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Abstract

Backdoor (Trojan) attacks are emerging threats against deep neural
networks (DNN). A DNN being attacked will predict to an attacker-
desired target class whenever a test sample from any source class is embed-
ded with a backdoor pattern; while correctly classifying clean (attack-free)
test samples. Existing backdoor defenses have shown success in detecting
whether a DNN is attacked and in reverse-engineering the backdoor pat-
tern in a “post-training” regime: the defender has access to the DNN to
be inspected and a small, clean dataset collected independently, but has
no access to the (possibly poisoned) training set of the DNN. However,
these defenses neither catch culprits in the act of triggering the backdoor
mapping, nor mitigate the backdoor attack at test-time. In this paper, we
propose an “in-flight” defense against backdoor attacks on image classifi-
cation that 1) detects use of a backdoor trigger at test-time; and 2) infers
the class of origin (source class) for a detected trigger example. The effec-
tiveness of our defense is demonstrated experimentally against different
strong backdoor attacks.

1 Introduction

Deep neural networks (DNN) have shown impressive performance in many ap-
plications, but are vulnerable to adversarial attacks [17]. Recently, backdoor
attacks have been successfully launched against DNNs for image classifica-
tion [2, 7, 13, 16, 18], speech recognition [16], text classification [3], 3D point
cloud classification [22], and deep regression [14]. Typically, a backdoor attack
is launched by embedding a specific backdoor pattern into a small number of
training samples from one or more source classes and (mis)labeling them to an
attacker-desired target class. The DNN being attacked will classify to the target
class whenever a test sample originally from the source classes is embedded with
the same backdoor pattern; while still correctly classifying clean test samples,
i.e. without the backdoor pattern [7, 15].
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Early backdoor defenses aim to inspect the training set and detect samples
embedded with the backdoor pattern [1, 20]. But they are not applicable to
scenarios where the training set of the DNN is not available (e.g., legacy or
proprietary systems); thus they are not discussed here. A more practical post-
training scenario assumes that the defender, e.g., a downstream app user, has
no access to the DNN’s training set. Defenses for this scenario detect whether a
trained DNN is backdoor attacked, infer the target class if an attack is detected,
and usually reverse-engineer the backdoor pattern used by the attacker [5,8,21,
24, 25]. A post-training defender does possess a small, clean dataset collected
independently – this dataset is not sufficient for training a clean (backdoor-free)
DNN from scratch if an attack is detected.

However, existing post-training defenses cannot catch entities in the act of
exploiting the backdoor mapping at test-time. In particular, while these defenses
successfully detect backdoor attacks and correctly infer the attacker’s target
class, they neither decide whether a test sample classified to the target class
is backdoor-free nor mitigate the attack by correctly classifying test samples
embedded with the backdoor pattern to their true source classes (as a clean
DNN will do).

In this paper, we make the following contributions: (1) We propose a method
that, at test-time, detects image backdoor triggers and infers the source class
for detected backdoor trigger images, given the reverse-engineered backdoor
pattern and the target class obtained from a post-training backdoor detector.
While we focus on image classification here, our method can be extended to
other domains. (2) Our detector requires neither access to the DNN’s training
set nor any DNN training/fine-tuning. It is efficient in data used for detection
and computational resources. (3) We show the effectiveness of our detector
experimentally for a wide variety of DNN architectures, datasets, and backdoor
attack configurations.

2 Related Work

Neural Cleanse (NC) [21] detects test images embedded with backdoor trig-
gers by their activations on neurons that are most relevant to the (estimated)
backdoor. If the input image has activations higher than a given threshold on
those neurons, it is deemed a backdoor trigger image. Its performance highly
depends on the choice of abnormal neurons and detection threshold. [5] pro-
poses a black-box backdoor detection (B3D), which captures backdoor triggers
based on the difference in model outputs for a test image with and without the
reverse-engineered backdoor pattern embedded. The two model outputs are hy-
pothesized to be very different for a clean input but very similar for a backdoored
input. However, for both backdoor-trigger images classified to the target class
and clean target class images, embedding a backdoor trigger is expected to have
little impact on the model outputs, thus they cannot be effectively distinguished
by B3D. A STRong Intentional Perturbation (STRIP) method proposed in [6]
linearly blends test images with a few clean images and detects backdoor trig-
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gers based on the average entropy of model posteriors of these blended images.
A small entropy indicates a backdoor-trigger input. However, it is sensitive to
model complexity, as will be shown in Sec.5.

