
Journal of Software Engineering and Applications, 2015, 8, 303-312

Published Online July 2015 in SciRes. http://www.scirp.org/journal/jsea

http://dx.doi.org/10.4236/jsea.2015.87031

How to cite this paper: Patil, A.H., Goveas, N. and Rangarajan, K. (2015) Test Suite Design Methodology Using Combina-

torial Approach for Internet of Things Operating Systems. Journal of Software Engineering and Applications, 8, 303-312.

http://dx.doi.org/10.4236/jsea.2015.87031

Test Suite Design Methodology Using

Combinatorial Approach for Internet of

Things Operating Systems

Abhinandan H. Patil1, Neena Goveas1, Krishnan Rangarajan2

1
Department of Computer Science and Information Systems, Birla Institute of Technology and

Science, Goa, India
2
Department of Information Science, Dayanand Sagar College of Engineering, Bangalore, India

Email: P2013408@goa.bits-pilani.ac.in, Neena@goa.bits-pilani.ac.in, Krishnanr1234@gmail.com

Received 28 May 2015; accepted 12 July 2015; published 15 July 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper we describe how the test design can be done by using the Combinatorial Testing ap-

proach for internet of things operating systems. Contiki operating system is taken as a case study

but we discuss what can be the approach for RIOT and Tiny OS operating systems. We discuss how

the combinatorial coverage measurement can be gathered in addition to the traditional metrics

code coverage. The test design generated by using Advanced Combinatorial Testing for Software is

analyzed for Contiki operating system. We elaborate the code coverage gathering technique for

Contiki simulator which happens to be in Java. We explain the usage of Combinatorial Coverage

Measurement tool. Although we have explained the test design methodology for internet of things

operating systems, the approach explained can be followed for other open source software.

Keywords

CT, ACTS, CCM, Code Cover, Contiki, Cooja

1. Introduction

Our previously published paper touches upon the test design using combinatorial testing approach for Contiki

operating system [1]. In this paper we intend to extend the concept and explain what can be done for the Internet

of Things (IoT) operating systems which do not have standard regression test suites viz. RIOT and Tiny OS. We

analyze the Advanced Combinatorial Testing for Software (ACTS) generated test suite design and explain how

the traditional effective metrics, code coverage can be gathered in addition to more relevant combinatorial cov-

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.87031
http://dx.doi.org/10.4236/jsea.2015.87031
http://www.scirp.org
mailto:P2013408@goa.bits-pilani.ac.in
mailto:Neena@goa.bits-pilani.ac.in
mailto:Krishnanr1234@gmail.com
http://creativecommons.org/licenses/by/4.0/

Abhinandan H. Patil et al.

304

erage measurements using combinatorial coverage measurement tool (CCM) .

While we want to have minimal overlap of this paper with the one published already [1], we may re-visit few

sections and elaborate more. At places, we get specific and explain implementation part of testing (such as what

changes are done to the test setup for gathering the data).

National Institute for Standards and Technology (NIST) has been actively supported combinatorial testing.

The research carried out by NIST has been well documented [2] [3]. NIST has made several tools which are

available to public [4]. C Nie et al. conducts a survey of combinatorial testing and the same is available as part

of survey report [5]. Software testing is inarguably essential part of all software development cycles and the

same is discussed at high levels by several papers [6]. While few papers discuss software testing techniques at

very high level [7], we get specific and discuss combinatorial testing in this paper.

Combinatorial testing is not only adopted by researchers, and evidence shows the adoption by large organiza-

tions [8]. Few papers have different perspectives about testing at large [9]. Test suite and test oracles are integral

part of testing these days [10]. NIST tools for combinatorial testing take these test suites and test oracles as input

entities. NIST tools are an integral part of combinatorial testing and many users have been using them success-

fully in testing activities of research/industry. ACTs and CCM aid the combinatorial testing immensely. ACTs

has been tested with self [11]. CCM’s success is documented [12]. While abstracting the formal specifications to

generate software tests is an old concept [13], it is being still researched. Few researchers are focusing on dif-

ferent fields of combinatorial testing [14], we in this paper focus on classic approaches of combinatorial testing

techniques. A general strategy for t-way software testing is documented in few papers [15] and their through put

is documented in few papers [16].

