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Test-time augmentation for deep 
learning-based cell segmentation 
on microscopy images
Nikita Moshkov1,2,3, Botond Mathe1, Attila Kertesz-Farkas3, Reka Hollandi1 & 

Peter Horvath1,4*

Recent advancements in deep learning have revolutionized the way microscopy images of cells are 

processed. Deep learning network architectures have a large number of parameters, thus, in order to 
reach high accuracy, they require a massive amount of annotated data. A common way of improving 
accuracy builds on the artificial increase of the training set by using different augmentation techniques. 
A less common way relies on test-time augmentation (TTA) which yields transformed versions of the 
image for prediction and the results are merged. In this paper we describe how we have incorporated 

the test-time argumentation prediction method into two major segmentation approaches utilized in 

the single-cell analysis of microscopy images. These approaches are semantic segmentation based on 

the U-Net, and instance segmentation based on the Mask R-CNN models. Our findings show that even 
if only simple test-time augmentations (such as rotation or flipping and proper merging methods) are 
applied, TTA can significantly improve prediction accuracy. We have utilized images of tissue and cell 
cultures from the Data Science Bowl (DSB) 2018 nuclei segmentation competition and other sources. 
Additionally, boosting the highest-scoring method of the DSB with TTA, we could further improve 
prediction accuracy, and our method has reached an ever-best score at the DSB.

Identifying objects at the single-cell level is the starting point of most microscopy-based quantitative cellular 
image analysis tasks. Precise segmentation of the cell’s nucleus is a major challenge here. Numerous approaches 
have been developed, including methods based on mathematical morphology1 or di�erential geometry2,3. More 
recently, deep learning has yielded a never-seen improvement of accuracy and robustness4–6. Remarkably, Kaggle’s 
Data Science Bowl 2018 (DSB)7 was dedicated to nuclei segmentation, and gave a great momentum to this �eld. 
Deep learning-based approaches have proved their e�ectiveness: practically all the teams used some type of a 
deep architecture in the �rst few hundred leaderboard positions. �e most popular architectures included U-Net4, 
originally designed for medical image segmentation, and Mask R-CNN8, used for instance segmentation of nat-
ural objects.

Deep learning approaches for object segmentation require a large, and o�en pixel-wise annotated dataset for 
training. �is task relies on high-quality samples and domain experts to accurately annotate images. Besides, 
analysing biological images is challenging because of their heterogeneity and, sometimes, poorer quality com-
pared to natural images. In addition, ground truth masks might be imperfect due to the annotator-related bias, 
which introduces further uncertainty. Consequently, a plethora of annotated samples is required, making object 
segmentation a laborious process. One of the techniques utilized to improve the model is data augmentation9 of 
the training set. Conventionally, a transformation (i.e. rotation, �ipping, noise addition, etc.) or a series of trans-
formations are applied on the original images. Data augmentation has become the de facto technique in deep 
learning, especially in the case of heterogeneous or small datasets, to improve the accuracy of cell-based analysis.

Another option of improving performance relies on augmenting both the training and the test datasets, then 
performing the prediction both on the original and on the augmented versions of the image, followed by merg-
ing the predictions. �is approach is called test-time augmentation (Fig. 1). �is technique was successfully 
used in image classi�cation tasks10, for aleatoric uncertainty estimation11, as well as for the segmentation of MRI 
slices/MRI volumes12. A theoretical formulation12 of test-time augmentation has recently been described by Wang 
et al. �eir experiments show that TTA helps to eliminate overcon�dent incorrect predictions. Additionally, a 
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framework13 has also been proposed for quantifying the uncertainty of the deep neural network (DNN) model for 
diagnosing diabetic retinopathy based on test-time data augmentation. Its disadvantage is increased prediction 
time, as it is run not only on the original image, but on all of its augmentations as well.

In the current paper we assess the impact and describe cases of utilizing test-time augmentation for 
deep-learning models trained on microscopy datasets. We have trained deep learning models for semantic seg-
mentation (when the network only distinguishes the foreground from the background, using the U-Net archi-
tecture) and instance segmentation (when the network assigns labels to separate objects, using the Mask R-CNN 
architecture) (Fig. 1). Test-time augmentation has outperformed single instance predictions at each test case, and 
could further improve the best result of the DSB, as demonstrated by the improvement of the score, changing 
from 0.633 to 0.644.

