IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.3, MARCH 2003 195

Test-Suite Reduction and Prioritization for
Modified Condition/Decision Coverage

James A. Jones and Mary Jean Harrold, Member, IEEE Computer Society

Abstract—Software testing is particularly expensive for developers of high-assurance software, such as software that is produced for
commercial airborne systems. One reason for this expense is the Federal Aviation Administration’s requirement that test suites be

modified condition/decision coverage (MC/DC) adequate. Despite its cost, there is evidence that MC/DC is an effective verification

technique and can help to uncover safety faults. As the software is modified and new test cases are added to the test suite, the test
suite grows and the cost of regression testing increases. To address the test-suite size problem, researchers have investigated the use
of test-suite reduction algorithms, which identify a reduced test suite that provides the same coverage of the software according to

some criterion as the original test suite, and test-suite prioritization algorithms, which identify an ordering of the test cases in the test
suite according to some criteria or goals. Existing test-suite reduction and prioritization techniques, however, may not be effective in
reducing or prioritizing MC/DC-adequate test suites because they do not consider the complexity of the criterion. This paper presents
new algorithms for test-suite reduction and prioritization that can be tailored effectively for use with MC/DC. The paper also presents

the results of empirical studies of these algorithms.

Index Terms—Test-suite reduction, test-suite prioritization, modified condition/decision coverage, testing, critical software.

1 INTRODUCTION

TO facilitate the testing of evolving software, a test suite is
typically developed for the initial version of the
software and reused to test each subsequent version of
the software. As new test cases are added to the test suite to
test new or changed requirements or to maintain test-suite
adequacy, the size of the test suite grows and the cost of
running it on the modified software (i.e., regression testing)
increases.

Regression testing is particularly expensive for devel-
opers of high-assurance software, such as software that is
produced for commercial airborne systems. One reason for
this expense is the extensive verification of the software
required for Federal Aviation Administration approval
Such approval includes the requirement that a test suite be
adequate with respect to modified condition/decision
coverage (MC/DC). For example, one of our industrial
partners reports that, for one of its products of about 20,000
lines of code, the MC/DC-adequate test suite requires seven
weeks to run. Despite its cost, there is evidence that MC/DC
is an effective verification technique. For example, a recent
empirical study performed during the real testing of the
attitude-control software for the HETE-2 (High Energy
Transient Explorer) found that the test cases generated to
satisfy the MC/DC coverage requirement detected impor-
tant errors not detectable by functional testing.'

1. Private communication with Nancy Leveson of MIT.

o The authors are with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332-0280.
E-mail: {jjones, harrold}@cc.gatech.edu.

Manuscript received 22 Mar. 2002; revised 25 July 2002; accepted 10 Sept.
2002.

Recommended for acceptance by G. Canfora and A.A. Andrews.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 117301.

0098-5589/03/$17.00 © 2003 IEEE

Researchers have investigated two approaches for
addressing the test-suite size problem that maintain the
same coverage as the original test suite:” test-suite reduction
and test-suite prioritization. Test-suite reduction (also known
as test-suite minimization) algorithms (e.g., [1], [7], [9], [11],
[14], [15]) identify a reduced test suite that provides the
same coverage of the software as the original test suite. Test-
suite prioritization algorithms (e.g., [5], [4], [12]) identify an
ordering of the test suite according to some criteria.

Existing test-suite reduction and prioritization techniques
consider test-case coverage criteria (e.g., statements, deci-
sions, definition-use associations, or specification items),
other criteria such as risk or fault-detection effectiveness, or
combinations of these criteria. As we discuss in Section 4, for
test-suite reduction and prioritization based on coverage,
there are important differences between coverage criteria
such as statement and MC/DC. Thus, existing techniques
may not be effective for use in reducing or prioritizing
MC/DC-adequate test suites because they do not consider
the complexities of the criterion. However, because of the
enormous testing expense that users of MC/DC can incur,
effective test-suite reduction and prioritization techniques
that can be applied to MC/DC-adequate test suites could
provide significant savings to developers who use this
powerful test-coverage criterion.

This paper presents two new algorithms for test-suite
reduction and one new algorithm for test-suite prioritiza-
tion that can incorporate aspects of MC/DC effectively.
Unlike existing algorithms, when making decisions about
reducing or ordering a test suite, our algorithms consider
the complexities of MC/DC. This paper also presents

2. Another related approach that addresses the test-suite size problem is
test selection (e.g., [2], [10]), which selects a subset of the test suite that will
execute code or entity changes; this test suite, however, may not provide the
same coverage as the original test suite.

Published by the IEEE Computer Society

196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.3, MARCH 2003

empirical studies that evaluate the effectiveness of our test-
suite reduction algorithms, compare the benefits of each,
and evaluate the performance of our test-suite prioritization
algorithm.

This paper addresses the issues surrounding test-suite
reduction and prioritization for MC/DC. The main con-
tributions of this paper are:

e An analysis of the problems that arise when
attempting to apply existing test-suite reduction
and prioritization algorithms for use with MC/DC.
This analysis shows that new techniques are
necessary for effective test-suite reduction and test-
suite prioritization for MC/DC.

e A description of a general approach to designing
algorithms for test-suite reduction and prioritization
along with a detailed description of these algor-
ithms—two for reduction and one for prioritization.
These algorithms use MC/DC coverage information
to characterize the strength of test cases.

e A set of empirical studies performed on two real C
subjects that compare the relative performance and
effectiveness of the two reduction algorithms and
present a performance evaluation of the prioritiza-
tion algorithm. These studies show that our test-
suite reduction techniques can be effective in
reducing test suites while providing acceptable
performance. The two techniques provide a trade
off between performance and reduction: For our
subject programs, versions, and test suites, one
technique runs in linear time in the size of the
original test suite, but provides slightly larger
reduced test suites, whereas the other runs in
quadratic time in the size of the original test suite
and provides slightly smaller reduced test suites.
The study also evaluates the time required to
prioritize a test suite.

In the next section, we present background on MC/DC.
Section 3 presents the test-suite reduction and the test-suite
prioritization problems, discusses attributes that must be
considered in designing techniques to address these
problems, and motivates the need for new algorithms for
MC/DC. Section 4 presents three possible algorithms—two
for test-suite reduction and one for test-suite prioritization
—tailored for MC/DC. In Section 5, we present empirical
results that evaluate each algorithm individually and that
compare the algorithms to each other. Finally, Section 6
presents conclusions and discusses some future work.

2 MobIFlIED CONDITION/DECISION COVERAGE

MC/DC is a stricter form of decision (or branch) coverage.
For decision coverage, each decision statement must
evaluate to true on some execution of the program and
must evaluate to false on some execution of the program.’
MC/DC, however, requires execution coverage at the
condition level. A condition is a Boolean-valued expression
that cannot be factored into simpler Boolean expressions.

3. If no inputs cause these true or false evaluations for the predicate,
the decision is infeasible and cannot be covered by any test case.

Program P
St1:if (AorB)and C
S2:if (not (D and E)) and F
end P
(a)

St:if (AorB)and C S2:if (not(D and E)) and F
AT | AF) D(T) | D
TFT | FFT ETT | TTT
B(T) | B(F) E(T) | E(F)
FTT | FFT TFT | TTT
T | CE F(T) | FE)
FTT | FTF FTT | FTF
TFT | TFF TFT | TFF
TIT | TTF FFT | FFF

(b)
st s
T1 | TFT . TFT
T2 | FTF . FIF
T3 | FFT . FIT
T4 | FTT ! TFF
T5 | TFF CTTT
T6 | FTT CTTT
(c)

A(T) | AF) r DM | DE
Tl T3 N] TS, T6
B(T) | B(F) r E(M | EF
T4, T6| T3 LTI T3, T6
am | CF) P B | FE)
T4, T6| T2 . T3 T2
Tl T5 LT T4

(d)

Fig. 1. (a) Partial program P; (b) its truth vectors, organized by condition,
truth value, and MC/DC pair; (c) test cases and their coverage;
(d) subfigure (b) with the truth vectors replaced by the test cases that
cover them.

For example, the partial program P in Fig. la contains a
decision statement, S1, that has three conditions: A, B, and C.

MC/DC requires that each condition in a decision be
shown by execution to independently affect the outcome
of the decision [3]. Each possible evaluation of that
decision produces a truth vector—a vector of the Boolean
values resulting from the evaluation of the conditions in
that decision. For example, “TTF” in Figs. 1 and 2 for
statement S1 is a truth vector in which condition A

JONES AND HARROLD: TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE 197

. FIT || FTF : =—MC/DC pair
| TET || TEE
« TTT ' |"\TTE® —=— Truth vector

Truth value

Fig. 2. Condition C (Fig. 1) and its constituent parts.

evaluates to true, B evaluates to true, and C evaluates to
false.

An MC/DC pair is a pair of truth vectors, each of which
causes a different result for the decision statement, but that
differ only by the value of one condition. For example, the
truth vectors “FTT” and “FIF” for condition C in Fig. 2
differ only in the evaluation of C and cause different
evaluations of the decision. Thus, these two truth vectors
comprise an MC/DC pair for condition C. The truth vector
“FTF” is called “FTT”’s mate truth vector and vice versa.

