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Abstract

In this paper, we tackle the problem of dynamic scene

deblurring. Most existing deep end-to-end learning ap-

proaches adopt the same generic model for all unseen test

images. These solutions are sub-optimal, as they fail to

utilize the internal information within a specific image.

On the other hand, a self-supervised approach, SelfDe-

blur, enables internal training within a test image from

scratch, but it does not fully take advantage of large ex-

ternal datasets. In this work, we propose a novel self-

supervised meta-auxiliary learning to improve the perfor-

mance of deblurring by integrating both external and inter-

nal learning. Concretely, we build a self-supervised auxil-

iary reconstruction task that shares a portion of the network

with the primary deblurring task. The two tasks are jointly

trained on an external dataset. Furthermore, we propose a

meta-auxiliary training scheme to further optimize the pre-

trained model as a base learner, which is applicable for fast

adaptation at test time. During training, the performance of

both tasks is coupled. Therefore, we are able to exploit the

internal information at test time via the auxiliary task to en-

hance the performance of deblurring. Extensive experimen-

tal results across evaluation datasets demonstrate the effec-

tiveness of test-time adaptation of the proposed method.

1. Introduction

Images taken in dynamic scenes are often degraded by

objectionable blur caused by object motions and camera

shake. Restoring latent clean images from such cases is

challenging due to the spatially non-uniform property of the

blur kernels. Despite its highly ill-posed characteristic, ex-

tensive research efforts have been devoted to remove the no-

torious blurry artifacts in the past decades [7, 6, 44, 46, 8, 9].

Recently, deep neural networks (DNNs) have been popular

in this field. Various network structures have been proposed

to achieve reliable quantitative results and generate visually

pleasing clean images for dynamic scene deblurring [37, 1,

(a) Input blurry image (b) SelfDeblur [29]

(2,500 updates)

(c) Meta-auxiliary learned

(ours, no updates)

(d) Meta-auxiliary learned

(ours, five updates)

Figure 1: Sample deblurring results. Given a blurry input

image (a), SelfDeblur [29] requires thousands of iterations

to learn the internal information of the input image (b). Our

approach uses meta-auxiliary learning to learn to adapt to

the unique properties of the given image. Before adaption,

the output has some artifacts due to the distribution shift be-

tween the training dataset and the test image (c). After five

updates, our model quickly adapts to the internal informa-

tion of the test image and removes the artifacts (d).

31, 24]. In particular, the end-to-end learning approaches

have set the state-of-the-art by directly learning the statisti-

cal correlation between blurry and latent images on large-

scale training datasets [40, 13, 27, 36, 47, 25, 23, 5, 2].

The main shortcoming for most of the existing DNN-
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based methods is that the same set of trained weights are

adopted for all unseen test images. However, the features

learned from the external training data may not be opti-

mal for the given test image [26]. The failure of exploit-

ing the unique internal properties, such as depth variations

and motion trajectories, leads to non-optimal solutions [29].

Therefore, the generalization highly depends on the distri-

bution of training data and will likely deteriorate under dis-

tribution shift. To overcome this, SelfDeblur [29] explicitly

captures the internal statistics of the given test image in a

self-supervised manner. However, this method has some

limitations. First, it assumes the blur is spatially uniform,

which does not apply in dynamic scenes. Second, it fails to

utilize broad external information.

Our proposed approach combines the ideas from two dif-

ferent machine learning paradigms, namely meta-learning

(also known as learning to learn) and auxiliary-learning.

Meta-learning enables fast adaptation at test time via a

few training examples [14, 42, 39, 28, 21, 3, 33, 20]. In

particular, model agnostic meta-learning (MAML) [3] has

been successfully adopted to other image restoration prob-

lems, such as super-resolution (SR) [34, 26]. The methods

in [34, 26] first conduct large-scale training on external SR

datasets. Then the meta-learning scheme further optimizes

the pre-trained model so that it can quickly adapt to unseen

images via internal learning. The key point is that the super-

vision at test time can be simulated by further downscaling

the low-resolution images. Thus, internal learning can be

achieved to explore the specific patch-recurrence property.