As mentioned earlier, this paper focuses on classic approaches of combinatorial testing and the same is being

elaborated in the following sections.

2. Typical Workflow for Base-Lining the Regression Test Suite

Figure 1 depicts the typical flow of work when we want to ascertain the effectiveness of the test suite using

combinatorial approach. First step is choosing the operating system for Internet of Things. Then traverse through

the source code of the open source code base folders to see if the test suite exists. If it exists gather the coverage

data using the code coverage tools.

If the gathered data indicates inadequate test suite, redesign the test suite using the combinatorial approach

and gather the data. If the coverage data is less, it calls for re-visiting the test design. Base line the test suite once

the adequate test criterion is met.

Figure 1. Typical work flow for base lining the test suite.

Abhinandan H. Patil et al.

305

As can be seen from the diagram it can be iterative process. We document the process that was used for case
study operating system in further sections. We describe the approach to be followed when the test suite already
exists and when it does not. Section 3 is for the case when the base test suite already exists and Section 4 is for
the case when the test suite does not exist.

3. Process of Redesigning the Regression Test Suite If It Already Exists

Figure 2 depicts the process in the case when test suite already exists. This section is for the case when the base
lined test suite already exists as in the case of Contiki operating system version 2.7. We can use the either para-
meter based re-design or configuration based re-design as explained in the book and manual [1] [2] or combina-
tion of both. The coverage can be gathered using CCM and traditional coverage tools such as CodeCover. We
did preliminary investigation using freely available tool CodeCover for the existing test suite. The coverage was
less than 20%. Appendix B gives the data gathered using the CodeCover.

Then we visited the existing test suite to know the reason for low coverage. Few areas of improvements were
observed in the existing test suite.
• No formal test design document existed.
• It appears that the test cases were concentrated around few mote types (hardware or configurations in the

context of combinatorial testing).
We went through the whole regression test suite to extract the configurations supported and input parameters

being used. We came up with Table 1 to be populated in the ACTS test model. When the ACTS was populated
using these set of values, the generated test design document is as shown in Appendix A.

Contiki Specific Details

Contiki is open source operating system widely used and accepted for Internet of Things. It has base-lined re-
gression test suite for version 2.7. Contiki gives the user friendly operating system in the form of instant Contiki
which has Ubuntu like the feel with the tool chains to make the iterative development easy. The developers can
use the instant Contiki to test the patches and testers can use the same environment for ascertaining the reliabili-
ty of the operating system without procuring the hardware for all the mote types.

Contiki gives the simulator which is called Cooja. The Cooja simulator talks to the Contiki using Java Native
Interface (JNI). The test cases are called csc files which are understandable by Cooja. We found Eighty three
test cases of this type in the regression folder. However, these test cases were concentrated around few mote
types.

Figure 2. Process of base lining the test suite if it already exists.

Abhinandan H. Patil et al.

306

Table 1. Acts input parameters.

Parameters Parameter Values

Platform Exp5438, z1, wismote, micaz, sky, jcreate, sentilla-usb, esb, native, cooja

base Multithreading, coffee, check pointing

Rime collect, rucb, deluge, runicast, trickle, mesh

Net Performance Net Perf, Net Perf-lpp, Net Perf-cxmac

collect shell-collect, shell-collect-lossy

ipv4 telnet-ping, webserver

ipv6 ipv6-udp, udp-fragmentation, unicast-fragmentation, ipv6-rpl-collect

RPL up-root, root-reboot, large-network, up and down routes, temporary rootloss, random rearrngement, rpl-dao

ipv6apps servreg-hack, coap

As already mentioned, Appendix A gives the test design generated using ACTS for Table 1 input. Let us vis-

it the column 2 of the design. We can see that the generated test cases are spread across the mote (hardware)

types. Further, the generated test design takes care of the input parameters as well for the test cases.

Now the task at hand is mapping these generated test cases to functional test cases (xml files called csc) which

are understandable by Cooja and gathering the coverage data again. The coverage data should improve in prin-

ciple. We are working on this.