A truth value for a condition cond is the set of truth
vectors belonging to the MC/DC pairs for cond that cause
cond’s decision to evaluate to a particular result. Fig. 2
illustrates C’s truth values: {FTT, TFT, TTT} for C(T) and
{FTF, TFF, TTF} for C(F). Note that, although the truth
vector “FFF” causes C’s decision to evaluate to false, it is
not an element of the truth value for C(F) because it is not
part of an MC/DC pair for C.

In some cases, there can be more than one MC/DC pair
for a condition. Fig. 1b shows, for example, that there is only
one MC/DC pair for conditions A, B, D, and E, but there are
three MC/DC pairs for conditions C and F, each of which
can be used to show the independence of the condition. For
condition C, for example, there are three MC/DC pairs; we
denote them as C;, where 7 is the row number in the table
for C. Because MC/DC requires that MC/DC pairs be
covered, the coverage of truth vectors “FIT” and “TFF,”
although satisfying C;(T) and C,(F), respectively, for
condition C, does not satisfy the MC/DC criterion for C.

3 TEST-SUITE REDUCTION AND PRIORITIZATION
The optimal test-suite reduction problem can be stated as:*

Given: Test suite T, a set of test-case requirements,
T1,72,. .., Ty, that must be satisfied to provide the desired
test coverage of the program.

Problem: Find T" C T such that 7" satisfies all r;s and (VI")
(T" C T) (T" satisfies all r;s) [|T"| < |T"|].

Given subsets of T, T1,T5,...,T,, one associated with
each of the r;s such that any one of the test cases ¢;
belonging to 7; can be used to test r;, a test suite that
satisfies all r;s must contain at least one test case from each
T;. Such a set is called a hitting set of the 7;. Maximum
reduction is achieved with the minimum cardinality hitting
set of the Tjs. Because the problem of finding the minimum
cardinality hitting set is intractable [6], test-suite reduction
techniques must be heuristic.

The test-suite prioritization problem can be stated as:®

4. Variation of the problem presented by Harrold et al. [7, p. 272].
5. Problem and argument presented by Rothermel et al. [12, p. 3].

Given: Test suite T, a set of permutations of 7, PT, a
function f from PT to the real numbers.

Problem: Find pt € PT such that (Vpt') (pt' € PT)
[f(pt) > f(pt)]-

PT represents the set of possible orderings (prioritiza-
tions) of T, and f is a function that, when applied to an
ordering, yields an evaluation of that ordering. Depending
on the choice of f, the test-case prioritization problem may
be intractable or undecidable. For example, given a
function f that quantifies the rate at which a test suite
achieves statement coverage, efficiently determining the test
suite that maximizes f would provide an efficient solution
to the knapsack problem [12].° Similarly, given a function f
that quantifies the rate at which a test suite detects faults, a
precise solution to the prioritization problem would
provide a solution to the halting problem [12]. In such
cases, prioritization techniques must be heuristic.

Test-suite reduction algorithms input a test suite 7" and
output a new test suite, whereas test-suite prioritization
algorithms input a test suite 7" and output a sequence of test
cases. For convenience, in the following discussion, we refer
to both outputs as T".

Test-suite reduction and prioritization algorithms share a
number of common attributes. First, in constructing 7", the
algorithms evaluate each test case for its contribution or
goodness based on some characteristics of the program
under test P, some characteristics of the test cases in T, and
the goal of T". Although a variety of characteristics have
been considered, we can classify them as either types of
coverage or types of cost. Types of coverage include P’s
requirements, code-based criteria such as statement,
branch, and data-flow, and risks, age, or error-proneness
of components of P. Types of cost include execution time for
P with a test case, set-up time for preparing to run a test
case, and any financial cost associated with running a test
case (especially in the case of simulations). The algorithms
evaluate test cases in 1" based on some combination of these
characteristics. For example, Harrold et al. [7] and Rother-
mel et al. [11] use various types of coverage for test-suite
reduction. For each program entity E, this technique uses
the number of test cases that cover £ when making
decisions about which test cases to include in 7’. For
another example, Elbaum et al. [5] and Rothermel et al. [12]
use various types of coverage, along with error-proneness
of modules, to select an ordering of test cases for 7".

Second, test-suite reduction and prioritization algorithms
may vary in the frequency with which they recompute the
contribution of a test case. One approach computes this
contribution once and uses it to select test cases for
inclusion in or exclusion from 7T". Rothermel et al. [12] refer
to this frequency as fotal and use it to compute total-based
prioritization. Another approach recomputes the contribu-
tion after test cases are included in or excluded from T’
based on the additional contribution of the test case to 7.

6. Informally, the knapsack problem is the problem of, given a set U
whose elements each have a cost and a value and given a size constraint and
a value goal, finding a subset U’ of U such that U’ meets the given size
constraint and the given value goal. For a more formal treatment, see [6].

198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.3, MARCH 2003

Rothermel et al. [12] refer to this frequency as additional and
use it to compute additional-based prioritization. In dis-
cussing our algorithms, we use Rothermel et al.’s terminol-
ogy to refer to techniques for computing a test case’s
contribution: Total refers to an a priori evaluation in which
test cases are evaluated based only on the characteristics of
the test case, whereas additional refers to an evaluation that
considers the current state of the reduction or prioritization
as well as characteristics of the test case. In the case of
additional evaluation, the frequency with which test cases
are re-evaluated may vary, and re-evaluation may occur
after n iterations.

Third, an algorithm can use a test case’s contribution for
determining the next test case to add to 7" (for both
reduction and prioritization) or, alternatively, for determin-
ing the next test case to remove from 7" (for reduction). We
refer to the former as a build-up technique and to the latter
as a break-down technique. In a build-up technique, the
algorithm begins with an empty 7" and adds test cases to it,
whereas, in a break-down technique, the algorithm begins
with T and removes test cases from it to get 7’. One
important advantage of a break-down approach for test-
suite reduction is that the algorithm can be stopped at any
time during the reduction process, and the remaining test
suite (i.e.,, T — {removed test cases}) provides coverage of
the test-case requirements. This coverage can be important
if manual intervention is required in making decisions for
test-case removal. In contrast, a build-up approach can
guarantee coverage only when the algorithm terminates.

Combinations of these attributes—computation of test-
case contribution, frequency of (re)evaluation of test-case
contribution, and method of constructing 7'—can produce
a number of different algorithms. In the next section, we
describe several such algorithms, which we have devel-
oped, that consider the complexities of MC/DC.

4 TEeEST-SUITE REDUCTION AND PRIORITIZATION
For MC/DC

In this section, we first discuss the problems with using
existing test-suite reduction and prioritization algorithms
for MC/DC. Next, we present three new algorithms—two
for test-suite reduction and one for test-suite prioritiza-
tion—that consider the complexities of MC/DC.

4.1 Using Existing Algorithms for MC/DC

For test-suite reduction and prioritization, there are two
important differences between coverage criteria, such as
statement, and MC/DC. First, coverage criteria, such as
statement, require that every entity (e.g., statement) be
covered by the test suite. For these criteria, a test case either
covers an entity or does not cover the entity; we call such
criteria single-entity criteria. In contrast, MC/DC requires
that every condition be covered by the execution of an
MC/DC pair. For MC/DC, a test case may cover an
MC/DC pair, but, more often, a test case contributes to the
coverage of a condition by covering only one of its truth
vectors; we call such criteria multiple-entity criteria. Second,
coverage criteria, such as statement, have only one way to
be covered—the entity (e.g., statement) must be executed by
one of the test cases in the test suite. For MC/DC, there may

be several MC/DC pairs associated with a condition, and
executing any of them provides coverage of the condition.
For example, in partial program P of Fig. 1a, condition F has
three possible MC/DC pairs and coverage of only one of
them is necessary to satisfy MC/DC for F.

Because of these differences, existing test-suite reduction
and prioritization techniques, which were developed for
single-entity criteria, are not sufficient when applied to
multiple-entity criteria such as MC/DC. Existing test-suite
reduction and prioritization techniques require an associa-
tion between entities to be covered and test cases in the test
suite. In attempting to use the existing techniques for
MC/DC, the major problem is the identification of the
entities to be covered. To illustrate the problem, consider
two possible approaches for test-suite reduction; ap-
proaches for test-suite prioritization have similar problems.

Under the first approach, for test-suite reduction, the r;s
are the MC/DC pairs. The r;s would be, for example (Fig. 1),
MC/DC pair (“TFT,” “FFT”) for A and (“FIT,” “FTF”),
(“TFT,” “TFE”), and (“TTT,” “TTEF”) for C. Because, in most
cases, two test cases are required to cover an MC/DC pair,
we may not be able to get a relationship between test cases
and MC/DC pairs. In fact, for the MC/DC pairs in
program P, no MC/DC pair is covered by a single test
case. Thus, we cannot associate individual test cases with
MC/DC pairs. Because we cannot get this association of
MC/DC pairs and test cases, we cannot use MC/DC pairs
as the coverable entities for the reduction.

