediction Mnode as follows:

Mnode = [ f (x1,Tnode

∣∣ELMnode), f (x2,Tnode

∣∣ELMnode), . . . , f (xMnode ,Tnode

∣∣ELMnode)]
T (9)

With Mnode, ELM estimates the training sample failure modes. To determine the
processing part performance, Ynode is used as the expected output marks for the fault
detection process. From the view of detection process, two indexes, fault detection rate
(FDR) and false alarm rate (FAR), play essential roles in evaluating the accuracy.

FDR is defined as the ratio between the failure mode probability that is successfully
detected with the ELM and the total failure modes probability. Here, we assume the
historical samples are subject to the general failure probability distribution of the real
applications. Thus, the statistic characteristics of training samples reflect the total failure
mode probability and the training sample detection performance depicts the detection
probability. From above, FDR for the node is presented as follows:

FDRnode =
∑Mnode

i=1 ∑K
j=1 P( f j(x1,Tnode |ELMnode) ≥ 1− ε, yi,j = 1)

∑Mnode
i=1 ∑K

j=1 yi,j
(10)

where ε is the detection margin. From the generation process, f j(x1,Tnode

∣∣ELMnode) and yi,j
are independent of each other. Additionally, since ELM provides a continuous probability
estimation, the loss function with respect to FDRnode is computed as follows:

LFDRnode =
∑Mnode

i=1 ∑K
j=1
(
yi,j − f j

(
x1,Tnode

∣∣ELMnode
))

P
(
yi,j = 1

)
∑Mnode

i=1 ∑K
j=1 yi,j

(11)

Along with FDR, FAR presents the ratio between false-alarm failure mode probability
and the total failure detection probability. Taking consideration of f j(x1,Tnode

∣∣ELMnode) ,
FAR is computed as follows:

FARnode =
∑Mnode

i=1 ∑K
j=1 P

(
f j
(
x1,Tnode

∣∣ELMnode
)
≥ 1− ε, yi,j = 0

)
∑Mnode

i=1 ∑K
j=1 P

(
f j
(
x1,Tnode

∣∣ELMnode
)
≥ 1− ε

) (12)

Here, it is assumed that the model has enough accuracy so that the failure estimation and
the total failure conditions have approximate values. Thus, ∑Mnode

i=1 ∑K
j=1 P( f j(x1,Tnode |ELMnode)
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≥ 1− ε) is able to be approximately equal to ∑Mnode
i=1 ∑K

j=1 yi,j. Therefore, the loss function of
the FAR is denoted as:

Lnode =
∑

Mnode
i=1 ∑K

j

(
yi,j− f j

(
x1,Tnode

∣∣∣ELMnode

))2
P(yi,j=1)

∑
Mnode
i=1 ∑K

j yi,j

+
∑

Mnode
i=1 ∑K

j

(
yi,j− f j

(
x1,Tnode

∣∣∣ELMnode

))2
P(yi,j=0)

∑
Mnode
i=1 ∑K

j yi,j

=
∑

Mnode
i=1 ∑K

j

(
yi,j− f j

(
x1,Tnode

∣∣∣ELMnode

))2

∑
Mnode
i=1 ∑K

j yi,j

(13)

As ∑Mnode
i=1 ∑K

j yi,j is independent from the soft-sensor construction, the task of ELM is

to minimize ∑Mnode
i=1 ∑K

j
(
yi,j − f j

(
x1,Tnode

∣∣ELMnode
))2, which is the difference between Mnode

and Ynode, expressed as follows:

ELM = argmin
{
∑Mnode

i=1 ||yi − f (x1,Tnode |ELMnode)||2
}

(14)

Since the maintenance design of the proposed method directly relies on the recording
sensor signals, the physical system knowledge is largely preserved and the information
usage is highly enhanced.

Based on soft-sensor node construction, testability design process adds the soft-sensor
node with best performance and builds a fault tree, taking consideration of potential
soft-sensor node under the minimum conditional entropy criterion. Hence, the assigned
soft-sensor nodes decrease the diagnostic uncertainty and improve the detection efficiency.
Besides, affinity propagation (AP) is adapted to separate the fuzzy set of the fault modes
and generate subnodes for the diagnostic model with the exemplar probability estimation
mexampor and basic probability assignment BPAnode. The subnodes are denoted with the
subset of failure modes Sson =

[
Sson,1, Sson,2, . . . , Sson,Knode

]
and satisfies the condition that

∪Knode
i=1 Sson,i = S f ather.