4. Process of Designing the Regression Test Suite If It Does Not Exist

Figure 3 depicts the case when test suite does not exist. This process is more suited for operating systems which

do not have standard regression test suite viz. RIOT and TinyOS. Since the functional specification and test de-

sign are both missing in case of these operating systems, we will have to come up with the functional specifica-

tion document first. This will be our understanding of the functionality that these operating systems support.

Once the functionality of these operating systems is understood we will have to come up with the test design.

Configuration to be supported and input parameters to be supplied for each test case will act as starting point for

populating the ACTS test model. Once test design is generated, we will have to understand the test environment

for these operating systems and the test design need to be mapped to functional test cases to be executed for ga-

thering the coverage data. The CCM coverage will not be appropriate as the test cases generated using ACTS

tool will always give 100% combinatorial coverage. Traditional coverage such as code coverage may be handy.

5. Contiki Environment Specific Changes to Be Done

In this section we document the changes that we did in the Contiki environment for the tasks at hand. Since we

get implementation specific for case study operating system, this section can be conveniently skipped by the

readers who are not interested in specific details for given operating system.

1. Log in as user in the instant Contiki environment.

2. Search for the .travis. yml

3. Add the build type you are interested in:

- BUILD_TYPE = “ipv6-apps”

- BUILD_TYPE = “CT”

-BUILD_TYPE = “compile-8051-ports”

4. Under the directory../contiki-2.7/regression-tests create a folder 02-CT

5. Under contiki-2.7/regression-tests/02-CT directory create *.csc files you are interested in viz.

01-custom.csc 02-custom.csc

6. The Make file should look like include../Makefile. simulation-test

7. Create a 01-custom.csc file in the Cooja tool. Use the test script editor to create a java script which will be

essential while running the test case from command line using the makefile.

Abhinandan H. Patil et al.

307

Figure 3. Process of base-lining the test suite if it does not exist.

8. Modify the build.xml suitably as explained in Appendix C.

9. Run the regression test suite as usual.

10. Test run will create many *.clf files.

11. Create a script for analyze, merge and generate report.

6. Conclusion

In this paper we presented the approaches that could be employed for designing the regression test suite using

combinatorial approach. We explained how the bench marking of the regression test suite could be done using

the traditional approaches such as code coverage in addition to coverage gathered using combinatorial coverage

measurement tools.

7. Future Work

In this paper we investigated how the combinatorial approach could be applied for the cases when the regression

test suite already existed viz. Contiki case. We were working on ascertaining the gain due to Combinatorial

testing.

We were planning to explore the Combinatorial testing for the cases when the regression test suite did not ex-

ist viz. RIOT and TinyOS.

Further we were planning to model the System Under Test (SUT) and use New Symbolic Model Verifier

(NuSMV) in conjunction with ACTs.

References

[1] Patil, A.H., Goveas, N. and Rangarajan, K. (2015) Re-architecture of Contiki and Cooja Regression Test Suite Using

Abhinandan H. Patil et al.

308

Combinatorial Testing Approach. ACM SIGSOFT Software Engineering Notes, 40, 1-3.

[2] Richard Kuhn, D., Kacker, R.N. and Lei, Y. (2013) Introduction to Combinatorial Testing. Text Book.

[3] Richard Kuhn, D., Kacker, R.N. and Lei. Y. (2013) Practical Combinatorial Testing Manual. NIST Special Publica-
tions 800-142.

[4] NIST. http://csrc.nist.gov/groups/SNS/acts/index.html

[5] Nie, C., et al. (2011) A Survey of Combinatorial Testing. ACM Computing Surveys, Vol. 43, No. 2, Article 11.

[6] Ammann, P. and Offutt, J. (2008) Introduction to Software Testing. Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9780511809163

[7] Beizer, B. (1990) Software Testing Techniques. 2nd Edition, Van Nostrand Reinhold, New York.

[8] ASTQB (2014) Introducing Combinatorial Testing in Large Organizations.

[9] Bach, J. and Shroeder, P. (2004) Pairwise Testing—A Best Practice That Isn’t. Proceedings of 22nd Pacific Northwest

Software Quality Conference, Portland, 180-196.