For inferring the class of origin for a detected backdoor-trigger image, NC [21]
proposes to patch the poisoned DNN by fine-tuning the DNN on 10% of the orig-
inal (backdoor-free) training set, 20% of which are embedded with the reverse
engineered backdoor pattern and correctly labeled. However, it is unreasonable
to assume the defender has access to the clean training set, which is inconsistent
with the post-training scenario.

3 Threat Model and Defense Assumptions

Classification domain: Like most existing works, we focus on image clas-
sification for simplicity; our method is easily extended to domains other than
images.
Attacker’s goals: An attacker aims to have the DNN learn to classify to a
target class t ∈ C, whenever a test image from any source class c ∈ SA ⊆ C \ {t}
is embedded with a specific backdoor pattern; while not degrading the DNN’s
accuracy on backdoor-free test images. Here, C is the category space of the
classification domain.
Attacker’s knowledge: The attacker has full knowledge of C and the ability
to collect valid images from source classes SA. But the attacker has no specific
knowledge about any defenses that may be deployed to detect the attack.
Attack strategy: We consider classical backdoor attacks launched by poi-
soning the DNN’s training set [2, 7]. The attacker embeds the same backdoor
pattern that will be used at test-time into a small set of images collected from
SA, (mis)labels them to the target class t, and injects them into the DNN’s train-
ing set. The backdoor pattern can be an imperceptible additive perturbation
bounded by its Lp norm [24], or a perceptible (but hopefully scene-plausible)
small patch embedded in (or blended with) an image [2, 7, 16].
Defender’s goals: Given any single test image predicted to the target class
t inferred by a post-training defense, our in-flight detector aims to: 1) detect
whether the image contains the backdoor pattern (i.e., a backdoor trigger), and,
if so, 2) infer its true class of origin (source class).
Defender’s knowledge: The defender has access to: 1) the DNN detected
as attacked, together with the target class t1 inferred by the post-training de-
fense [21, 24]; and 2) a (small) set of clean images from all classes of C. The
defender does require the backdoor pattern estimated by the same post-training
defense, but does not make any assumptions about the type, shape, or location
of the attacker’s backdoor pattern. Thus, our defense can be coupled with any
post-training defense and addresses a variety of backdoor patterns. Finally,
our defender has no knowledge of the source classes involved in the attack, nor

1We only consider the cases where the post-training defender successfully detects the back-
door attack with correct inference of the target class.
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enough legitimate data or computational resources to train a clean DNN from

scratch.

4 Methodology

4.1 Notation

We denote the DNN (for which a post-training defense has detected an attack)
by f : X → C, where X is the input (image) space and C is the label space. We
denote fL as the output of any internal layer L. Let t be the detected target
class. Then, the actual source classes SA involved in the attack, unknown to our
defender, is a subset of S = C \ {t}, i.e., all classes except the target class. We
define DDefense =

⋃
c∈C

Dc as the clean dataset possessed by the defender, where
Dc contains images labeled to class c. Backdoor patterns of different types may
be crafted and embedded in images in very differently ways. For simplicity,
we use a universal notation ∆ to denote a backdoor pattern irrespective of
its type. Moreover, we define the embedding function associated with ∆ as
g(·,∆) : X → X , such that a clean image x ∈ X embedded with ∆ can be
written as x̃ = g(x,∆). Finally, we denote the backdoor pattern estimated by

the post-training defense as ∆̂.

4.2 In-flight Backdoor Defense

The estimated backdoor pattern ∆̂ obtained by an effective post-training defense
will likely elicit the same targeted misclassification to the backdoor target class
t as the true backdoor pattern ∆ (used by the attacker and unknown to the
defender) when they are embedded in source class images (as will be shown
by our experiments). But these two patterns may have very different intensity
values in the image space, as visualized by [21]. Therefore, it is unreliable
to determine whether a test image classified to class t is embedded with ∆
by directly looking for the estimated ∆̂ in the image. Even if a test image
embedded with ∆ is successfully detected, directly removing an estimated ∆̂
(e.g., subtracting the estimated additive perturbation pattern [24]) from the
image will not likely remove the true backdoor pattern ∆ completely – the
image may still be classified to the target class t.