After adding the soft-sensor nodes and extending the subset of fault modes, the
information of assigned nodes Tnode is regarded as prior knowledge, serving as feedback
from testability design to maintenance design, and extending the fault tree until reaching
the minimum fault condition set.

With the cooperation between testability design and maintenance design, a PHM
model based on soft-senor information is generated and the sensors for PHM maintenance
are assigned based on the selected test set of PHM model, as follows.

TPHM = {ti : ∃Tnode, ti ∈ Tnode} (15)

To locate the fault condition when starting with the maximum set of failure modes,
the corresponding sensor recording is collected and used to compute the potential basic
probability assignment. Then, the subset of potential modes is determined based on existing
samples with nearest neighbor strategy and the detection process is continued until finding
the minimum failure sets and obtaining the failure detection. For each test sample denoted
as casei, the PHM detection procedures generate a test sequence corresponding to the
assigned sensor recording and the estimation from the signal processing by a branch of
assigned soft-sensor nodes, as follows:

Snode =
{

Nodej : ∃mexemplar,k ∈ mexemplar,
∣∣∣∣∣∣ f(xcasei ,Tnode,j

∣∣∣ELMnodej

)
−mexemplar,k

∣∣∣∣∣∣ = dnode

}
(16)

where dNodej
is the minimum distance from the failure condition estimation vector

f (xcase,Tnode

∣∣∣ELMnodej
) to all exemplars of soft-sensor nodes with the same father node
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of Nodej. The detection process ends when the procedures reach the terminal node of Snode
denoted as Nodeterminal,case. Then, the estimated failure condition vector is computed as:

ŷcase.j =

{
1 sj ∈ Snodeterminal,case , f ather
0 sj /∈ Snodeterminal,case , f ather

(17)

According to the definitions of FDR, FAR, and detection accuracy, the test performance
indexes of the detection procedures are computed as follows:

FDRtest = ∑Xcase ∑K
j=1 P(ŷcase,j = 1|ycasse,j = 1) (18)

FDRtest = ∑Xcase ∑K
j=1 P(ŷcase,j = 0|ycasse,j = 1) (19)

Accuracytest = ∑Xcase ∑K
j=1 P

(
ŷcase,j = 1

∣∣ycasse,j = 1
)
+ P(ŷcase,j = 0|ycasse,j = 0) (20)

From these, the test strategy optimization aims to select TPHM from Tpotential and
generate the diagnostic tree with soft sensors and AP. For each case, AP determines the next
procedure and the corresponding soft sensors with previous estimations. Thus, for each
case, the diagnostic tree provides an adaptive test sequence and leads to the final evaluation
on the terminal node. Similar to Equation (4), the objective function is the combination of
FAR loss and FDR loss, as follows:

Ltree =
∑M

i=1 ∑K
j=1 (yi,j − Fj

(
xi,Tseq ,i

∣∣∣Tseq,i ∈ TPHM, ELMnode ∈ tree))
2

∑M
i=1 ∑K

j=1 yi,j
(21)

where Tseq,i is the required test procedure with respect to the diagnostic tree, and

Fj

(
xi,Tseq ,i

∣∣∣Tseq,i ∈ TPHM, ELMnode ∈ tree) is the state estimation from the terminal node
with respect to the test procedure of the i-th case.

3. Test Strategy Optimization Based on Soft Sensing and Ensemble Belief Measurement
3.1. Construct Soft-Sensor Node with Extreme Learning Machine

As mentioned in the previous section, each soft sensor contains the recording infor-
mation from the assigned sensors, the artificial intelligence signal processing modules,
and probability estimation parameter for the isolation of fault states. During the construct
process, maintenance design produces the soft-sensor node with candidate test procedures
and candidate soft-sensor nodes with high performance, and generates the fault tree. For
each candidate node, the sensor recording input is created as follows:

Xcandidate, node =
{

xsi ,T∗i
: xi ∈ Xcandidate node

}
(22)

xsi,T∗i
= {xsi,t|t ∈ T∗i } (23)

T∗i =
{

T∗sequence, t∗
}

where {t∗} ∩ T∗sequence = ∅ (24)

where T∗sequence integrates the previous test information of before the candidate node and
makes full use of sensor recording knowledge.