[10] Baresi, L. and Young, M. (2001) Test Oracles. Department of Computer and Information Science, University of Ore-
gon, Eugene. http://www.cs.uoregon.edu/michal/pubs/oracles.html

[11] NourozBorazjany, M., Yu, L., Lei, Y., Kacker, R.N. and Kuhn, D.R. (2012) Combinatorial Testing of ACTS: A Case
Study. 2012 IEEE 5th International Conference on Software Testing, Verification and Validation, 17-21 April 2012,
Montreal, 971.

[12] Combinatorial Coverage Measurement NASA IV&V Workshop, 11-13 September 2012.

[13] Ammann, P. and Black, P.E. (1999) Abstracting Formal Specifications to Generate Software Tests via Model Checking.
Proceedings of 18th Digital Avionics Systems Conference, 2, 10.A.6.1-10.A.6.10.
http://dx.doi.org/10.1109/dasc.1999.822091

[14] Kuhn, D.R., Higdon, J.M., Lawrence, J.F., Kacker, R.N. and Lei, Y. (2012) Combinatorial Methods for Event Se-
quence Testing. 5th International Workshop on Combinatorial Testing, Montreal, 17-21 April 2012, 601-609.

[15] Lei, Y. (2007) IPOG—A General Strategy for t-Way Software Testing. 14th Annual IEEE International Conference

and Workshops on the Engineering of Computer-Based Systems, Tucson, 26-29 March 2007, 549-556.

[16] Price, C., Kuhn, R., et al. (2013) Evaluating the t-Way Technique for Determining the Thoroughness of a Test Suite.
NASA IV&V Workshop, Fairmont, September 2013.

http://csrc.nist.gov/groups/SNS/acts/index.html
http://dx.doi.org/10.1017/CBO9780511809163
http://www.cs.uoregon.edu/michal/pubs/oracles.html
http://dx.doi.org/10.1109/dasc.1999.822091

Abhinandan H. Patil et al.

309

Appendix A: ACTS generated test design for Contiki Operating System

Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8 Column9 Column10

Test Case# Platform base Rime NetPerformanccollect ipv4 ipv6 RPL ipv6apps

0 Exp5438 coffee rucb NetPerf-lpp shell-collect-lossy webserver udp-fragmentation up-root coap

1 Exp5438 checkpointing deluge NetPerf-cxmac shell-collect telnet-ping unicast-fragmentatioroot-reboot servreg-hack

2 Exp5438 Multithreading runicast NetPerf shell-collect-lossy telnet-ping ipv6-rpl-collect large-network coap

3 Exp5438 coffee trickle NetPerf-cxmac shell-collect webserver ipv6-udp upanddownroutes servreg-hack

4 Exp5438 checkpointing mesh NetPerf shell-collect webserver udp-fragmentation temporaryrootloss coap

5 Exp5438 Multithreading collect NetPerf-lpp shell-collect webserver unicast-fragmentatiorandomrearrngement servreg-hack

6 Exp5438 checkpointing rucb NetPerf-cxmac shell-collect-lossy telnet-ping ipv6-rpl-collect rpl-dao servreg-hack

7 z1 Multithreading deluge NetPerf shell-collect-lossy telnet-ping ipv6-udp up-root coap

8 z1 coffee runicast NetPerf-lpp shell-collect webserver udp-fragmentation root-reboot servreg-hack

9 z1 checkpointing trickle NetPerf-lpp shell-collect-lossy telnet-ping unicast-fragmentatiolarge-network coap

10 z1 Multithreading mesh NetPerf-cxmac shell-collect-lossy telnet-ping ipv6-rpl-collect upanddownroutes coap

11 z1 coffee collect NetPerf shell-collect-lossy telnet-ping ipv6-udp temporaryrootloss servreg-hack

12 z1 checkpointing rucb NetPerf shell-collect telnet-ping ipv6-udp randomrearrngement coap

13 z1 Multithreading deluge NetPerf-lpp shell-collect webserver udp-fragmentation rpl-dao coap