However, in deep layers close to the DNN output (e.g., the penultimate

layer), the true backdoor pattern ∆ and its empirical estimation ∆̂ will likely
activate the same set of neurons when embedded in images from the same source
class. These neurons are trained (on the poisoned training set) to activate for
the backdoor mapping, and are likely different from the neurons activating for
typical target class images. Thus, if a test image classified to the target class t is
actually an image from some source class embedded with the backdoor pattern
∆, its deep layer activations are expected to be: a) similar to the activations for
most images from the same source class embedded with the estimated pattern
∆̂, and b) different from the activations for typical images from class t.
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Based on the above intuition, our in-flight backdoor detection steps are as fol-
lows: First, for each non-target class ∀c ∈ S, we embed the estimated backdoor
pattern ∆̂ in the clean images used for detection and get D̃c = {g(x, ∆̂)|x ∈ Dc}.
Then we feed all images in

⋃
c∈S

D̃c and the clean target class images Dt to the

DNN being attacked to get their deep layer features Zc = {fL(x̃)|x̃ ∈ D̃c},
∀c ∈ S and Zt = {fL(x)|x ∈ Dt}, respectively. All the features in Z =

⋃
c∈C

Zc

are then standardized to have mean 0 and standard deviation 1. For each class
c ∈ C, we learn a density model (e.g., Gaussian mixture model) with parameters
θc = argmax

θ
Πz∈Zc

P [z|θ]. At test-time, for any test image w with f(w) = t,
we measure its likelihood Lc = P [fL(w)|θc] under the density model for each
c ∈ C. If argmaxc∈C Lc 6= t, w is deemed to contain the backdoor pattern. We
then reject the prediction of the DNN and infer that it is originally from class
s = argmaxc∈C Lc. Otherwise, w is deemed clean and its class prediction t is
accepted.

Our method has the following advantages over existing ones. Unlike [5,6,21]
which are sensitive to the choice of hyper-parameters, e.g., a detection threshold,
we do not require careful choices of hyper-parameters. Besides, our method
only needs relatively few clean images (100 images per class in our experiments)
for detection, and is computationally cheap, as it does not involve tuning a
complicated DNN for example. Note that the most time-consuming part of our
defense – learning class-conditional density models – is done offline.

5 Experiments

5.1 Experiment Setup

Dataset: We mainly use the benchmark CIFAR-10 dataset, which contains 60k
32× 32 color images from 10 classes, with 5k images per class for training and
1k images per class for testing [10]. Experiments on other datasets including
MNIST [4], PubFig [11], and F-MNIST [26] are in Sec. 5.3.
Data allocation: Following the assumptions in Sec. 3, we randomly split the
test set of CIFAR-10 into DDefense and DTest, where DDefense consists of 100
images per class, and DTest is used for performance evaluation.
Attack settings: We consider typical backdoor attacks described in Sec. 3.
We arbitrarily choose class 9 as the target class for all attacks. We consider
the following three backdoor patterns: 1) an additive perturbation that looks
like a “chess board” (CB) used in [24]; 2) a single pixel set to 255 (SP) [23];
and 3) a 3× 3 white box (WB) embedded in the bottom right of an image [7].
For each type of backdoor pattern, we create two attacks by: 1) embedding the
backdoor pattern in 1000 training images randomly selected from class 0 (single
class attack); 2) embedding the backdoor pattern in 100 training images ran-
domly selected from each class, except for the target class (multi-class attack).
Training settings: For each attack, we train a DNN with the widely used
ResNet-18 [9] architecture on the backdoor poisoned CIFAR-10 training set.
Training is performed for 150 epochs with learning rate 0.1 (reduced by 0.5 per
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Attack pattern
Single class attack Multi-class attack
ACC ASR ACC ASR

No attack 0.9387 NA 0.9387 NA
CB-GT 0.9360 0.9955 0.9381 0.9954
CB-RE NA 1.0000 NA 0.9876
SP-GT 0.9354 0.9488 0.9337 0.9565
SP-RE NA 0.9900 NA 0.9953
WB-GT 0.9324 0.9411 0.9340 0.9497
WB-RE NA 0.9970 NA 0.9354

Table 1: ASR and ACC for attacks using GT patterns; and ASR for the RE
patterns obtained by post-training defenses applied to these attacks. “NA”
represents “not applicable”.