Methods
Dataset acquisition and description. We have used two datasets: �uorescent microscopy images (further 
referred to as ‘�uorescent’ dataset) and histopathology images (further referred to as ‘tissue’ dataset). Most of the 
images have come from the stage 1 train/test data of Data Science Bowl 2018. We also used additional sources14–20 
and other data published in the discussion thread ‘O�cial External Data �read’ (https://www.kaggle.com/c/
data-science-bowl-2018/discussion/47572) related to DSB 2018. �e images were labelled by experts using the 
annotation plugins of ImageJ/Fiji and Gimp. Both datasets were divided into three holdout train/test sets: approx-
imately 5%, 15% (6 splits for each, cross-validation), and 30% (further referred to as ‘5’, ‘15’ and ‘30’ in the dataset 
name, respectively) of uncropped images were held out as the test set. �e test sets (‘5’, �rst cross-validation split 
of ‘15’ and ‘30’) did not intersect.

We used the same augmentations (horizontal and vertical �ip, 90°, 180° and 270° rotations) for training both 
architectures. �e images were cropped to the size of 512 × 512 pixels. Crops from the same image were used only 
in either the train or test set. Images with a resolution of less than 512 × 512 were resized to that particular size. 
Sample images are shown in Fig. 2.

Deep learning models and training. �ese augmented and cropped training data were used to train the 
models. For each dataset (5, 15 (6-fold cross validation) and 30 holdouts for both �uorescent and tissue images) 
separate models were trained. Additionally, we also trained U-Net without augmented data to analyse TTA per-
formance on such a network as well (just 1 holdout 15 test set in that case).

Mask R-CNN (implementation21) is an extension of Faster R-CNN, the architecture for object detection. 
Solutions based on Mask R-CNN outperform the COCO 2016 challenge winners, and �nished at the third place 
in Kaggle Data Science Bowl 20187. �e architecture of Mask R-CNN incorporates the following main stages: (1) 
Region proposal network (RPN) to propose candidate bounding boxes. It uses a backbone: a convolutional neu-
ral network which serves as a feature extractor. In this implementation it is possible to use resnet50 or resnet101 
as a backbone, and we used resnet101. (2) Network head layers: they predict the class, box o�set and an output 
binary mask for each region of interest (RoI). Masks are generated for each class without competition between 
the classes.

Following the strategy described by Hollandi et al.5, the network was trained for 3 epochs for di�erent layer 
groups: �rst, all network layers were trained at a learning rate of 10−3, then training was restricted to ResNet stage 
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Figure 1. Principle of the proposed test-time augmentation techniques. Several augmented instances of the 
same test images are predicted, and the results are transformed back and merged. In the case of U-Net, pixel-
wise majority voting was applied, while for Mask R-CNN a combination of object matching and majority voting 
was applied.
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5 (ResNet consists of 5 stages, each with convolution and identity blocks including 3 convolutional layers per 
block) and head layers at a learning rate of 5 × 10−4, and �nally only the head layers were trained at a learning 
rate of 10−4. �e model was initialized with pre-trained weights (https://github.com/matterport/Mask_RCNN/
releases/download/v1.0/mask_rcnn_coco.h5) on the COCO dataset. �e loss function of the architecture was 
binary cross-entropy with ADAM22 (Adaptive Moment Estimation) solver, batch size 1, the number of iterations 
being equal to the train set size.

U-Net (implementation23) is an architecture originally designed to process biological images, which proved 
to be e�cient, even when utilizing small training datasets. U-Net based solutions won the 2015 ISBI cell tracking 
challenge4 and Kaggle Data Science Bowl 2018. Its architecture consists of two main parts: (1) a down-sampling 
convolution network or encoder by which we obtain the feature representation of the input image, and (2) an 
up-sampling convolution network or decoder, which produces the segmentation from a feature representation 
of the input image.

We trained U-Net for 200 epochs at a constant learning rate of 3 × 10−4, and used a binary cross-entropy loss 
function with ADAM solver, batch size 1, the number of iterations being equal to the train set size.

Both U-Net and Mask R-CNN implementations are based on the deep learning framework Keras with 
Tensor�ow backend. �e training computations were conducted on a PC with NVIDIA Titan Xp GPU, 32 GB 
RAM and Core-i7 CPU.