Under the second approach, for test-suite reduction, the
r;s are the truth values for conditions. For example, the
truth value A(T) would be satisfied with execution of the
truth vector “TFT,” and the truth value C(T) would be
satisfied with the execution of any one of the truth vectors
“FTIT,” “TFT,” and “TTT.” With this approach, we can
associate individual test cases with truth values, and
MC/DC is like the class of single-entity criteria in that a
test case covers (or does not cover) each entity. This
approach, however, is not sufficient for test-suite reduction
because MC/DC requires that an MC/DC pair of truth
vectors be covered. For example, C(T) may be satisfied by
executing truth vector “FIT,” and C(F) may be satisfied by
executing truth vector “TFF.” In this case, both true and
false entities are covered for condition C. However,
MC/DC is not satisfied for C because the truth vectors do
not constitute an MC/DC pair.

A naive approach for providing a test-suite reduction
algorithm for MC/DC is to associate, with each MC/DC
pair, the pairs of test cases that cover the pair. Given this
association, we can apply Harrold et al.’s (HGS) algorithm
for reduction of the test suite [7].

Table 1 shows the association between MC/DC pairs and
test-case pairs for our example program P (Fig. 1a). The
HGS algorithm would be applied to these test-case pairs
instead of to the individual test cases. This application of
the HGS algorithm would not take advantage of the
intersection of test-case pairs in the reduction process. The
resulting T" would be {T1, T3, T4, T5, Té}.

Although this approach can provide some reduction in
the test suite, the algorithm does not consider individual
test cases and the contribution they make to MC/DC. We

JONES AND HARROLD: TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE 199

TABLE 1
MC/DC Pairs and Associated Test-Case Pairs
for Program P of Fig. 1

Condition Test-Case Pair

[(T1,T3)]

{(T3,T4), (T3, T6)}

{(T2, T4), (T2, T6), (T1, TS)}
{(T3, T5), (T3, T6)}

{(T1, T5), (T1, T6)}

{(T1, T4), (T2, T3)}

oo QW >

believe, and our case study suggests, that we can achieve
more reduction in test-suite size using an algorithm that
considers the partial coverage of the MC/DC pairs by
individual test cases. The next section presents this new
algorithm and the following section presents a test-suite
prioritization algorithm that considers individual test cases
and the contribution they make to MC/DC.

4.2 New Test-Suite Reduction Algorithm
(Break-Down)

Our first test-suite reduction algorithm bases its contribu-
tion computation on MC/DC pairs. The algorithm utilizes
an additional approach that recomputes the contribution of
test cases after each test case is selected and uses a break-
down approach that removes the weakest test case from the
test suite.

To describe test-suite reduction, we define two important
terms: test-case redundancy and test-case essentiality. A test
case t is redundant with respect to a set of test cases T if the
set of test-case requirements covered by t is a subset of the
set of test-case requirements covered by T. To eliminate
some test case t from a test suite 7" and retain the coverage
of T, t must be redundant with the remaining test cases in T’
(i.e.,, T — {t}). A test case t is essential with respect to a set of
test cases T if the set of test-case requirements covered by t
is not a subset of the set of test-case requirements covered
by T and, thus, t is not redundant with respect to T. A test
case that uniquely covers any test-case requirement must be
present in the reduced test suite to retain coverage of that
requirement. Every test case t in a test suite 7' can be
identified as either essential or redundant with respect to
T —{t}.

Specifically, for MC/DC, a test case is essential if it
uniquely covers a truth value of a condition after uncovered
MC/DC pairs have been removed. The uncovered MC/DC
pairs are removed because they do not contribute to the
coverage of the condition. Fig. 3 demonstrates the process of
discovering essential test cases: First, we view the test-case
coverage of the MC/DC pairs, as shown in Fig. 3a; then, we
remove any MC/DC pairs that are uncovered, as shown in
Fig. 3b with the removal of the second MC/DC pair; finally,
we identify the test cases that uniquely cover a truth value,
as shown in Fig. 3¢ with the dashed box around the pair of
occurrences of T1. Test case T1 is identified as essential
because it is the only test case that covers the X(T) truth
value that can aid in the coverage for the condition. This
process is applied to all covered conditions (i.e., conditions
with a covered MC/DC pair). Conditions that are uncovered

X(T) | X(F) X(M | X(F) X(T) | X(F)
T1 T2 Tl T2 T | T2
T3 - : |

Tl T4 T1 T4 'T1, | T4

(@) (b) ()

Fig. 3. (a) Example condition shown with test-case coverage, (b) removal
of uncovered MC/DC pairs, (c) identification of essential test cases.

by the original test suite are handled differently; we explain
this in the Other considerations section of Section 4.2.

Our algorithm first identifies essential test cases; the
remaining test cases in the test suite are redundant with
respect to some other subset of test cases in the suite. The
algorithm then iteratively identifies the weakest test case—
the test case that contributes the least to coverage of the
test-case requirements—of the test cases that have not
been marked as essential. The algorithm then eliminates
that test case and identifies new essential test cases. When
all test-case requirements covered by the original test suite
are covered by the set of essential test cases, the algorithm
halts, and the essential test cases are returned as the
reduced test suite.

Our algorithm ReduceSuite, shown in Fig. 4, can be
applied to both single-entity and multiple-entity criteria.
Reducesuite inputs 1) aliTests—the test cases in the test
suite, annotated with the conditions that they cover and
2) allConditions—the conditions in the program under test
P annotated with the test cases that cover them. The
algorithm outputs the test cases comprising the reduced test
suite. Step 1 is executed once at the beginning of the
algorithm, and then Steps 2, 3, and 4 are executed iteratively
until allConditions is empty.

Step 1: Eliminate uncovered MC/DC pairs. In Step 1
(lines 2-4), any MC/DC pairs that are not covered by aliTests
are removed from allConditions. These MC/DC pairs
cannot contribute to the MC/DC coverage. For example,
the MC/DC pairs (C3(T),C3(F)) and (F3(T),F3(F))” in
conditions C and F, respectively, in Fig. 1 are removed. Fig. 5,
which is modified from Fig. 1d, illustrates the state of the
example after Step 1 of ReduceSuite.

Step 2: Identify essential test cases. In the second step
(lines 6-19), ReduceSuite identifies the test cases that are
essential with respect to allTests. The algorithm examines
each condition, ¢, in allConditions to identify any test case
that uniquely covers either ¢’s true truth value or ¢’s false
truth value (lines 6-9). When the algorithm finds such a test
case t, it adds t to essentialTests and removes ¢ from
allTests (lines 10-11). Note that essentialTests is kept as a
convenience rather than a necessity. The essential test cases
could also be marked essential in allTests, but, for ease and
speed, a separate set is used (however, this is not a build-up
algorithm). The algorithm then examines each truth vector v
that ¢ covers to see whether any of the test cases that cover
v’s mate truth vector are essential (line 13); this indicates a
covered MC/DC pair and, thus, a covered condition. When
the algorithm finds such a case, it removes the condition to
which v belongs from allConditions (line 14).

7. Recall from Section 2 that C; is the ith MC/DC pair in condition C.

200

algorithm ReduceSuite(allTests,allConditions)
input allTests: set of test cases for P
allConditions: sct of conditions for P
output essentialTests: reduced test suite
begin ReduceSuite
1. essentialTests = ¢
2. for each condition, ¢, in allConditions do /*Step 1%/
3. remove all uncovered MC/DC pairs from ¢
4. endfor
5. do
6. for each condition, ¢, in allConditions do /*Step 2%/
7. for z in {true,false} do
& if the (# of Lest cases covering all of the z truth vectors
in ¢) = 1 then
9. t = the test covering z truth vectors in ¢
10. essentialTests = essentialTests U {t}
11. allTests = allTests — {t}
12. for each truth vector, v, covered by ¢ do
13. if (the set of test cases covering v’s mate truth vector
in its MC/DC pair) N essentialTests # ¢ then
14, allConditions = allCondilions — {condition
to which v belongs}
15. endif
16. endfor
17. endif
18 endfor
19. endfor
20. for each test, ¢, in allTests /*Step 3%/
21. t.contribution = 0
22. endfor
23. for each condition, ¢, in allConditions do
24. for z in {uue.false} do
25. indivConlrib = indivConlrib + 1.0/(# of test cases
covering all of the 4 truth vectors in ¢)
26. for each « truth vector, v, in ¢ do
217. for each test, ¢, covering v do
28. t.contribution = t.contribution + indivContrib
29. endfor
30. endfor
31. endfor
32. endfor
33. t = test in aliT ests with lowest contribution [*Step 4%/
34. allTests = allTests — {t}
3s. for each truth vector, v, that ¢ covers do
36. v.coveringTests = v.coveringTests — {t}
37. if (thc MC/DC pair, p, to which v belongs becomes
uncovered) then
38. remove p from its condition
39. endif
40. endfor
41. while (allConditions # ¢)
42. return essentialT csts
end ReduceSuite

Fig. 4. ReduceSuite: MC/DC adequate test suite reduction.