50 epochs) and batch size 32.
Defense settings: For each attack, we first apply a post-training detector
to the DNN being attacked to infer the target class t and reverse-engineer its
corresponding backdoor pattern ∆̂, using DDefense reserved for detection. In
particular, we apply the detector in [24] to attacks with backdoor pattern CB
since it is an additive perturbation; and the detector in [21] to attacks with back-
door patterns SP or WB as they are small patches (not additive perturbations)
embedded in an image. For our in-flight detector, we consider Gaussian mix-
ture models and choose the penultimate layer features for (maximum likelihood)
density model estimation.

5.2 Main Experimental Results on CIFAR-10

First, we show that the attacks we created are sufficiently effective for thoroughly
evaluating detection performance. Such effectiveness is evaluated by: 1) the
attack success rate (ASR) defined as the fraction of clean images from the source
classes in DTest that are misclassified to the target class when the ground truth
(GT) backdoor pattern is embedded; and 2) the clean test accuracy (ACC)
defined as the DNN’s accuracy on DTest. As shown in Table 1, all attacks have
high ASR and almost no degradation in ACC compared with the baseline ACC
of a DNN trained with no backdoor. Second, we show the ASR for each attack
with the backdoor pattern reverse-engineered (RE) by the post-training defense
instead of the GT pattern in Table 1. The RE patterns induce similarly high
misclassification rate to the target class, when embedded in clean source class
images from DTest, as GT patterns.

We evaluate the effectiveness of our detector in comparison with three other
in-flight detectors NC [21], B3D [5], and STRIP [6]. The metrics for performance
evaluation include true positive rates (TPR, i.e., the fraction of backdoor-
trigger images correctly detected), false positive rates (FPR, i.e., the fraction
of clean images falsely detected) and source class inference accuracies (SIA,
i.e., the fraction of backdoor-trigger images with correct inference of the source
class). As shown in Table 2, for all attacks, our detector performs perfectly
– almost all the backdoor-trigger images are correctly identified, and no clean
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Attack
pattern

Single class attack Multi-class attack
TPR FPR SIA TPR FPR SIA

Likelihood-based in-flight backdoor defender

CB 0.9922 0.0 0.8392 0.9997 0.0 0.6946
SP 0.9813 0.0 0.7728 0.9454 0.0 0.632
WB 0.9847 0.0 0.8607 0.9992 0.0 0.8945

NC

CB 0.9855 0.0488 0.9444 0.9962 0.0533 0.8765
SP 0.8088 0.0544 0.8833 0.9043 0.0511 0.8963
WB 0.0 0.0522 0.8667 0.8644 0.0522 0.8086

B3D

CB 0.0788 0.0511 NA 0.9872 0.9955 NA
SP 0.5333 0.1066 NA 0.1814 0.0522 NA
WB 0.0011 0.0500 NA 0.0535 0.0511 NA

STRIP

CB 0.0822 0.0533 NA 0.0218 0.0555 NA
SP 0.1333 0.0588 NA 0.1555 0.0588 NA
WB 0.0088 0.0588 NA 0.0011 0.0633 NA

Table 2: TPR, FPR and SIA for our defense, compared with three other in-flight
defenses, NC, B3D, and STRIP, against all the created attacks. “NA” signifies
“not applicable”.

target class images are falsely reported. Following [5, 6, 21], we build in-flight
detectors for NC, B3D, and STRIP. As they do not announce the thresholds
for detection, we test them with various thresholds and exhibit the best TPR
at an FPR of around 5%2. For STRIP, we set the weight of the incoming input
as 0.5 in image blending. NC does not correctly detect any backdoor-trigger
images in a single class attack using the pattern WB. B3D does not perform
well under all the attacks, as embedding the estimated backdoor pattern has
little impact on the model outputs for both backdoor-trigger images and clean
target class images. STRIP does not perform well either (for ResNet18 and
CIFAR-10) – STRIP is more effective for the DNN architectures, datasets, and
attack configurations used in [6].

Since the NC paper does not mention the learning rate used for fine-tuning
the DNN, in our experiments, we fine-tune the poisoned DNN using various
learning rates. From Table 3, the severe fluctuations in SIAs of models poisoned
by the multi-class attack using pattern WB shows the sensitivity of NC to the
learning rate. We thus apply NC with all the learning rates, reporting the best

SIA in Table 2. Our defender performs relatively well in inferring source classes
for the detected backdoor trigger images, though it is not as good as the best

results of NC. However note that our method requires neither a clean set as large
as the one used by NC for fine-tuning, nor careful choices of hyper-parameters.