At the same time, we use ELM to generate artificial intelligence signal processing mod-
ules for fast training and high generation ability. Shown in Figure 4, ELM is a noniterative
three-layer neural network and contains parameters of a fully connected hidden layer and
a linear-combined output layer with an activation function, as follows:

ELMcandidate,node = {(Wnode, bnode), βnode, fh(.)} (25)
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Wnode =


w1,1 . . . w1,NT
w2,1 . . . w2,NT

...
. . .

...
wL,1 . . . wL,NT

 (26)

bnode = [bnode.1, bnode.2, . . . , bnode.L] (27)

βnode =


β1,1 . . . β1,NT
β2,1 . . . β2,NT

...
. . .

...
βL,1 . . . βL,NT

 (28)

where Wnode is denoted as the weights matrix of the hidden layer while bnode is the hidden
layer bias, and L is the number of hidden nodes. βnode is the output layer weight and fh(.)
determines the activation function from the sensor input and hidden output. Here, the
sigmoid function is taken as the activation functions for all soft-sensor nodes. Relative to
Xcandidate node, the hidden outputs of training samples are produced as follows:

Hnode =


fh(w1x1,T∗ + bnode,1) . . . fh(wLx1,T∗ + bnode,L)
fh(w1x2,T∗ + bnode,L) . . . fh(wLx2,T∗ + bnode,L)

...
. . .

...
fh
(
w1xMnode ,T∗ + bnode,1

)
. . . fh

(
wLxMnode ,T∗ + bnode,L

)
 (29)

As ELM is a noniterative learning machine, Wnode and bnode can be assigned randomly
with respect to arbitrary probability distribution, and the output of the model is computed
as a linear combination of the hidden output with trained βnode, as follows:

.
Ycandidate node = βnodeHnode (30)

To estimate the failure situation as accurately as possible,
.
Ycandidate node is supposed to

be consistent with actual failure states Ynode defined based on Equations (5)–(7). According
to Equation (14), the loss function of the candidate node is computed as follows:

Losscandidate node =
∣∣∣∣∣∣Ynode −

.
Ycandidate node

∣∣∣∣∣∣2 = ||Ynode − βnodeHnode||2 (31)

Taking differential of Losscandidate node with respect to βnode, the trained output weight
is accessed as follows:

βnode =
(

HnodeH
T
node + λI

)−1
HnodeYnode (32)

Based on the proper assignment of ELM parameters, the soft-sensor nodes gain
knowledge from the training samples and obtain accurate condition estimation with the
test samples.

From above, considering the candidate node with sensor recording inputs Xcandidate, node,
the previous test sequence T∗sequence, and candidate test point t∗, the procedure to generate the
ELMnode follows:

Step 1: Assign the candidate node with Equation (2), where S f ather = {si|scandidate node
= si, si ∈ S}. Meanwhile, Tnode is generated as Equation (24), Ynode is assigned with
Equations (5)–(7);
Step 2: Initialize ELM parameters (Wnode, bnode) randomly in [−1,1];
Step 3: Calculate the hidden output with respect to Xcandidate, node as in Equation (29);
Step 4: Train the output weights βnode with Equation (32);

Step 5: Obtain the estimation of candidate set
.
Ycandidate node with Equation (30).
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3.2. Separate the Fault Set Based on Affinity Propagation

With ELM-based soft-sensor nodes, the condition of trained samples and test samples
can be estimated with high efficiency. Meanwhile, owing to the individual sensor recording
knowledge limitation, the ELM condition evaluation has a vague part with unrelated
failure modes. Thus, the fault set of corresponding nodes S f ather is divided into several
fuzzy sets Sson =

[
Sson,1, Sson,2, . . . , Sson,Knode

]
based on the fault state evaluation value

.
Ycandidate node. When constructing traditional diagnostic tree and fault analysis processes,
the failure mode subset is divided by comparing the fault state evaluation and reference
value of the failure mode or the failure mode calibration value. However, these strategies
are only applicable to systems with small structures or systems with known mechanisms
and a historical sample may ignore the diversity and validity. Hence, in the proposed
method, we introduce a new dividing strategy based on affinity propagation (AP) to cut
the fuzzy set and samples with evaluation similarity measurement between pairs of data
points. With AP, Sson it is constituted based on the similarity between condition estimates
and the fault tree generation flexibility is enhanced.