AT | AF) - DM | p@®
T1 T3 T3 TS, T6
B(T) | B(F) E(T) | EF)
T4, T6| T3 LTI T5, T6
o | CF - ET) | FF)
T4, T6| T2 S ™
T1 T5 o Tl T4

allTests = {T1,T2,T3,T4,T5,T6}
allConditions = {A,B,C,D,EF}
essentialTests = {}

Fig. 5. Example after Step 1 of ReduceSuite.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.3, MARCH 2003

A | adr . DD | DE
2|13 . T3 | T5.7T6
B(T) | B(F) BT | B
T4, T6| “T3: - TL T5, T6
C(T) | C(F) B(T) | F(E)
T4, T6| T2 LT3 | T2
TI: T5 DT T4

allTests = {T2,T4,T5,T6})
allConditions = {B.C.D.E,F}
essentialTests = {T1,T3}

Fig. 6. Example after first iteration of Step 2 of Reducesuite.

In the example of Fig. 1, because T1 is the only test
case that covers A(T), ReduceSuite identifies it as an
essential test case, removes it from allTests, and adds it
to essentialTests. Likewise, the algorithm identifies T3 as
essential, removes it from allTests, and adds it to
essentialTests. Next, the algorithm identifies condition A
as covered by essentialTests and removes it from
allConditions. Fig. 6 shows the state of the example after
the first iteration of Step 2. The dotted boxes denote the
essential test cases and the slashed condition denotes a
condition covered by essentialTests.

Step 3: Assign test-case contributions. After the algo-
rithm identifies all essential test cases and removes them
from allTests (Step 2), each remaining test case t in allTests
is redundant with essentialTests U allTests — {t}. Thus, the
algorithm can remove any test case from allTests and retain
coverage of P. In Step 3 (lines 20-32), the algorithm attempts
to find the test case that contributes least to the coverage in
allTests. The algorithm does this by first initializing the
contribution of each test case to zero (lines 20-22). Then, for
each condition ¢, the algorithm increments the contribution
of each test case that covers each of ¢’s true and false
truth values tv by (1.0/the number test cases covering tv)
(lines 23-32).

In the example, the contributions given to the test cases
in allTests are shown in Table 2. To illustrate, the
contribution of 1.3 for T4 is achieved by summing the
individual contribution scores for its coverage of B(T), C(T),
and F(F) (i.e., 0.5, 0.3, and 0.5, respectively).

Step 4: Discard weakest test case. In Step 4 (33-40), the
algorithm eliminates the weakest test case—the test case

TABLE 2
Test Cases for Example and Associated Contribution
Weights Assigned during Step 3

Test Case Contribution Weight
T2 1.0
T4 1.3
T5 1.5
T6 1.83

JONES AND HARROLD: TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE 201

AT) | peer . DM | DE
T | T3 T3 | T5,T6
B(T) | B(F) E(T) | E(F)
T4, T6| ‘T3: TI: | TS5, Té6
C(T) | C(F) L EM | FE
T | T5 T T4

allTests = {T4,T5,T6}
allConditions = {B,C,D,E,F}
essentialTests = {T1.T3}

Fig. 7. Example after first iteration of Step 4 of Reducesuite.

that contributes least to the coverage of P, according to the
heuristic given in Step 3. The test case with the lowest
contribution in allTests, t, is removed from allTests
(line 34). For each truth vector v that was covered by ¢,
the algorithm removes ¢ from the set of test cases covering v
(lines 35-40). If the MC/DC pair to which v belongs
becomes uncovered as a result of discarding ¢, then the
algorithm removes the MC/DC pair from its condition (37-
39). Fig. 7 shows the state of the example after the test case
with the lowest contribution T2 is discarded, and this step
has completed.

Steps 2, 3, and 4 are repeated until allConditions is
empty and, thus, all conditions in P are covered by a set of
essential test cases. In the next iteration of the algorithm, T4
and T5 are identified as essential. They are thus removed
from allTests and added to essentialTests. At this point,
conditions B, C, D, E, and F are covered by the test cases in
essentialTests and are thus removed from allConditions. T6
is discarded because it is the only test in allTests and,
consequently, has the lowest contribution. The loop halts
because allConditions is empty and essentiallests is
returned as the reduced test suite. Fig. 8 shows the state
of the example after the next iteration of Steps 2, 3, and 4.

D(T) | Depr

I IS
B(T) g E(T) E
T3 T—T1T5
oI | Cr~ BT | B
2 | TS 2| T4

allTests =1}
allConditions = {}
essentialTests = {T1,T3,T4,T5}

Fig. 8. Example after second iteration of Steps 2, 3, and 4 of
ReduceSuite.

algorithm PricritizesSuite(allTests, all Entities)
input allT'ests: set of test cases for P

alllontities: set of entities for P
output orderedT est Suite: prioritized test suite

hegin PricritizeSuite

1 mark all entities in alf Entities uncovered /7 Step 1%/

2. orderedTestSuile = emply array of size allTests

3. arderedlestSuite[l] = {t € allTests|vt' € alllests, entity
coverage of t < entity coverage of £}

4. allT'ests = allTests — {1}

5. mark all entities in all Eniities, covered, that are covered by {

6. i=1

7. while allTests £ ¢ do /% Step 2 %/

8. for each test, ¢, in all1'ests do

9. teontribulion = the sum of the # of MC/DC pairs

completed and the number of entries, exits, cases,
and truth vectors for uncovered conditions covered
10. endfor
11. if the highest contribution = 0 then
/iF all conditions, entries, exits, and cases are covered,

arderedestSuite can be used as a reduced test suite %/

12, mark all entities in all Entitics uncovered

13. nextTest = {t € allTests|vt' € allTests, entity
coverage of t' < entity coverage of £}

4. else

15, nerptTest = {I € allTests|V' € allTests,
. contribution < L.confribution)

16 endif

17. orderedTestSuite[i] = nextTest

18 allTests = allTests — {nextTest}

19. mark all entities in all Entities, covered. that are covered by
newtTest

20. i=i+1

21. endwhile

22, return orderedTest Suite

end Prioricizesuite

Fig. 9. Prioritizesuite: MC/DC-based test-suite prioritization.

Other considerations. To simplify our discussion, we
presented our algorithm ReduceSuite for test suites that
are MC/DC-adequate. However, with minor modification,
the algorithm can reduce test suites that are not MC/DC-
adequate. In this case, there are uncovered or partially
covered MC/DC pairs. For uncovered or partially covered
conditions, in Step 1 the algorithm eliminates all MC/DC
pairs that have no coverage: Neither truth vector in the
MC/DC pair is covered by any test case. If all MC/DC pairs
are removed from a condition, then the condition is not
covered at all, and it is removed from allConditions. For
partially covered conditions, we define essentiality slightly
differently. A test case is considered to be essential if it
uniquely covers a truth vector of a partially covered
condition. Fig. 10 shows test cases T1, T2, and T3—all of
which are essential. We treat partially covered conditions in
this way to ensure that if, at some later time, new test cases
are added to the reduced test suite, that test suite will
preserve the original test suite’s potential for coverage. For
example, if partially covered conditions were treated in the
same manner as covered conditions in Fig. 10, we would
need only one test case in {T1, T3} to be in the reduced test
suite. Suppose that T1, but not T3, were chosen to be in the
reduced test suite. If a test case were added to the test suite
that covered X(F) in the third MC/DC pair, coverage would
not be achieved for this condition.

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

Fig. 10. Example partially covered condition with essential test cases T1,
T2, and T3.

The MC/DC criterion also specifies that all entry and exit
points, and all case statements in the program be exercised.
A simple extension to ReduceSuite handles entry and exit
points and case statements by stating that essentiality is
achieved when one test case covers each of these entities.

4.3 New Test-Suite Prioritization Algorithm

Like our break-down reduction algorithm, our test-suite
prioritization algorithm, shown in Fig. 9, bases its contribu-
tion computation on MC/DC pairs and utilizes an addi-
tional approach that recomputes the contribution of test
cases after each test case is selected. However, instead of the
test-case evaluation being based on the uniqueness of
program-entity coverage, this algorithm uses a simpler
evaluation based on additional MC/DC pairs covered. In
contrast to our break-down test-suite reduction, the test-
suite prioritization algorithm uses a build-up approach that
adds the “strongest” test case to the new test suite.

Step 1: Initialization. In Step 1, PrioritizeSuite first
selects the test case in the test suite that has the highest
entity coverage (sum of the test vectors, procedure entries,
procedure exits, and cases covered) (line 3). This test case is
placed into an ordered list orderedTestSuite as the first test
case and removed from the set containing the original test
suite allT'ests. The algorithm augments each program entity
with a flag that denotes its coverage by a test case (lines 1, 5,
12, 19). For example, for the conditions and coverage shown
in Fig. 1, Table 3 shows the entity coverage of each test case,
with T1, T3, and T6 tied for the most entities covered. Test
case T1 is chosen as the first test case to be placed into
orderedT'estSuite. The coverage of the truth vectors for
which T1 covers is shown with the dotted boxes around the
instances of T1 in Fig. 11.