Test-time augmentation. Test-time augmentation includes four procedures: augmentation, prediction, 
dis-augmentation and merging. We �rst apply augmentations on the test image. �ese are the same as the aug-
mentations previously applied on the training dataset. We predict on both the original and the augmented images, 
then we revert the transformation on the obtained predictions; this process is referred to as dis-augmentation. For 
example, when the prediction was performed on a �ipped or rotated image, we restore the obtained prediction to 
its original orientation. �e �nal merging step is not straightforward in case of Mask R-CNN, as the architecture 
is instance aware, thus the merging method has to handle instances. We have developed an extended merging 
method inspired by one of the DSB 2018 solutions24 (Fig. 1, right). For each detected object from the original 
image, we �nd the same detected objects in the augmented images by calculating intersection over union (IoU) 
between the masks. �e minimum IoU threshold used to decide whether the objects found are the same is 0.5. We 
iterate over all detected objects to �nd the best match. An object should be present in the majority of the images 
to be included as a �nal mask. Next, we check the �rst augmented image for any remaining unused objects (a pos-
sible scenario when an object is not detected in the original image but is detected in any of the augmented ones), 
and look for matching unassigned objects on other augmentations. Next, we check the second augmented image 
for detected objects, and perform the same operations. We repeat this process until the majority voting criterion 
can be theoretically satis�ed (in half of the images at a maximum). An average binary object mask is created by 
majority pixel voting on paired objects.

For U-Net the merging process is straightforward as it is not instance aware, so we simply sum and average all 
the dis-augmented probability maps. It yields a �oating point image that needs to be converted to a binary mask. 
A simple element-wise thresholding at the value of 0.5 converts the so� masks into binary masks (Fig. 1, right).

Test-time augmentation evaluation. We have evaluated the test-time augmentation model on our test 
dataset predictions (see the previous section for details) compared to ground truth masks using the following 
evaluation strategies.
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Figure 2. Examples of predictions. (A) U-Net predictions. First column - original image, second column - 
predictions without TTA compared to ground truth, third column - predictions with TTA compared to ground 
truth. Red indicates false negative pixels, green indicates true positive pixels and blue indicates false positive 
pixels. Dividing lines: yellow is false positive division of pixels into objects, and cyan is false negative division 
of pixels into objects. Fourth column - averaged TTA predictions before thresholding, ��h column - zoomed 
insets from the previous column. (B) Mask R-CNN predictions. Columns are the same as the �rst three columns 
in (A). Images in line 1 are examples of the �uorescent dataset, images in line 2 and 3 are examples of the tissue 
dataset.
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In case of Mask R-CNN we used the same metric as at the Data Science Bowl 2018. It calculates the mean 
average precision (mAP) at di�erent intersection over union (IoU) thresholds. �e thresholds (t) are in the range 
of [0.5, 0.95] with a step of 0.05. An object is considered true positive when the IoU with ground truth is greater 
than the threshold, false positive when the predicted object has no associated ground truth object or the overlap 
is smaller than the threshold, and false negative when the ground truth object has no associated predicted object.
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Next, we calculate the average for all images in the test set. �e �nal score is a value between 0 and 1.
U-Net predictions were evaluated using the intersection over union metric, executed at the pixel level. We 

summed up the prediction and ground truth binary masks, then we simply counted the pixels that are greater 
than one (i.e. the intersection), and divided the resulting values with the number of pixels greater than zero. �e 
resulting value is a score ranging from 0 to 1.

As described above, we have evaluated the predictions with applying TTA (merged) and without applying TTA 
(original). Next, we have evaluated TTA’s performance by calculating the di�erence as delta = merged − original.

Results
We have evaluated the performance of TTA on two datasets, named ‘Fluorescent’ (fluorescent microscopy 
images) and ‘Tissue’ (histopathology images) datasets, described in the “Dataset acquisition and description” 
section in detail. Each of them was split in 3 di�erent ways to have approximately 5% (one holdout set), 15% 
(cross-validation, 6 splits for each) and 30% (one holdout set) as a test set. By using such versatile data collected 
from di�erent sources and representing a wide variety of experimental conditions, as well as by the test set splits, 
we aimed to present the truly general performance of TTA, and demonstrate how robustly it works. Regarding 
that most of these images were used in a Data Science competition, and some additional images came from other 
sources, our �nal datasets are similar to real-world scenarios.

Our choice of the two popular deep learning architectures, Mask R-CNN (yielding instances) and U-Net 
(semantic segmentation) also served the purpose of testing robustness, as the tasks of semantic and instance 
segmentation are di�erent, and require di�erent approaches to apply the same method to them. For each dataset/
split, we have trained separate U-Net and Mask R-CNN models. �en, we have evaluated the performance of 
TTA for each model’s checkpoint (checkpoints were made for each epoch of training: in case of U-Net, a total 
of ‘15’ sets, i.e. every 10th epoch was designated as a checkpoint for cross-validation splits 2–6) as described in 
the “Test-time augmentation evaluation” subsection. Next, we performed statistical tests to assess whether the 
improvement of the performance is signi�cant.