Instead of assigning engineering-experience reference information, AP generates clus-
ters based on all training set evaluation values

.
Ycandidate node =

{
y1, y2, . . . , yMnode

}
. The

clustering method treats each training sample as one data edge point and transmits two
real-valued messages: the responsibility value r

(
yi, yj

)
and the availability value a

(
yi, yj

)
,

to realize communication between edge nodes until a good set of exemplars and corre-
sponding clusters emerges. The responsibility value r

(
yi, yj

)
indicates the accumulated

evidence for how well suited a historical data point yj is to serve as the exemplar for

the historical data point yi. In addition, the availability value a
(

yi, yj

)
represents how

appropriate it would be for a historical data point yi to choose a historical data point yi



Sensors 2022, 22, 2138 11 of 22

as its exemplar. For initialization, the similarity between the historical points
(

yi, yj

)
is

calculated based on Euclidean distance, as follows:

d
(

yi, yj

)
= −

∣∣∣∣∣∣yi − yj

∣∣∣∣∣∣2 (33)

where d
(

yi, yj

)
reflects how well the historical data point yj is suited to be the exemplar

for historical data point yi. AP aims to provide a clustering solution that satisfies the
historical data points with larger values of distance estimation, which are more likely to
serve as exemplars. To achieve this purpose, the clustering method recursively conducts
the following updating process, sending the responsibility message from each data point to
the corresponding data point.

First, the responsibility value r
(

yi, yj

)
is computed based on the following data

driven approach:

r
(

yi, yj

)
= d

(
yi, yj

)
− max

k,s.t.k 6=j
{a(yi, yk) + d(yi, yk)} (34)

As the availability value a
(

yi, yj

)
is set to 0, the responsibility value r

(
yi, yj

)
is

initialized as the input similarity d
(

yi, yj

)
minus the largest similarity value between yi

and other exemplars. Hence, the updating process does not consider how many other
points favor each candidate exemplar. In later process, if some point is efficient to assign
with other exemplars, the corresponding availability value will drop to less than 0 with
the updating of a

(
yi, yj

)
. Then, negative a

(
yi, yj

)
will decrease the effective value of the

similarities value d
(

yi, yj

)
by Equation (34) and removes the corresponding candidate

exemplars from competition. Especially, the self-responsibility value r
(

yi, yj

)
is set to the

input preference that the training data point yi becomes one of the exemplars of clusters
and reflects accumulated evidence that yi is an exemplar based on its input preference
tempered by how ill-suited it is for assignment to another exemplar.

After calculating the responsibility value, the availability value is updated to gather
evidence from the training data point as to whether each candidate exemplar makes a good
exemplar, as follows:

a
(

yi, yj

)
= min{0, d

(
yi, yj

)
+ max

k,s.t.k 6=j
{a(yi, yk) + d(yi, yk)}} (35)

In addition, the self-availability value a
(

yi, yj

)
is updated as follows:

a
(

yi, yj

)
= ∑k,s.t.k 6=j,k 6=i max{0, r(yi, yk)} (36)

where a
(

yi, yj

)
reflects accumulated evidence that the training data point yi becomes an

exemplar. For data point yi, the data point yi that maximizes a
(

yi, yj

)
+ r
(

yi, yj

)
is chosen

to be the exemplar. Additionally, if i = j, then it is necessary to identify the data point yi
as the exemplar and assign its estimation value yi as the exemplar value mexemplar. The
set of all the mexemplar is denoted as Mexemplar. Based on each exemplar, one subset of
S f ather satisfies.

∀mexemplar ∈ Mexemplar, ∃Sson,k ⊂ Sson,k s.t. Sson,k

=
{

si : ∃xj ∈ Xnode, a
(

yi, mexemplar

)
+ r
(

yi, mexemplar

)
= argmax

{
a
(

yi, yj

)
+ r
(

yi, yj

)}}
.

(37)
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From above, the AP process with respect to the candidate node is conducted as follows:

Step 1: For
.
yi,

.
yj ∈

.
Ycandidate node, initialize the responsibility value r

( .
yi,

.
yj

)
as the Euclidean

distance d
( .

yi,
.
yj

)
with Equation (33), and set the availability value a

( .
yi,

.
yj

)
to zero;

Step 2: Update the responsibility value r
( .

yi,
.
yj

)
with Equation (34);

Step 3: Update the availability value a
( .

yi,
.
yj

)
with Equations (35) and (36);

Step 4: If r
( .

yi,
.
yj

)
and a

( .
yi,

.
yj

)
become stable, conduct Step 5, otherwise return to Step 2;

Step 5: For each sample
.
yi ∈

.
Ycandidate node, assign the sample data corresponding to

a
(

yi, yj

)
+ r
(

yi, yj

)
as exemplar node mexemplar and then generate the exemplar set Mexemplar;

Step 6: Separate S f ather with Equation (37).