Step 2: Additional prioritization. The algorithm then
iterates over the statements in Step 2 until aliT'ests is empty.
In each iteration, all test cases in allTests are assigned a
contribution value (lines 8-10). The contribution, or good-
ness, for test case t is evaluated based on the number of
MC/DC pairs, entries, exits, and case statements whose
coverage is completed by t—that is, those coverage entities
that are uncovered by the test cases in orderedT'estSuite, but
are covered by {t} U {test cases in orderedTestSuite}. The

TABLE 3
Test Cases and Associated Contribution Weights Assigned
during Step 1 of PrioritizeSuite

Test case Entities Covered
T1
T2
T3
T4
TS
T6

L R LA

VOL. 29, NO. 3, MARCH 2003

AT | AF) DM | DE)
LT T3 A T5, T6
B(T) | B(F) KT | E®
T4, T6| T3 LT T3, T6
T | CF) - KM | F®
T4,T6| T2 T3 T2
ST TS DOLTL T4

allTests= {T2,T3,T4,T5,T6)}

orderedTestSuite: T1

Fig. 11. Example after Step 1 of PrioritizeSuite.

next test case is chosen by selecting the test case with the
highest contribution value. However, if all test cases’
contribution values are zero, we reset all coverage flags
for the program entities and select the next test case to add
to orderedTestSuite based on the highest entity coverage
(lines 11-13). The test case chosen, nextTest, is removed
from aliTests and placed into the next available spot in
orderedT'estSuite, and all entities that are covered by
nextTest are marked covered (lines 17-19). This process
iterates until all test cases in allTests are consumed and,
thus, orderedTestSuite contains all of the test cases in the
original test suite. Finally, orderedTestSuite is returned.

For our example, Table 4 shows the additional coverage
of the test cases in allTests. Test case T5 has the highest
score and is thus chosen as the next test case in
orderedTestSuite. Fig. 12 shows the state of the example
after T5 is placed in orderedT'estSuite and removed from
allTests. The slashed conditions represent conditions that
are covered by test cases in orderedI'estSuite. After two
more iterations of the statements in Step 2, all conditions are
covered as shown in Fig. 13. Table 5 shows that all scores
for the additional entities covered are zero. Thus, all entities
are marked uncovered, as shown in Fig. 14, and the next test
case is chosen based on the number of entities covered.
Finally, after five iterations of Step 2, aliT'ests is empty, and
the orderedTestSuite is ordered: T1, T5, T3, T4, T6, T2.

4.4 New Test-Suite Reduction Algorithm (Build-Up)
We produced a second test-suite reduction algorithm by
extending the prioritization algorithm presented in
Section 4.3 to detect when orderedTestSuite provides

TABLE 4
Test Cases and Associated Contribution Weights Assigned
During the First Iteration of Step 2 of PrioritizeSuite

Test case Additional Entities Covered
Tl
T2
T3
T4
T5

T6

—_ 0 = = O

JONES AND HARROLD: TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE 203

A(T) A(F) ! D(T) D(F)
LT T3 LT3 “T5; T6
B(T) | B(F) E(T) e
T4, T6| T3 ? g “T5; T6
CT) | CE - _EM | EE
T4 F6 T2 - om |
gt 5! T T4
allTests= {T2,T3,T4,T6}
orderedTestSuite: T1,T5

Fig. 12. Example after the first iteration of Step 2 of PrioritizesSuite.

coverage of the original test suite. This reduction algorithm
is a build-up, additional technique that computes contribu-
tions in the same manner as our prioritization algorithm.
The comment added after line 11 in Fig. 9 represents the
extension to the prioritization algorithm to achieve a build-
up reduction algorithm. At this point in the algorithm, if the
greatest contribution value for all of the test cases in the
original test suite is 0 and if all conditions, entries, exits, and
cases are marked covered, the current set of test cases in
orderedTestSuite at that point is a reduced test suite. If
reduction were the goal instead of prioritization, execution
of the algorithm could halt there. For example, Fig. 13 shows
the state of the example at the point where orderedTestSuite
can be used as a reduced suite.

5 EMPIRICAL STUDIES

This section describes a set of studies to evaluate the
effectiveness of our test-suite reduction and test-suite
prioritization algorithms.

To investigate the effectiveness of our algorithms
presented in Section 4, we implemented prototypes of the
reduction and prioritization algorithms. All three proto-
types are written in C++. Much of the code is used in all

A(T) | _bdPr D(T) | Der
Ez ~T3 E " T5;T6
B(T) | Bebr E(D) L
E A 1% LT3 E “T5;T6
T CE F(T) F(F
. T4 67 T2 B2
{411,%« 5! : (T4
allTests= {T2,T6}
orderedTestSuite: T1,T5,T3,T4

Fig. 13. Example after the third iteration of Step 2 of Prioritize
Suite.

TABLE 5
Test Cases and Initial Associated Contribution Weights
Assigned during the Fourth lteration of Step 2
of PrioritizeSuite

Test case Additional Entities Covered
T1 -
T2 0
T3
T4 -
T5 -
T6 0

prototypes because they utilize the same data structures.
The combined code for the prototypes consists of 4,780 lines
of code. We performed the studies on a Pentium III,
733 MHz computer.

We used two subjects for our study: TCAS and Space.
TCAS is a program that is used by airplanes to detect
whether neighboring airplanes pose a danger of being too
close. The component of the program that we are using
suggests a solution to dangerous situations. This program,
versions, and test cases were assembled by researchers at
Siemens Corporate Research for a study of the fault-
detection capabilities of control-flow and data-flow cover-
age criteria [8]. TCAS consists of 138 executable lines of
C code. We used 41 faulty versions of the program, each
containing one fault, and the base version, which is assumed
to have no faults. The researchers at Siemens created the
faulty versions by manually seeding TCAS with faults,
usually by modifying a single line of code. Their goal was to
introduce faults that were as realistic as possible based on
their experience with real programs.

Space functions as an interpreter for an array definition
language (ADL). The program reads a file that contains
several ADL statements and checks the contents of the file
for adherence to the ADL grammar and to specify
consistency rules. If the ADL file is correct, the Space
program outputs an array data file containing a list of array
elements, positions, and excitations; otherwise, the program
outputs error messages. Space consists of 6,218 executable
lines of C code. We also used 35 faulty versions of the

AT | AF) D(T) | D(F)
__ __ — T6
B(T) | BB 1 E(T) | EF)
T6 — - T6
(T | CF FT) | KB
T6 T2 — T2

allTests= {T2,T6}
orderedTestSuite: T1,T5T3, T4

Fig. 14. Example during fourth iteration of Step 2 of PrioritizesSuite
after all entities are again marked uncovered.

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.3, MARCH 2003

70 T

60 - B

50 R

40 1

30 - B

Size of reduced test suite

PR LS Rt SR G SR
BRI 5
Oo%gbg\%

0 I I I I L I
0 10 20

30 40
Size of original test suite

Fig. 15. Sizes of the reduced test suite versus the sizes of the original
test suite for the break-down reduction method for TCAS.

program, each containing one fault and the base version,
which is assumed for purposes of studies to contain no
faults. Thirty of the faulty versions contain a single fault
that had been discovered during the program’s develop-
ment. Through working with Space, Rothermel et al. [13]
discovered an additional five faults and created versions
with those faults.

We instrumented both TCAS and Space by hand for
MC/DC by placing a probe at every condition, procedure
entry, procedure exit, and case statement in a switch. For
TCAS, we have a test pool of 1,608 test cases, and, for
Space, we have a test pool of 13,585 test cases. From these
test pools, 1,000 randomly sized, randomly generated (plus
additional test cases to reach near-decision coverage) test
suites, for each subject program, were extracted. These
subjects and these test suites have been used in similar
studies (e.g., [4], [11], [12]); these references provide
additional details about the subjects. These test suites are
near decision-coverage-adequate—only infeasible or extre-
mely difficult to execute branches (such as those controlling
an out-of-memory error condition) were not executed. For
example, for Space, these test suites covered 80.7 to
81.6 percent of the 539 conditions in the 489 decisions.
The test suites for TCAS ranged in size from 5 to 70 test
cases. The test suites for Space ranged in size from 159 to
4,712 test cases.

We present three studies. The first evaluates the
effectiveness and performance of our break-down test-suite
reduction technique. The second evaluates the effectiveness
and performance of our build-up test-suite reduction
technique. The third evaluates the performance of our
prioritization technique. Note that the order of the studies
of the techniques differs from the order in which they were
presented in Section 4—this lets us more conveniently
compare the two reduction algorithms.

5.1 Break-Down Test-Suite Reduction Study

To evaluate our break-down test-suite reduction algorithm
presented in Section 4.2, we applied our break-down test-
suite reduction prototype for MC/DC to each of the 1,000
test suites for each subject.

5000 T T T

4500

4000

3500

3000

2500

2000

Size of reduced test suite

1500

1000 A

500 B

! n ? f ¥
0 500 1000 1800 2000 2500 3000 3500 4000 4500 5000
Size of original test suite

Fig. 16. Sizes of the reduced test suite versus the sizes of the original
test suite for the break-down reduction method for Space.