In the case of Mask R-CNN, TTA on average has provided an improved performance for all dataset splits and 
for all model checkpoints. �e average mAP score delta is about 0.01 for all “Fluorescent” and “Tissue_5” sets 
and 0.02 for the other sets. In all scenarios, TTA has improved the score for most of the images (see Fig. 3 and 
Supplementary Fig. 1 for cross-validation splits 2–6). Such a delta value usually corresponds for better segmenta-
tion borders and a reduced rate of false positive or/and false negative detections.

In the case of U-Net, we have evaluated the performance at each epoch during training. For the “Tissue” data-
set TTA has demonstrated a performance gain for all epochs. In case of the “Fluorescent” dataset, a slight decline 
in the performance of TTA was observed during early (�rst 30–50) epochs, which has turned positive a�er fur-
ther training (Fig. 4A,B). A�er about epoch 50, the performance without TTA was seen to �uctuate without a 
clear trend in all cases (Fig. 4C,D), while the performance with TTA tended to rise for almost all cases, except in 
the case of the “Tissue” dataset, where no augmentations were used for training (Fig. 4A). A slight decline or a 
slight improvement in the score is usually related to cell borders (as the most uncertain regions in the images). In 
some cases, TTA helps to eliminate artifacts and rarely occurring false positive/false negative objects.

For some images TTA has signi�cantly improved the �nal prediction. Examples of such cases for both U-Net 
and Mask R-CNN are shown in Fig. 2.

We have performed Wilcoxon paired test for each dataset/split/checkpoint for the Mask R-CNN results. 
P-values in all cases have passed the threshold value of 0.05. For U-Net, the test was performed on the means of 
each 10th epoch (20 vs 20 data points) for each dataset/split. �e P-values are shown in Supplementary Table 4.

Applying TTA on the DSB2018 (stage2) test set of images has improved performance signi�cantly, surpassing 
the best performing method5 by 0.011 in the DSB scoring metric, which is identical to the mAP used in this paper 
and the output of which was a set of instance segmented masks (Fig. 5). In the context of data science competi-
tions, when the scores are rather dense, we consider this improvement as signi�cant (di�erence between 2nd and 
1st place on DSB 2018 was only 0.017).

�e results without TTA and delta values for each set are available as Supplementary Materials (Supplementary 
Table 1. U-Net when augmentations during training were used, Supplementary Table 2. U-Net when augmenta-
tions during training were not used, Supplementary Table 3. Mask R-CNN when augmentations during training 
were used).
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Figure 3. TTA performance for Mask R-CNN. TTA performance (delta = merged − original). Each point 
represents an image. Dashed line - mean, solid line - median. (A) Fluorescent set 5. (B) Fluorescent set 15 
(cross-validation split 1). (C) Fluorescent set 30. (D) Tissue set 5. (E) Tissue set 15 (cross-validation split 1). 
(F) Tissue set 30. Orange boxplot - the �nal model (epoch 3), green boxplot - model trained for 1 epoch, red 
boxplot - model trained for 2 epochs.
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Figure 4. Average performance of TTA for U-Net with di�erent training and test augmentations. (A) Average 
TTA performance trained without augmentations over epochs. (B) Average TTA performance trained with 
augmentations over epochs. (C) Average performance without TTA without augmentations during training. 
(D) Average performance without TTA with augmentations during training. Tissue15 and Fluorescent15 stand 
for the �rst cross-validation split.
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Conclusions
We have performed experiments to estimate test-time augmentation’s performance for two popular deep learning 
frameworks trained to segment nuclei in microscopy images. Our results indicate that on average TTA can pro-
vide higher segmentation accuracy compared to predicting based on the original images only, even though for 
some images the results might be marginally worse.

TTA mostly a�ects the objects’ borders, but in uncertain cases it can help to �t whole objects (remove false 
positives or add true positives, especially in case of Mask R-CNN). Overall, in most cases, TTA improves segmen-
tation accuracy. �e main use case of TTA is the analysis of uncertain regions in segmentation. However, the high 
cost of TTA, related to the fact that multiple times more predictions are required for the same object, is also an 
issue to be considered. �erefore, TTA is mainly recommended for use when the basic cost of prediction is low.
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