3.3. Generate the Fault Diagnostic Tree under Minimum Conditional Criterion

Based on soft-sensor construction and subset division, the fault states of the target
system can be located by cutting the set of potential failure sets with the function of
sequences of soft-sensor nodes. In this section, we introduce how to generate the fault
tree using a potential soft-sensor node under heuristic strategy based on the minimum
conditional criterion. For the assigned failure set S f ather, the contains numbers of potential
sensor nodes corresponding to the candidate procedures. To choose the soft sensor for
fault tree construction, the condition entropy H(Ynode

∣∣∣ .
Ynode, ELMcandidate) is introduced

as follows:

H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
= −∑y∈Ynode

p
(
y,

.
y
∣∣ELMcandidate

)
log(y| .

y,ELMcandidate) (38)

Since the soft-sensor model is data-driven, the estimation value of the conditional entropy
is computed as follows:

H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
= ∑y∈Ynode

logp(y| .
y,ELMcandidate) (39)

Assuming the data information
(

Ynode,
.
Ynode

)
is subject to Gaussian distribution, then

.
H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
is simplified as follows:

.
H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
= ∑y∈Ynode

∣∣∣∣∣∣Ynode −
.
Ynode

∣∣∣∣∣∣2 (40)

For all candidate soft-sensor nodes, the node with the lowest conditional entropy is
selected to build the fault diagnostic tree. From above, the process to construct the fault
diagnostic tree follows:

Step 1. Initialize the root node Noderoot of the decision tree. Assign the father fault set
S f ather as the total fault set Stotal and set the data set Xnode as the whole training data
set. Take all the test procedures as the potential test set Tpotential for Noderoot. Set
T∗sequence to ∅.

Step 2. Generate the potential soft-sensor node Nodecandi,tpotential
for each test procedure

tpotential ∈ Tpotential based on Equations (24), (28) and (31).

Step 3. Evaluate with Equation (39) the condition entropy
.

H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
for the entire potential soft-sensor node. Select the corresponding soft-sensor node
Nodecandi,tpotential

with the lowest condition entropy as the target node to the diag-

nostic tree, and update the T∗sequence as
{

T∗sequence, topt

}
. Additionally, remove topt

from Tpotential .

Step 4. Apply AP to separate the fault set S f ather based on
.
Ynode and assign the exemplar

reference Mexemplar with Equation (36).
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Step 5. For each subset Si in Sson, construct the extending node NodeSi . For each extending
node NodeSi , the father set is assigned as Si and the data set is constructed based on

AP result. T∗sequence is initialized as
{

T∗sequence, topt

}
.

Step 6. Generate the subset node by repeating Steps 2 to 5 until reaching the minimal
subset of failure mode. The construction process is completed when all the subnodes
of the failure tree are constructed.

With the minimum conditional criterion, the fault diagnostic tree is generated with
data-driven mechanisms and requires few engineering experiences. Thus, the generating
process is applicable to complex systems with insufficient knowledge about structures,
functions, and mechanisms.

With the diagnostic tree generated, the diagnostic process of the target system is
implemented as follows:

Step 1. Initialize the target node Nodetarget with the root node Noderoot of the diagnostic
tree. Assign the potential fault set Spotential to the total fault set Stotal . Set the target
sensor recording xtarget as ∅ and set the test sequence Tsequence to ∅.

Step 2. Conduct the new test procedure t∗ in the Nodetarget and obtain the sensor recording
xtarget,t∗ . Add t∗ into Tsequence and merge xtarget,t∗ into xtarget. Compute the estimation
of the target system

.
ytarget with ELMnode in Nodetarget by Equations (29) and (30).

Step 3. Find the optimal mexemplar in Mexemplar of Nodetarget with smallest distance. Locate
the subfault set S∗ as the updated Spotential with Equation (37).

Step 4. Search the soft-sensor node in the diagnostic tree with S f ather = Spotential and assign
the corresponding node as the new target node Nodetarget.

Step 5. Continue the diagnostic procedure by steps 2 to 4 until reaching the minimal subset
of the failure set. After the diagnosis is finished, achieve the final estimation by using
Equation (17).