For each test case in the union of all test suites (1,608 test
cases for TCAS and 13,585 test cases for Space), we
executed the subject program to acquire a test-case
requirement coverage report. We then executed our algo-
rithm with the coverage information for all test cases in each
of the test suites. We evaluated three characteristics of the
break-down test-suite reduction algorithm: size reduction
of test suites, time to perform the reduction, and fault-
detection loss of the reduced test suite.

To evaluate the break-down reduction technique’s ability
to reduce test suites, we plotted the size of the reduced test
suites as a function of the original test suites. Figs. 15 and 16
are scatter plots for TCAS and Space, respectively. Each
point in these scatter plots represents a test suite that has
been reduced. Each point is positioned along the horizontal
axis based on its original test-suite size and along the
vertical axis based on its reduced test-suite size. Fig. 15
shows that the sizes of the reduced test suites for TCAS are
fairly constant, although there is a slight dip for the smaller-
sized original test suites. This dip is created because the
smaller original test suites provided less MC/DC coverage
than the larger ones; thus, the resulting reduced test suites
were smaller. For TCAS, the average size of the reduced test
suites is 9.9, the standard deviation is 1.5, the smallest
reduced test suite contains four test cases, and the largest
reduced test suite contains 11 test cases. Fig. 16 shows that
the sizes of the reduced test suites for Space are nearly
constant, regardless of the size of the original test suite. For
Space, the average size of the reduced test suites is 111.8,
the standard deviation is 3.4, the smallest reduced test suite
contains 106 test cases, and the largest reduced test suite
contains 125 test cases.

To evaluate the break-down reduction technique’s
performance in reducing test suites, we plotted the time
to reduce each test suite as a function of the original test-
suite size. Figs. 17 and 18 are scatter plots that show the
time required to reduce the test suites for TCAS and Space,
respectively, based on our break-down test-suite reduction
algorithm. Each point in these scatter plots is positioned
along the horizontal axis based on its original test-suite size
and along the vertical axis based on the time needed by the

JONES AND HARROLD:

20000 T

o N
o 4
28!
22ge°
15000 - 30@}0 o
- oonbEs o
= b
3 8?5%’ 80
@ opBo
gt e
£ ooo ,\«§/° oo 1
P st o
: il
kS Ag /sé(
. <
s qughteet 2
£ aide
5000 |- %ggégggo) |
oot
A
itie® e o
489
0 oooo@&!!"‘ggggg ° | | L I
0 10 20 50 60 70

3 40
Size of criginal test suite

Fig. 17. Time to run the reduction algorithm versus the sizes of the
original test suite for the break-down reduction method for TCAS.

prototype to produce the reduced test suite. Both figures
show a quadratic curve. Note that the vertical axis for Fig. 17
represents time in microseconds, whereas the vertical axis
for Fig. 18 represents the time in seconds. Fig. 17 shows a
more diffuse quadratic curve for TCAS. We suspect,
however, that this is due to the sensitivity of such small
measurements—small variances such as the operating
system’s scheduling of processes can cause such results.
Fig. 18 shows two distinct, more localized, quadratic curves
for Space. To verify this quadratic trend, we computed the
best-fit trendlines for the curves. Let = represent the size of
the original test suite and y represent the time to reduce (in
the units used for each figure). The best-fit trendline for
Fig. 17 is y = 4.322% — 36.03z with an R* value of 0.9865.
The best-fit trendline for the lower curve in Fig. 18 is y =
0.00011z2 — 0.082z with an R? value of 0.9975, and the best-
fit trendline for the higher curve is y = 0.000192? — 0.1747x
with an R? value of 0.9983.

An interesting phenomenon about Fig. 18 is the two
modes of the curve. We further investigated this data to
understand why this occurred. Upon analysis of the data,
we discovered the cause of the diverging curves is related to
the presence or absence of essential test cases in the original,
unreduced test suite. Each unreduced test suite represented
in the bottom curve had at least one essential test case. Each
unreduced test suite represented in the top curve had no
essential test cases. Because the essential test cases are
removed from the problem space (allTests in the algo-
rithm), as well as every coverage entity (allConditions in the
algorithm) that those test cases covered, the problem space
is immediately much smaller and, thus, the algorithm runs
faster. In fact, about 30 percent of the coverage entities were
covered by the essential test case or cases in each test suite
in the lower curve. We identified truth values of three
conditions in Space that contributed to this phenomenon.
These three truth values are covered by only a few test cases
in our test pool. Those test suites that contained exactly one
of the test cases that covered at least one of those sparsely
covered truth values reduced faster than those that had
zero, two, or more of such test cases.

TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE

205

4000 T T

3500

3000 -

2500

2000 -

1500 |

Time to reduce (seconds)

1000

500

4500 5000

L L L L L
2000 2500 3000 3500 4000

Size of original test suite

o 500 1000 1500

Fig. 18. Time to run the reduction algorithm versus the sizes of the
original test suite for the break-down reduction method for Space.

Because studies have shown that there is fault-detection
loss in a reduced test suite [11], we also considered the
fault-detection capability lost by each test suite when that
test suite was reduced using our algorithm. To do this, we
compared the ability of the reduced test suite to detect
faults in 41 faulty versions of TCAS and in 35 faulty versions
of Space. F denotes the number of distinct faults revealed
by original test suite T" over the faulty versions of program
P, and F,.; denotes the number of distinct faults revealed
by reduced test suite 7} over those versions. The number of
faults lost is given by (F' — F,.q), and the percentage reduction
in fault-detection effectiveness of test-suite reduction is given
by (£=£= + 100).

To evaluate the fault-detection loss of the reduced test
suite compared to the original test suite, we plotted the
percentage of fault-detection loss as a function of the
original test-suite size. Figs. 19 and 20 are scatter plots that
show the percentage reduction in fault detection of the
reduced test suite compared to the original test suite for
TCAS and Space, respectively. Each point in these scatter
plots is positioned along the horizontal axis based on its
original test-suite size and along the vertical axis based on
its percentage of fault detection that was lost by the reduced
test suite. Fig. 19 shows that the fault-detection loss varies
greatly for TCAS, although there is a weak trend that more
fault-detection loss occurs for larger test suites. This trend is
caused by the fact that the largest test suites have the most
reduction. For TCAS using the break-down test-suite
reduction technique, the average fault-detection loss is
44 .4 percent, the standard deviation is 21.0, the maximum
fault-detection loss is 92.9 percent, and the minimum is
0 percent. These results are consistent with the results
reported by Rothermel et al. [11]. Fig. 20 also shows varying
fault detection loss and a weak trend of less fault-detection
loss for small original test suites for Space. However, the
overall fault-detection loss is much less than that of Fig. 19.
The average fault-detection loss is 10.2 percent, the
standard deviation is 5.1, the maximum fault-detection loss
is 22.9 percent, and the minimum fault-detection loss is
0 percent. An interesting characteristic of Fig. 20 is the
appearance of the stratification of the data. Upon investiga-
tion of the data, we have found that all 1,000 original test

206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.3, MARCH 2003
100 T T T T T 70 T T
©
90 | o N B
60 - B
AR
80 | o o N o <
c ° o £ 3
K © 6 0% ° .00 ° 8% 50 - 1
] 70 | o o oo oo v ge
B < So 9\%90 LA § o
3 3o *870 g I 2 £
3 60 |- o $° oo, o0t b% g 308253 z
8 . 9 <8 L, B 29 8 40 q
c o ¢ " LA c\”o o O*\ 3 Joove hat
= 8° o wo © 60 oo&g@ Qooo\ooo ° N 3
S 50 | ¢ 8
2 3
3 o
K = 30 - 1
° 40 o
g I
g [2)
8 30 | 20 I . |
o ©
20 |
< 2, 0 GrOLOND
o 235858 ;%55 e ggeeTete ¢ sasteeey
LN JsHeEeREe °
LIRS
o cond - 0 . . | | L L
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Size of original test suite

Fig. 19. Percentage reduction in fault detection as a result of the break-
down reduction method for TCAS.

suites detect 31 or more faults, with most detecting all
35 faults. The reduced test suites detected most of the faults
detected by the original test suite with a difference of only a
few missed faults. The stratification appears in the scatter
plot because of the limited number of distinct values for the
number of faults found in both the original and reduced test
suites.

5.2 Build-Up Test-Suite Reduction Study

To evaluate our build-up test-suite reduction algorithm
presented in Section 4.4 and compare its performance and
effectiveness with our break-down reduction algorithm, we
applied our build-up reduction prototype for MC/DC to
each of the 1,000 test suites for each subject. Like the break-
down test-suite reduction algorithm, we evaluated three
characteristics of the build-up test-suite reduction algo-
rithm: size reduction of test suites, time to perform the
reduction, and fault detection loss of the reduced test suite.