However, for deblurring problem, such setting is impracti-

cal as patch-recurrence diminishes across scales [19]. One

could re-blur the blurry image and treat the original blurry

image as the clean counterpart. However, the re-blurring

process requires accurate blur kernel estimation, which is

challenging. Moreover, it may break the mapping between

blurry image and latent clean image. So the application of

MAML to the deblurring problem is not as straightforward.

Another practicable approach is to introduce auxiliary-

learning by defining an auxiliary task alongside the primary

deblurring task [16, 41, 50, 10]. These two tasks can share

some parameters. The auxiliary task is often designed in a

self-supervised way so that the auxiliary loss can be used

to update the model weights at test time. Ideally, the up-

dated shared weights can also improve the performance of

the primary task [38]. However, we empirically observe that

naively updating the model via the auxiliary task on the pre-

trained model can lead to catastrophic forgetting [18] where

the performance of the primary deblurring task drops.

We propose to integrate meta-learning and auxiliary-

learning to exploit their respective strength for the deblur-

ring problem. Inspired by [17], we propose to use self-

supervised image reconstruction as the auxiliary task. Its

loss can be defined at test time as it does not require any

manual labeling. During meta-training, we have access to

a labeled dataset consisting of pairs of blurring images and

their ground-truth clean counterparts. We consider each im-

age pair as a “task” using the meta-learning terminology [3].

For each task, we update the model parameters using the

auxiliary loss defined on the blurry image. The performance

of the updated parameters is measured by the deblurring

quality via the primary loss. The goal of meta-learning is to

learn the model parameters so that the deblurring output us-

ing the updated parameters better matches the ground-truth

clean image. Note that for different input images, the cor-

responding updated parameters will be different. In other

words, our model is adapted to each input image to better

capture its internal information. See Fig. 1 for a qualitative

example of our method compared with other alternatives.

The contributions of this paper are manifold. First, we

propose to use self-reconstruction as an auxiliary task for

the primary deblurring task. The jointly trained model al-

ready outperforms existing state-of-the-art. Second, we in-

troduce novel meta-auxiliary learning to enable effective

and fast test-time model adaptation. During testing, the

model is updated using the self-supervised auxiliary task,

which does not require extra labels. Third, our model is

learned in a way that facilitates fast adaption with only a

few gradient updates during testing. To the best of our

knowledge, this is the first attempt to apply meta-auxiliary

learning to low-level computer vision problems. Unlike

SR [34, 26] using meta-learning, our approach does not re-

quire surrogate training pairs during testing. Although we

focus on dynamic scene deblurring in this paper, our method

can potentially be applied in other image restorations where

surrogate training pairs cannot be obtained at test time.

2. Related Works

2.1. Deep learningbased dynamic scene deblurring

In recent years, DNNs have been widely employed for

image deblurring. Early works substituted some mod-

ules in the conventional optimization-based framework with

DNNs [31, 37, 5, 1]. Chakrabarti [1] applied the DNNs to

predict the complex Fourier coefficients of the blur kernel.

Sun et al. [37] explicitly estimated the blur kernel at patch

level. Gong et al. [5] utilized DNNs to estimate the motion

flow from blurry images. The clean images were obtained

via non-blind deconvolution.

Nah et al. [23] adopted a kernel free method to generate

a large-scale dynamic scene deblurring dataset by averaging

the consecutive frames in high-speed videos. Furthermore,

they proposed a multi-scale architecture to progressively re-

store the latent sharp image. Since then, various networks

were proposed under end-to-end manner and set the state-

of-the-art. That includes: deep hierarchical multi-patch net-

work [48], selective sharing scheme [4], incremental tempo-
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ral training [25], efficient pixel adaptive and feature atten-

tive design [36]. However, those methods are sub-optimal

since the same generic model is applied to every test image

and fail to explore the specific internal information. Ren et

al. [29] developed an unconstrained neural optimization so-

lution to naturally explore the internal information of each

input image. However, it did not take advantage of large-

scale external datasets which contain rich blurry informa-

tion. On the other hand, it is inefficient at inference as thou-

sands of iterations are required for each image.

2.2. Auxiliary and meta learning

Auxiliary-learning aims to improve the generalization of

the primary task [41, 17]. Lu et al. [17] utilized image re-

construction as the auxiliary task to provide the semantic

cues for the depth completion. Sun et al. [38] proposed a

test-time training scheme, where the model is updated by a

self-supervised auxiliary task before making a decision.