4. Experiment

In this section, we use the analog circuit in [40] to evaluate the detection performance
of the proposed method with state-of-art methods. As Figure 5 shows, the target system
contains four second-order filters and one adding device. The detail of the system is
presented in Table 1. The tolerance of R1, R2, R3, R4, R5, R6, R7, and R8 is ±10% while
the tolerance of R9, R10, and R11 is ±1%. For capacitances, the tolerance is set to ±5%.
Under healthy operation, the transmission gain of Av1, Av2, Av3, and Av4 is within a range
of ±1%.

Here, the failures caused by different changes of amplifiers are taken into failure
detection. The failure modes are defined based on the range of transmission gain for Av1,
Av2, Av3, and Av4, as shown in Table 2. Since 80% of failures in real applications have a
single-failure mode, we only consider failure detection of single failure modes. For example,
the failure condition of Av1 is divided into five phases with different ranges of transmission
gain while the transmission gain of Av2, Av3, and Av4, are collected with four different
frequencies (10 Hz, 100 Hz, 10 kHz, and 100 kHz) of input signals. The details are shown in
Table 3. These voltage outputs from Av1, Av2, Av3, and Av4 are regarded as the potential
test points for failure detection. In total, there are 16 candidate test points and 17 potential
fault states that consider the health state.
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Figure 5. Target analog circuit.

Table 1. Details for the components of the circuit.

Components Nominal Value Tolerance Subsystem

R1 320 kΩ 10%

High-Pass Filter 1 F1 = 10 Hz
R2 320 kΩ 10%
C1 50 nF 5%
C2 50 nF 5%

Av1 1.75 1%
R3 32 Ω 10%

Low-Pass Filter 1 F2 = 100 kHz
R4 32 Ω 10%
C3 50 nF 5%
C4 50 nF 5%

Av2 1.75 1%
R5 320 Ω 10%

High-Pass Filter 2 F3 = 10 kHz
R6 320 Ω 10%
C5 50 nF 5%
C6 50 nF 5%

Av3 1.75 1%
R7 32 kΩ 10%

Low-Pass Filter 2 F4 = 100 Hz
R8 32 kΩ 10%
C7 50 nF 5%
C8 50 nF 5%

Av4 1.75 1%
R9 1 kΩ 1%

AdderR10 1 kΩ 1%
R11 1 kΩ 1%
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Table 2. Denotation of fault states.

Fault Index Av1 Value Range Av2 Value Range Av3 Value Range Av4 Value Range

S0(normal) (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S1 (1.60,1.70) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S2 (1.80,1.90) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S3 (1.50,1.60) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S4 (1.90,2.00) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S5 (1.70,1.80) (1.60,1.70) (1.70,1.80) (1.70,1.80)
S6 (1.70,1.80) (1.80,1.90) (1.70,1.80) (1.70,1.80)
S7 (1.70,1.80) (1.50,1.60) (1.70,1.80) (1.70,1.80)
S8 (1.70,1.80) (1.90,2.00) (1.70,1.80) (1.70,1.80)
S9 (1.70,1.80) (1.70,1.80) (1.60,1.70) (1.70,1.80)
S10 (1.70,1.80) (1.70,1.80) (1.80,1.90) (1.70,1.80)
S11 (1.70,1.80) (1.70,1.80) (1.50,1.60) (1.70,1.80)
S12 (1.70,1.80) (1.70,1.80) (1.90,2.00) (1.70,1.80)
S13 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.60,1.70)
S14 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.80,1.90)
S15 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.50,1.60)
S16 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.90,2.00)

We apply Monte Carlo simulation to generate 20 samples for each failure mode by
using Pspice software to access data.

According to the traditional PHM framework shown in Figure 3, the optimization
process requires binary fault marks based on human experience and design detection
circuits for each fault state. Since there are four fault states for each second-order filter, the
detection is a large burden on circuit design. Testability design may also fail to relate the
relationship between binary estimations of different test procedures. On the other hand,
the maintenance design suffers low estimation efficiency as the testability does not consider
the detailed information of sensor recordings.