To evaluate the build-up reduction technique’s ability to
reduce test suites, we plotted the size of the reduced test
suites as a function of the original test suites. Figs. 21 and 22
are scatter plots, for TCAS and Space, respectively. Fig. 21
shows that the sizes of the reduced test suites are fairly

100 T T

80 Bl

40 g

Percentage reduction in fault detection

@ o o
5 00 086G L & 00 690 B0 0D 00 WOOH

@0 D0 GO FOIS OO YXOW O @ COHBD O DWOTD WO &
© &o W 9O 5000 (B 60 VOIATLOM D BB VKO W @ OBWH W 0 AP

© 00 B O © oty Godm
@000 G > i GO

20 o0

o o

@ Gk 0 B WHOOO OO

G WO Q WO @ GO B RO 0@ e
O ARLDOB O WHTHOD SED B O OO DOTY SO W0 v 00® ©
0 4 ool I I L d4 L Iy L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Size of original test suite

Fig. 20. Percentage reduction in fault detection as a result of the break-
down reduction method for Space.

Size of original test suite

Fig. 21. Sizes of the reduced test suite versus the sizes of the original
test suite for the build-up reduction method for TCAS.

constant for TCAS, with a slight dip for the smaller-sized
original test suites. This result is consistent with Fig. 15 for
break-down reduction. For TCAS, the average size of the
reduced test suites is 10.1, the standard deviation is 1.4, the
smallest reduced test suite contains five test cases, and the
largest reduced test suite contains 19 test cases. These
results are only slightly higher (1.1 percent on average) than
those of the break-down study. Fig. 22 shows that the sizes
of the reduced test suites are nearly constant for Space,
again, like the results of the break-down study. For Space,
the average size of the reduced test suite is 116.4, the
standard deviation is 3.4, the smallest reduced test suite
contains 108 test cases, and the largest reduced test suite
contains 129 test cases. These results are 4.1 percent higher
than those of the break-down study.

To evaluate the build-up reduction technique’s perfor-
mance in reducing test suites, we plotted the time to reduce
each of the test suites as a function of the original test-suite
size. Figs. 23 and 24 are scatter plots, for TCAS and Space,
respectively, that show the time required to perform the
build-up reduction technique using our prototype. Both
figures exhibit a linear trend. Note that the vertical axis for
Fig. 23 represents microseconds, whereas the vertical axis

5000 T T T

4500 [g

4000 - Bl

3500 - Bl

3000 - Bl

2500

2000

Size of reduced test suite

1500

1000

500 - B

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Size of original test suite

Fig. 22. Sizes of the reduced test suite versus the sizes of the original
test suite for the build-up reduction method for Space.

JONES AND HARROLD: TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE 207

4000 T T T T

3500 \ ¢

3000 %57
] oy
S 00t ° o 88 §§§ §©Z%5 i
: L
& o . \gggﬁgég%%eo
2 1500 ¢ R g/ﬁggfgwg ¢ _
: it

1000 - e 3 %%éof/&& |

§§§§8§§§ 5,
ot |
oagg”ﬁ@g”
% 0 20 2 2 P % 70

Size of original test suite

Fig. 23. Time to run the reduction algorithm versus the sizes of the
original test suite for the build-up reduction method for TCAS.

for Fig. 24 represents seconds. Fig. 23 shows a more diffuse
line for TCAS than Fig. 24. We suspect that this diffuseness
is due to the sensitivity of such small measurements. Fig. 24
shows a more localized line for Space. The times to reduce
the test suites using the build-up reduction technique are
much less than the times achieved in the break-down
reduction study. The build-up reduction technique is much
more efficient than the break-down reduction technique.
To evaluate the fault-detection loss of the reduced test
suite compared to the original test suite, we plotted the
percentage of fault-detection loss as a function of the
original test-suite size. Figs. 25 and 26 are scatter plots that
show the percentage reduction in fault detection of the
reduced test suite compared to the original test suite for
TCAS and Space, respectively. Fig. 25 shows varying fault-
detection loss for TCAS. This result is consistent with both
[11] and our break-down study. Using the build-up
reduction technique, the average fault detection loss is
43.7 percent, the standard deviation is 21.1, the maximum
fault detection loss is 88.5 percent, and the minimum fault-
detection loss is 0 percent. Fig. 26 for Space also shows
varying fault-detection loss, although its maximum is much
less than that of TCAS. The average fault-detection loss is

80 T T T

70

60

50

40 -

Time to reduce (seconds)

20 -

o] d L L 1 1 L 1 L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Size of original test suite

Fig. 24. Time to run the reduction algorithm versus the sizes of the
original test suite for the build-up reduction method for Space.

100 T T

80 -

Percentage reduction in fault detection

S
pas 8o § 5 °
ves00 9608 s, ” o og,
o o °© LI O en0T0 o2
oog0 & ¢ ° ¢ ¢ @@’* e XQO %, *Sog g \026 oogo
a0 - $ o0 o 8772600887 éqow%%g 8 887, $¢ 7]
y oo g, e
X ° s o
e 90 e R
g8 g
20 - e e o
<
0 N I I I 1 1
0 10 20 50 60 70

30 40
Size of original test suite

Fig. 25. Percentage reduction in fault detection as a result of the build-up
reduction method for TCAS.

9.9 percent, the standard deviation is 5.0, the maximum
fault-detection loss is 22.9 percent, and the minimum fault-
detection loss is 0 percent.

5.3 Prioritization Study

To evaluate the performance of our prioritization algorithm
presented in Section 4.3, we applied our prioritization
prototype for MC/DC to each of the 1,000 test suites for each
subject. We evaluated the time to perform this prioritization
for each of these test suites. Figs. 27 and 28 show the results
of this study for TCAS and Space, respectively. Note that
the vertical axis of Fig. 27 represents microseconds, whereas
the vertical axis of Fig. 28 represents seconds. Both figures
show a quadratic curve. The curve for the timings for TCAS
is again more diffuse than for that of Space because of the
sensitivity of the small timings for TCAS. To verify this
quadratic trend, we computed the best-fit trendlines for the
curves. Let = represent the size of the original test suite and
y represent the time to prioritize (in the units used for each
figure). The best-fit trendline for Fig. 27 is y = 1.6622 + 2.45x
with an R? value of 0.9789. The best-fit trendline for Fig. 28
is y = 0.000102> — 0.1747x with an R? value of 1.000 (to
three decimal places).

100 T T

80 - B

60 Bl

40 + g

Percentage reduction in fault detection

ERS

20 © G Lo O 0D 0o @ v e @ o Wweve o

b W0 @8 0w b eOmOs Broosidon O 0B O0MWDEN0® O

o ogf% W0 a0 & D COMBEBEW DO ADEBIEDO WO D DORTED
@90 A>>o

Y R
mwwmw O GARO OE B HEHIHN0D WMo O 62 D GEHUD D 00 WVUWBR &
FOOMERBIE, GWD 0 %0 0O X B o ® 0o @9 o O

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Size of original test suite

Fig. 26. Percentage reduction in fault detection as a result of the build-up
reduction method for Space.

208 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

10000 T T

9000 - 8 o
89,9
o 58 o
8000 [Bogvi
f%gggggo
Z 7000 - jg*gigg\g i
z sog5%s %
g SRt
8 6000 - Qg’mggggé; 4
g bt
L : I 4
E 5000 4 zg% ¢
T w00l v %2%%@20 7
s ol
£ 5000 | o 03] ;@5382@ |
s aadito
. "bg‘é'gé .
2000) §§,§§§ 8% E
géggggy ’
1000 8§§B§$g§§§g |
. pasedt . ‘ ‘ ‘
0 10 20 50 60 70

Fig. 27. Time to run the prioritization algorithm versus the sizes of the
original test suite for TCAS.

6 CONCLUSIONS

This paper has presented two new algorithms for test-suite
reduction and one new algorithm for test-suite prioritiza-
tion that can account for MC/DC when reducing and
prioritizing test suites. The paper also presents the results of
empirical studies that evaluate these algorithms. The results
achieved thus far are encouraging in that they show the
potential for substantial test-suite size reduction with
respect to MC/DC. Such techniques can significantly
reduce the cost of regression testing for those users of this
powerful testing criterion.

Our studies have shown that the size reduction of test
suites can be substantial for both the break-down and build-
up test-suite reduction techniques presented in Sections 4.2
and 4.4, respectively. For our subjects, the break-down test-
suite reduction technique requires quadratic time to
execute, whereas the build-up reduction technique requires
linear time. The fault-detection loss was consistent between
the two techniques. The size of the reduced test suite for the
break-down technique was consistently lower than the size
of the reduced test suite for the build-up technique.