14 wismote checkpointing runicast NetPerf-cxmac shell-collect webserver unicast-fragmentatioup-root servreg-hack

15 wismote Multithreading trickle NetPerf shell-collect-lossy webserver ipv6-rpl-collect root-reboot coap

16 wismote coffee mesh NetPerf-lpp shell-collect telnet-ping ipv6-udp large-network servreg-hack

17 wismote checkpointing collect NetPerf-cxmac shell-collect-lossy telnet-ping udp-fragmentation upanddownroutes coap

18 wismote Multithreading rucb NetPerf shell-collect-lossy telnet-ping unicast-fragmentatiotemporaryrootloss coap

19 wismote coffee deluge NetPerf-lpp shell-collect-lossy webserver ipv6-rpl-collect randomrearrngement servreg-hack

20 wismote coffee runicast NetPerf shell-collect-lossy telnet-ping ipv6-udp rpl-dao coap

21 micaz checkpointing trickle NetPerf-cxmac shell-collect webserver udp-fragmentation up-root servreg-hack

22 micaz coffee mesh NetPerf-lpp shell-collect-lossy telnet-ping unicast-fragmentatioroot-reboot coap

23 micaz Multithreading collect NetPerf-cxmac shell-collect webserver ipv6-rpl-collect large-network coap

24 micaz checkpointing rucb NetPerf shell-collect telnet-ping ipv6-udp upanddownroutes coap

25 micaz checkpointing deluge NetPerf-lpp shell-collect-lossy webserver ipv6-rpl-collect temporaryrootloss servreg-hack

26 micaz checkpointing runicast NetPerf-cxmac shell-collect telnet-ping udp-fragmentation randomrearrngement servreg-hack

27 micaz checkpointing trickle NetPerf-cxmac shell-collect webserver unicast-fragmentatiorpl-dao servreg-hack

28 sky coffee mesh NetPerf shell-collect-lossy webserver ipv6-rpl-collect up-root servreg-hack

29 sky checkpointing collect NetPerf-lpp shell-collect telnet-ping ipv6-udp root-reboot coap

30 sky Multithreading rucb NetPerf-cxmac shell-collect webserver udp-fragmentation large-network servreg-hack

31 sky checkpointing deluge NetPerf-lpp shell-collect-lossy telnet-ping unicast-fragmentatioupanddownroutes servreg-hack

32 sky checkpointing runicast NetPerf-cxmac shell-collect telnet-ping unicast-fragmentatiotemporaryrootloss coap

33 sky checkpointing trickle NetPerf-lpp shell-collect webserver ipv6-rpl-collect randomrearrngement coap

34 sky coffee mesh NetPerf-lpp shell-collect-lossy telnet-ping ipv6-rpl-collect rpl-dao coap

35 jcreate coffee collect NetPerf shell-collect-lossy webserver ipv6-rpl-collect up-root servreg-hack

36 jcreate checkpointing rucb NetPerf-lpp shell-collect telnet-ping ipv6-udp root-reboot coap

37 jcreate Multithreading deluge NetPerf-cxmac shell-collect webserver udp-fragmentation large-network coap

38 jcreate Multithreading runicast NetPerf-lpp shell-collect webserver unicast-fragmentatioupanddownroutes servreg-hack

39 jcreate checkpointing trickle NetPerf-lpp shell-collect-lossy webserver ipv6-udp temporaryrootloss coap

40 jcreate coffee mesh NetPerf-cxmac shell-collect telnet-ping ipv6-udp randomrearrngement servreg-hack

41 jcreate checkpointing collect NetPerf-cxmac shell-collect webserver unicast-fragmentatiorpl-dao servreg-hack

42 sentilla-usb coffee rucb NetPerf shell-collect-lossy webserver ipv6-rpl-collect up-root servreg-hack

43 sentilla-usb checkpointing deluge NetPerf-lpp shell-collect telnet-ping ipv6-udp root-reboot coap

44 sentilla-usb Multithreading runicast NetPerf-cxmac shell-collect-lossy webserver udp-fragmentation large-network coap

45 sentilla-usb coffee trickle NetPerf shell-collect-lossy webserver unicast-fragmentatioupanddownroutes coap