Unlike the sequential framework, the proposed method considers the direct sensor
information under testability and maintenance design. With cooperative procedures in
Figure 4, the proposed method generates the candidate soft-sensor nodes for maintenance.
At the same time, the testability design uses the minimal conditional criterion to generate the
optimized diagnostic strategy. The minimal conditional criterion enhances the flexibility of
testability design by considering the soft-sensor estimation in maintenance phases. On the
other hand, the maintenance performance with full sensor recording increases information
usage efficiency. Instead of human-experience processing, the proposed method saves
many costs during the PHM design. To evaluate diagnostic performance, we compared our
method with the hidden Markov method (HMM), support learning machine (SVM), and
radial basis function (RBF) by using all recordings of 16 test points as input information. To
estimate the feature extraction performance and learning machine function, we also took
HMM and SVM with principal component analysis (PCA) and extreme learning machine
(ELM) into comparison. For each method, we used 70% of the samples in each fault state as
the training samples to construct the model and the other 30% as the sensor information
of target systems. We assigned 100 kernels or hidden nodes for our soft-sensor nodes
for the SVM, RBF, and ELM models. Each method was conducted 30 times to obtain the
average performance.
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Table 3. Performance comparison.

Method Performance S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

HMM

FAR 25.0 0.00 0.00 0.00 0.00 0.00 0.00 20.00 33.3 0.00 20.0 0.00 0.00 0.00 52.6 33.3 16.7

FDR 96.3 100 100 100 100 98.8 96.3 100 100 100 100 100 100 98.7 98.7 100 98.7

accuracy 95.3 100 100 100 100 97.7 95.3 100 98.9 100 100 100 100 95.3 96.5 98.8 98.8

SVM

FAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FDR 92.3 94.1 94.1 98.8 96.4 94.1 94.1 97.6 100 94.1 94.1 94.1 94.1 94.1 94.1 96.4 97.6

accuracy 92.9 94.1 94.1 98.9 96.5 94.1 94.1 97.7 100 94.1 94.1 94.1 94.1 94.1 94.1 96.5 97.7

RBF

FAR 33.3 66.7 33.3 33.2 36.5 0.00 0.00 37.5 0.00 0.00 0.00 50.0 60.0 33.3 60.0 54.4 28.6

FDR 92.9 95.1 93.9 98.7 100 96.4 100 100 100 95.2 94.1 100 98.7 96.3 96.3 100 100

accuracy 91.7 93.0 95.1 96.5 90.6 96.5 96.5 96.5 100 96.5 100 95.3 94.1 94.1 95.3 93.0 97.7

PCA
HMM

FAR 25.0 0.00 0.00 0.00 0.00 0.00 20.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.6 0.00 0.00

FDR 96.3 100 100 100 100 100 98.8 100 100 100 100 100 100 100 100 100 100

accuracy 95.3 100 100 100 100 100 97.7 100 100 100 100 100 100 100 97.7 100 100

PCA
SVM

FAR 0.00 0.00 0.00 0.00 0.00 0.00 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FDR 93.0 94.1 94.1 98.8 96.4 94.1 94.1 97.6 100 94.1 94.1 94.1 94.1 94.1 94.1 96.4 97.6

accuracy 93.0 94.1 94.1 98.9 96.5 94.1 97.7 100 94.1 94.1 94.1 94.1 94.1 94.1 94.1 96.5 97.7

ELM

FAR 0.00 0.00 0.00 0.00 0.00 0.00 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FDR 91.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.4 97.6

accuracy 92.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.4 97.6

OURS

FAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FDR 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

accuracy 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table 3 shows the FAR, FDR, and accuracy of each method. HMM has high diagnostic
accuracy without feature extraction, especially for S0. This is because HMM has a higher
statistical analysis ability than SVM and RBF. However, HMM gives poorer FAR than the
other methods. Unlike HMM and RBF, SVM and ELM have lower FAR and become more
sensitive to false-negative samples by the advantage of the learning machine. Comparing
HMM, SVM, PCA–HMM, and PCA–SVM, PCA improves HMM diagnosis for S5 and S8
and proves that proper feature extractions can benefit from the diagnostic performance.
Our method has the lowest FAR, the highest FDR, and the highest accuracy compared
with the other methods. Based on the same sensor recordings or even less information, the
generated strategy provides an accurate location for all test samples for all 16 fault states.
Hence, with ensemble learning based on soft sensors, the functions of sensor recording are
largely improved.