The break-down technique offers two advantages over
the build-up one: effectiveness of reduction and flexibility.
First, the break-down technique produces reduced test suites
that are consistently smaller than those produced by the
build-up technique. Although the difference in reduced test-
suite size is generally small, there are two situations where
the extra time spent in the reduction of the test suite may be
beneficial. The first situation is one where the test suite will
be reduced once, and the reduced test suite will evermore be
considered the full test suite. In this situation, the cost of the
reduction can be amortized over the numerous executions of
the test suite. The second situation exists when the cost of
running each test case is high. One such domain is the testing
of critical systems for commercial airborne systems, where
test cases are performed on simulation equipment and
require a large setup and are thus very expensive. Such
domains may find that the additional expense of time spent
in reducing the test suite is more than justified by the time
saved during the execution of the test suite. Second, the
break-down technique is more flexible because it lets a
testing manager verify, and override, the omission of each
test case as the technique executes. The ability to verify and

VOL. 29, NO.3, MARCH 2003

2500 T T

2000 - il

1500

1000

Time to prioritize (seconds)

500 [

0 L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Size of original test suite

Fig. 28. Time to run the prioritization algorithm versus the sizes of the
original test suite for space.

override the omission of each test case may be important in
settings where certain test cases are required for reasons
such as functional-based testing or mandated test-case
redundancy. The test-suite reduction can be stopped at any
time, and the remaining test cases (that have not been
discarded) can be taken as a reduced test suite that has the
same coverage as the original test suite.

The build-up technique offers the advantage that it is
much faster than the break-down technique. This technique
would be useful when the test suite being reduced is very
large, thus taking the break-down technique too long. This
technique would also be appropriate when the test cases in
the test suite are very inexpensive and, thus, the cost of the
potentially larger reduced test suite is inconsequential.

We provided the studies that determine the fault-
detection loss to demonstrate the effectiveness of test suites
that are reduced using MC/DC as the testing criterion. For
each of our reduction techniques, the fault-detection loss
can vary greatly based on the program and test suites. The
consistency of the fault-detection loss between our two
techniques and those presented by Rothermel et al. [11]
suggests that fault-detection loss is more of a reflection on
the program under test (and its faults), the original test
suite, and the coverage criterion used, than it is on the
reduction technique. More specifically, a perfect reduction
technique for a given coverage criterion would generate a
minimal number of test cases that provide the same
coverage as the original test suite, without regard to the
loss in fault detection. Coverage criteria attempt to associate
coverage of the program under test with the fault-detection
ability of test suites that were developed to satisfy the
coverage criteria. Any technique that may be developed for
MC/DC should be expected to achieve similar results to
ours if they approximate minimal coverage (which is the
goal of reduction). It should be noted that the subject
programs and test suites used were not MC/DC-adequate
—the reduced test suites provided the same coverage based
on MC/DC as the original ones, but the fault detection
ability of reduced MC/DC-adequate test suites may per-
form more effectively in this regard.

The prioritization technique offers a way to order all test
cases in a test suite. Prioritizing a test suite instead of
reducing it is appropriate in two cases. First, if the tester

JONES AND HARROLD: TEST-SUITE REDUCTION AND PRIORITIZATION FOR MODIFIED CONDITION/DECISION COVERAGE 209

wishes to rerun all test cases in the test suite to avoid any
fault-detection loss, the prioritization technique can give an
ordered test suite in which the MC/DC coverage of the
original suite is achieved quickly. Such an ordered test suite
would potentially enable earlier discovery of failures.
Second, if the tester has a limited, allotted time to test, then
the ordered suite can be run until the allotted time expires.
If the allotted time is less than the time required to run a
reduced suite, running the ordered test suite until the
allotted time expires should achieve more coverage than an
unordered test suite. If the allotted time is greater than the
time required to run a reduced suite, more test cases can be
run to possibly achieve greater fault detection.

Although our initial studies are encouraging, much more
experimentation must be conducted to verify the effective-
ness of our techniques and MC/DC reduction and prior-
itization in general and in practice. Specifically, we are
planning experiments that use our test-suite reduction and
prioritization prototypes on commercial airborne software
where MC/DC is required. These studies will let us further
investigate the fault-detection capabilities of an MC/DC-
adequate test suite on software for which MC/DC was
designed. These studies will also let us evaluate our
algorithms and help us provide guidelines for test-suite
reduction and prioritization in practice.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Boeing
Aerospace Corporation to Georgia Tech, by US National
Science Foundation awards CCR-9707792, CCR-9988294,
CCR-0096321, and EIA-0196145 to Georgia Tech, and by the
State of Georgia to Georgia Tech under the Yamacraw
Mission. Alberto Pasquini, Phyllis Frankl, and Filip Vokolos
provided the Space program and many of its test cases.
Gregg Rothermel and the Galileo Research Group at Oregon
State University helped in the preparation of the subject
programs and test suites. The anonymous reviewers
provided many helpful suggestions that greatly improved
the empirical studies and the presentation of the results.

REFERENCES

[1] T.Y.Chenand M.F. Lau, “Dividing Strategies for the Optimization
of a Test Suite,” Information Processing Letters, vol. 60, no. 3, pp. 135-
141, Mar. 1996.

[2] Y. Chen, D. Rosenblum, and K. Vo, “TestTube: A System for
Selective Regression Testing,” Proc. 16th Int’l Conf. Software Eng.,
pp- 211-222, May 1994.

[3] JJ. Chilenski and S.P. Miller, “Applicability of Modified Condi-
tion/Decision Coverage to Software Testing,” Software Eng. .,
vol. 9, no. 5, pp. 193-200, 1994.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing Test
Cases for Regression Testing,” Proc. ACM Int’l Symp. Software
Testing and Analysis, pp. 102-112, Aug. 2000.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
Varying Test Costs and Fault Severities into Test Case Prioritiza-
tion,” Proc. Int'l Conf. Software Eng., pp. 329-338, May 2001.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[717 M.J. Harrold, R. Gupta, and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Trans. Software Eng. and
Methods, vol. 2, no. 3, pp. 270-285, July 1993.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. 16th Int’l. Conf. Software Eng., pp. 191-
200, May 1994.

[9] J. Offutt,]J. Pan, and J.M. Voas, “Procedures for Reducing the Size
of Coverage-Based Test Sets,” Proc. 12th Int’l Conf. Testing
Computer Software, pp. 111-123, June 1995.

[10] G. Rothermel and M.]J. Harrold, “A Safe, Efficient Regression Test
Selection Technique,” ACM Trans. Software Eng. and Methods, vol. 6,
no. 2, pp. 173-210, Apr. 1997.

[11] G. Rothermel, M.]. Harrold, J. Ostrin, and C. Hong, “An Empirical
Study of the Effects of Minimization on the Fault Detection
Capabilities of Test Suites,” Proc. Int’l Conf. Software Maintenence,
pp- 34-43, Nov. 1998.

[12] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “Prioritizing
Test Cases for Regression Testing,” IEEE Trans. Software Eng.,
vol. 27, no. 10, pp. 929-948, Oct. 2001.

[13] G. Rothermel, R. Untch, C. Chu, and M.]. Harrold, “Test Case
Prioritization: An Empirical Study,” Proc. Int’l Conf. Software
Maintenence, pp. 179-188, Sept. 1999.

[14] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur, “Effect of
Test Set Minimization on Fault Detection Effectiveness,” Software
—Practice and Experience, vol. 28, no. 4, pp. 347-369, Apr. 1998.

[15] W.E. Wong,].R. Horgan, A.P. Mathur, and A. Pasquini, “Test Set
Size Minimization and Fault Detection Effectiveness: A Case
Study in a Space Application,” Proc. 21st Ann. Int’l Comp. Software
and Application Conf., pp. 522-528, Aug. 1997.

James A. Jones received the BS degree in
computer science from the College of Engineer-
ing at Ohio State University. He is currently a
PhD student in the College of Computing at the
Georgia Institute of Technology, Atlanta. From
1997 to 2000, he was a research scientist at
Ohio State University and then at the Georgia
Institute of Technology. His research interests
include program analysis, visualization, and
testing. To date, his research has investigated
the maintenance of test suites, as well as the use of software
visualization to aid in the task of fault localization. He is a member of
the ACM and ACM SIGSOFT.

Mary Jean Harrold received the BS and MA
degrees in mathematics from Marshall Univer-
sity and the MS and PhD degrees in computer
science from the University of Pittsburgh, Penn-
sylvania. She is the US National Science
Foundation ADVANCE Professor of Computing
and associate professor in the College of
Computing at the Georgia Institute of Technol-

4 ogy, where she is a member of the Center for
L H' Experimental Research in Computer Systems
(CERCS) and the Graphics, Visualization, and Usability Center (GVU-
Center). Her research interests include the development of efficient
techniques and tools that will automate, or partially automate, develop-
ment, testing, and maintenance tasks. Dr. Harrold is a recipient of the
US National Science Foundation’s National Young Investigator Award
for her work in regression testing and object-oriented analysis and
testing. She serves on the editorial boards of the IEEE Transactions on
Software Engineering, ACM Transactions on Programming Languages
and Systems, and Empirical Software Engineering Journal. She served
as program cochair for the 23rd International Conference on Software
Engineering 2001 and as program chair for the ACM SIGSOFT
International Symposium on Software Testing and Analysis 2000 and
for the IEEE International Conference on Software Maintenance 1997.
Dr. Harrold is a member of the Computing Research Association’s
Committee on the Status of Women in Computing (CRA-W), where she
directed the committee’s Distributed Mentor Project. She is cochair of
CRA-W. She is a member of the ACM, IEEE Computer Society, and
Sigma Xi.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