46 sentilla-usb coffee mesh NetPerf-lpp shell-collect telnet-ping ipv6-udp temporaryrootloss coap

47 sentilla-usb Multithreading collect NetPerf shell-collect-lossy telnet-ping ipv6-udp randomrearrngement coap

48 sentilla-usb Multithreading collect NetPerf-cxmac shell-collect webserver unicast-fragmentatiorpl-dao servreg-hack

49 esb coffee rucb NetPerf shell-collect-lossy webserver ipv6-rpl-collect up-root servreg-hack

50 esb checkpointing deluge NetPerf-lpp shell-collect telnet-ping ipv6-udp root-reboot coap

51 esb Multithreading runicast NetPerf-cxmac shell-collect-lossy webserver udp-fragmentation large-network servreg-hack

52 esb Multithreading trickle NetPerf shell-collect-lossy webserver unicast-fragmentatioupanddownroutes servreg-hack

53 esb coffee mesh NetPerf-lpp shell-collect webserver ipv6-rpl-collect temporaryrootloss servreg-hack

54 esb Multithreading collect NetPerf shell-collect webserver ipv6-udp randomrearrngement coap

55 esb coffee trickle NetPerf-cxmac shell-collect telnet-ping udp-fragmentation rpl-dao servreg-hack

56 native coffee rucb NetPerf shell-collect-lossy webserver ipv6-rpl-collect up-root servreg-hack

57 native checkpointing deluge NetPerf-lpp shell-collect telnet-ping ipv6-udp root-reboot coap

58 native Multithreading runicast NetPerf-cxmac shell-collect webserver udp-fragmentation large-network servreg-hack

59 native coffee trickle NetPerf-lpp shell-collect-lossy webserver unicast-fragmentatioupanddownroutes coap

60 native coffee mesh NetPerf-cxmac shell-collect webserver unicast-fragmentatiotemporaryrootloss servreg-hack

61 native Multithreading collect NetPerf-cxmac shell-collect telnet-ping ipv6-udp randomrearrngement coap

62 native checkpointing rucb NetPerf-cxmac shell-collect-lossy webserver ipv6-rpl-collect rpl-dao coap

63 cooja coffee rucb NetPerf shell-collect-lossy webserver ipv6-rpl-collect up-root servreg-hack

64 cooja checkpointing deluge NetPerf-lpp shell-collect telnet-ping ipv6-udp root-reboot coap

65 cooja Multithreading runicast NetPerf-cxmac shell-collect telnet-ping udp-fragmentation large-network servreg-hack

66 cooja Multithreading trickle NetPerf shell-collect-lossy telnet-ping unicast-fragmentatioupanddownroutes servreg-hack

67 cooja coffee mesh NetPerf-cxmac shell-collect-lossy telnet-ping ipv6-udp temporaryrootloss coap

68 cooja Multithreading collect NetPerf-lpp shell-collect-lossy telnet-ping ipv6-rpl-collect randomrearrngement coap

69 cooja checkpointing collect NetPerf shell-collect webserver udp-fragmentation rpl-dao coap

Abhinandan H. Patil et al.

310

Appendix B: Code Coverage data gathered for existing test suite of Contiki and
Cooja using CodeCover

Appendix C: Tweaking of Ant Build.xml for Gathering the Coverage Data

<?xml version=“1.0”?>
<project name=“COOJA Simulator” default=“run” basedir=“.”>
<property name=“java” location=“java”/>
.
.
<property name=“args” value=”/>
<property name=“codecoverDir”
value=“/home/user/Desktop/CodeCover/codecover-batch-1.0/lib”/>
<property name=“sourceDir” value=“/home/user/contiki-2.7/tools/cooja/java”/>
<property name=“instrumentedSourceDir” value=“instrumented”/>
<property name=“mainClassName” value=“se.sics.cooja.GUI”/>
<taskdef name=“codecover” classname=“org.codecover.ant.CodecoverTask”
classpath=“${codecoverDir}/codecover-ant.jar”/>
<target name=“clean”>
<delete>
<fileset dir=“.” includes=“*.clf”/>
</delete>
<delete file=“codecover.xml”/>
<delete file=“report.html”/>
<delete dir=“report.html-files”/>

</target>

Abhinandan H. Patil et al.