We also implement our detector on the last 4 convolutional layers of ResNet-
18 – the internal layers just before the penultimate layer. We reduce the di-

2A 5% FPR is not achievable by B3D for some attacks (even as the detection threshold is
varied over a wide range.
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LR 10 1 10−1 10−2 10−3 10−4

SIA 0.1114 0.4291 0.6033 0.8086 0.7103 0.6348

Table 3: SIA of NC fluctuates with the learning rate (LR) used for DNN fine-
tuning.

Attack
pattern

Single class attack Multi-class attack
TPR FPR SIA TPR FPR SIA

Penultimate layer

CB 0.9922 0.0 0.8392 0.9997 0.0 0.6946
SP 0.9813 0.0 0.7728 0.9454 0.0 0.632
WB 0.9847 0.0 0.8607 0.9992 0.0 0.8945

1st convolutional layer from the last

CB 0.9977 0.0 0.7897 0.9996 0.0 0.6488
SP 0.9894 0.0 0.7562 0.9807 0.0 0.5271
WB 0.9941 0.0057 0.8598 0.9997 0.0034 0.8638

2nd convolutional layer from the last

CB 0.9977 0.0011 0.7035 0.9998 0.0 0.6106
SP 0.9976 0.0011 0.5962 0.9948 0.0011 0.4923
WB 0.9976 0.0126 0.8544 0.9998 0.0267 0.8085

3rd convolutional layer from the last

CB 0.9888 0.0023 0.6117 0.9997 0.0 0.5336
SP 0.9941 0.0081 0.6266 0.9922 0.0046 0.3738
WB 0.9976 0.0207 0.7857 0.9997 0.0500 0.7049

4th convolutional layer from the last

CB 0.9888 0.0 0.5349 0.9997 0.0 0.4926
SP 0.9988 0.0302 0.6248 0.9976 0.0058 0.3705
WB 0.9952 0.0288 0.7581 0.9997 0.0848 0.6351

Table 4: TPR, FPR and SIA for our defense against all the created attacks on
different DNN internal layers.

mensionality of the internal layer activations to that of the penultimate layer
activations via, e.g., average pooling. As shown in Table 4, the nearly perfect
TPRs and FPRs demonstrate that the choice of the deep layer has little impact
on our in-flight backdoor trigger detection. However, the choice of the deep layer
affects source class inference for backdoor-trigger images. Our method achieves
the best SIA on the penultimate layer.

5.3 Experimental Results on Other Datasets

We also evaluated our detector on datasets including PubFig, MNIST and F-
MNIST. For PubFig, we randomly choose 20 classes, each with 80 training
samples and 20 test samples. We arbitrarily select class 19 as the target class
and embed a backdoor trigger in 2 training samples from each class except for
the target class. The backdoor patterns considered for PubFig are trojan square
(SQ) and trojan watermark (WM) [16], and the poisoned training set is then
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PubFig MNIST F-MNIST
SQ WM CB WB CB WB

TPR 0.9856 1.0 1.0 1.0 1.0 0.9951
FPR 0.1428 0.1428 0.0033 0.0022 0.0023 0.0127
SIA 0.7194 0.5507 0.9413 0.9764 0.6948 0.8039

Table 5: TPR, FPR and SIA for our in-flight backdoor detector on datasets
PubFig, MNIST and F-MNIST.

used for training a DNN with VGG-16 [19] architecture. We reserve 5 test
images per class for detection. For each of MNIST and F-MNIST, we consider
two attacks with backdoor patterns CB and WB, respectively, and the same
attack settings for the multi-class attacks described in Sec.5.1. For each attack,
a DNN with LeNet-5 [12] architecture is trained on the poisoned training set.
As shown in Table 5, our defender achieves similarly good performance on these
datasets as for the CIFAR-10 dataset.

6 Conclusion

We proposed an in-flight defense that detects test images containing a backdoor
trigger and infers the class of origin for each detected image. Our defense does
not need access to the DNN’s training set and is more efficient compared with
existing in-flight defenses. We show the effectiveness of our detector experimen-
tally for a wide variety of DNN architectures, datasets, and backdoor attack
configurations.
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