Figure 6 shows the diagnostic tree of our method. All fault conditions are separated
and recognized with 13 individual testing sequences with the tree structure. Each testing
sequence takes less than 5 test procedures and the whole diagnostic tree contains only
9 testing points out of 16 potential test points. In other words, the fault state of the target
systems is located within 2–5 test procedures instead of collecting all 16 sensor recordings.
From above, the diagnostic tree has higher efficiency and lower cost testing consumptions
than diagnostic strategies that require full-tests built by SVM, HMM, and ELM, as well as
the constrained diagnostic tests strategies that require PCA-based methods. Additionally,
unlike traditional diagnostic trees with binary structures, our method separates the fuzzy
set with the evaluation results from constructing and dividing modules. As a result, our
testability design extends the diagnostic flexibility and improves the diagnostic accuracies
of each fault mode.

Based on soft-sensor construction, the potential test accuracies of the diagnostic tree
root node are compared based on different test procedures. As shown in Figure 7, dif-
ferent test procedures differ on diagnostic accuracies, especially for S0–S5. Therefore, the
minimum conditional criterion-based fault tree constructions can efficiently select proper
soft-sensor nodes into the diagnostic tree and ensure that the diagnostic FAR and FDR and
their accuracies receive high improvement under the constructing process.

The affinity propagation result from the diagnostic-tree-root node is presented in
Figure 8. As the root nodes evaluate all samples, the affinity results are generated with
fault mode evaluations of all 17 fault conditions (from S0 to S16). Here, we depict the
affinity propagation result from three fault states, which occur at the same space, such as
Av1 failures (S0, S1, and S2), Av2 failures (S5, S7, and S14), and Av4 failures (S12, S13, and
S15). Additionally, we present the affinity propagation results with three failure modes in
different places: S2 in Av1, S7 in Av2, and S14 in Av4.

From Figure 8, the soft-sensor nodes provide distinguishable BPA evaluations for each
data point. The affinity propagation generates sample clusters from different dimensions
adaptively with the data point similarity measurements. Most data points are clustered
with topological closer clusters; others may differ on other dimensions. Compared with
traditional clustering strategies for diagnosis, affinity propagation provides practical, auto-
matic fault-state divisions and saves much human labor on engineering applications.

Finally, the sequence testing performance for fault states is shown in Figure 9. Here,
we present the test sequence of S0, S3, S8, and S15. These four test sequences achieve their
best diagnostic accuracy within three to five test procedures, and the test efficiency is much
higher than traditional maintenance methods. Test accuracy grows increasingly for all
test sequences as test nodes are added into the test procedures. Especially for the test
sequence of S0, the diagnostic accuracy is less than 60% in the first test procedures as the
corresponding fuzzy state set contains many members. However, the accuracy grows fast
as more nodes are added into the sequences and the potential states become smaller. Thus,
the ensemble function of soft-sensor nodes improved the diagnostic performance with
high efficiency.
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From above, our method has better diagnostic accuracies and lower FARs compared
with other state-of-art diagnostic methods. Additionally, our diagnostic strategies take only
9 out of 16 tests points and save much test assignment consumption. For each fault state, the
diagnostic procedures provide 1 test sequence within 5 test procedures. Thus, the diagnostic
procedure enjoys high efficiency for applications. Finally, the affinity propagation enlarges
the diagnostic flexibility and saves much human labor on testability design.

5. Conclusions

Along with a short production cycle and rapid development of design technology,
existing PHM techniques have become impractical and fail to match the structural and
functional complexity. Prior knowledge preparation costs too much in human labor and
binary decision-making strategies waste the entailed sensor recording, especially for large
complicated systems.

We propose a test strategy optimization based on soft sensing and ensemble belief
measurement to overcome these weaknesses. The proposed method constructs a closed loop
between testability design and maintenance design, generating an efficient fault diagnostic
tree with ELM-based soft-sensor nodes. Unlike traditional diagnostic approaches, our
diagnostic tree adaptively separates the fault sets by affinity propagation, and the soft-
sensor nodes are assigned with the minimum conditional criterion. Thus, our methods can
achieve high efficiency and flexibility for diagnostic processes.

The experiment results prove that our methods have minimum FAR and maximum
accuracies on fault diagnosis among state-of-art methods. Additionally, our methods
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require fewer test procedures and increase the test efficiency compared with other methods.
Because the construction processes are based on ELM and AP, the PHM design saves
much human labor and becomes more flexible compared to traditional PHM approaches.
Hence, the proposed method has good performance on test strategy design. However, the
proposed method uses an offline construction technique for the diagnostic tree. As a result,
the diagnostic performance only depends on the assigned fault set, and the recordings of
online operations do not work on the PHM design. Therefore, the online updating of the
diagnostic strategy should be further investigated.
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