311

<target name=“instrument-sources” depends=“clean”>

<codecover>

<instrument containerId=“c” language=“java”

destination=“${instrumentedSourceDir}” charset=“utf-8”

copyUninstrumented=“yes”>

<source dir=“${sourceDir}”>

<include name=“**/*.java”/>

</source>

</instrument>

<save containerId=“c” filename=“codecover.xml”/>

</codecover>

</target>

<target name=“compile-instrumented” depends=“instrument-sources”>

<javac srcdir=“${instrumentedSourceDir}” destdir=“${instrumentedSourceDir}”

encoding=“utf-8” target=“1.7” debug=“true”

classpath=“${codecoverDir}/lib/codecover-instrumentationjava.

jar:/home/user/contiki-2.7/tools/cooja/lib/log4j.jar:/home/user/contiki-

2.7/tools/cooja/lib/jdom.jar:/home/user/contiki-2.7/tools/cooja/lib/jsyntaxpane.jar”

includeAntRuntime=“false”></javac>

</target>

<target name=“run-instrumented” depends=“compile-instrumented, copy configs”>

<java classpath=“${instrumentedSourceDir}:${codecoverDir}/lib/codecoverinstrumentation-

java.jar:/home/user/contiki-

2.7/tools/cooja/lib/log4j.jar:/home/user/contiki-

2.7/tools/cooja/lib/jdom.jar:/home/user/contiki-2.7/tools/cooja/lib/jsyntaxpane.jar”

fork=“true” failonerror=“true” classname=“${mainClassName}”>

<jvmarg value=“-Dorg.codecover.coverage-log-file=test.clf”/>

</java>

</target>

<target name=“create-report” >

<codecover>

<load containerId=“c” filename=“codecover.xml”/>

<analyze containerId=“c” coverageLog=“*.clf” name=“Test Session”/>

<save containerId=“c” filename=“codecover.xml”/>

<report containerId=“c” destination=“report.html”

template=“/home/user/Desktop/CodeCover/codecover-batch-1.0/reporttemplates/

HTML_Report_hierarchic.xml”>

<testCases>

<testSession pattern=“.*”>

<testCase pattern=“.*”/>

</testSession>

</testCases>

</report>

</codecover>

</target>

<target name=“help”>

<echo>

.

.

<target name=“copy configs” depends=“init”>

<mkdir dir=“${build}”/>

<copy todir=“/home/user/contiki-2.7/tools/cooja/instrumented”>

<fileset dir=“${config}”/>

Abhinandan H. Patil et al.

312

</copy>

.

.

.

<target name=“jar_cooja” depends=“init, compile, copy configs, compile instrumented

“>

<mkdir dir=“${dist}”/>

<jar destfile=“${dist}/cooja.jar” base dir=“/home/user/contiki-

2.7/tools/cooja/instrumented”>

<manifest>

<attribute name=“Main-Class” value=“se.sics.cooja.GUI”/>

<attribute name=“Class-Path” value=“. lib/log4j.jar lib/jdom.jar

lib/jsyntaxpane.jar”/>

</manifest>

</jar>

<mkdir dir=“${dist}/lib”/>

<copy todir=“${dist}/lib”>

<fileset dir=“${lib}”/>

</copy>

</target>

</project>

	Test Suite Design Methodology Using Combinatorial Approach for Internet of Things Operating Systems
	Abstract
	Keywords
	1. Introduction
	2. Typical Workflow for Base-Lining the Regression Test Suite
	3. Process of Redesigning the Regression Test Suite If It Already Exists
	Contiki Specific Details

	4. Process of Designing the Regression Test Suite If It Does Not Exist
	5. Contiki Environment Specific Changes to Be Done
	6. Conclusion
	7. Future Work
	References
	Appendix A: ACTS generated test design for Contiki Operating System
	Appendix B: Code Coverage data gathered for existing test suite of Contiki and Cooja using CodeCover
	Appendix C: Tweaking of Ant Build.xml for Gathering the Coverage Data