[34, 26] adopted the meta-learning scheme from

MAML [3] for super-resolution. It allows the pre-trained

model to be optimized in a way such that it can quickly

adapt to any test image. Due to exploiting both external

and internal information, superior results are achieved. Our

work is also related to [15], where meta-auxiliary learning

framework (MAXL) is proposed for image classification,

aiming to automatically discover optimal auxiliary labels to

improve the primary task. The proposed method also dif-

fers from MAXL in another two aspects: our auxiliary task

is self-supervised reconstruction, and our main goal is to

activate test-time adaptation.

3. Proposed Method

Given a blurry image taken in the dynamic scene as Ib,

our goal is to restore its clean counterpart Ic. Most existing

approaches directly learn a mapping function (e.g. a DNN)

f : Ib → Ic from a training dataset consisting of N exam-

ples {Ibn, I
c
n}

N
n=1

where Ibn is the n-th blurry image in the

dataset and Icn is the corresponding latent clean image.

In this section, we present our proposed approach that

has the following main novelties. First, the self-supervised

auxiliary task, particularly, image reconstruction, will be in-

troduced in addition to the primary deblurring task. The

auxiliary task can be trained together with the primary task

and acts as a regularization. The two tasks share most of the

model parameters. Second, for a given test image, we can

update the model parameters specifically to adapt to this test

image based on the auxiliary branch since the auxiliary task

is self-supervised and its loss can be readily computed for

a test image. We call this test-time adaptation [38]. How-

ever, we have found that a naive test-time adaption does not

perform well. In this paper, we propose a meta-auxiliary

learning scheme so that the model parameters are learned in

a way that facilitates effective test-time adaptation.

32
64

80
80

80
64

32
32

Conv Deconv ResBlock x 4 Output
layer

Short 
connection

Figure 2: Illustration of the proposed architecture. Given

an input blurry image Ib, the primary branch tries to pro-

duce the clean image Îc, while the auxiliary branch aims to

produce a reconstructed Îb of the input blurry image. These

two branches share most of the model parameters.

3.1. Model architecture

In the following, we introduce our two-branch architec-

ture. It consists of a primary branch for the deblurring task

and an auxiliary branch for the self-reconstruction task.

Primary deblurring network: This network takes a blurry

image Ib as its input and produces a clean image counter-

part Îc. This network is based on the multi-scale struc-

ture [23]. For each scale, we adopt the similar U-Net archi-

tecture [30, 40, 25], which consists of conv, deconv layers

and ResBlocks [23] as shown in Fig. 2. Inspired by [25], we

enable feature recurrence among different scales. For each

scale z, the feature maps {F z
1
, F z

2
, F z

3
} after the ResBlocks

in the decoder are passed to the encoder of the finer scale.

As pointed by the arrows in Fig. 2, the recurrent features are

concatenated with the features after the conv layers at cor-

responding places. As the blurriness diminishes at coarser

scales, it is easier to optimize [23]. Therefore, the recur-

rent features from the decoder at coarse levels are helpful

for deblurring at finer levels.

Self-supervised auxiliary network: A properly chosen

auxiliary task can complement the primary task in a way

such that the extra features learned provide broader interpre-

tation of input data [15]. In our case, specific blurry charac-

teristics are supposed to be captured by the auxiliary task to

support the primary deblurring task. In addition, the auxil-

iary task should be self-supervised so that it can be used for

test-time model adaptation.

Our choice of auxiliary task comes from the observa-

tion of residual learning. Residual learning has been widely

used for effective deblurring [48, 4, 25, 27]. In residual

learning, the output of the model is a residual image that

aims to remove the low-frequency blur and produce high-

frequency components to compensate the blurry areas, as

shown in Fig. 3. Therefore, the extracted intermediate fea-
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(a) Blurry image (b) Learned residual (c) Restored image

Figure 3: Examples of learned residual images. The learned

residual images contain blurry information that is needed

for both deblurring and reconstruction tasks.

tures contain blurry information that is also needed for re-

constructing the blurry image. Hence, we propose to use the

self-supervised reconstruction as the auxiliary task, where

it reconstructs the input blurry image as Îb. We empiri-

cally show in the experiment section that adding this self-

reconstruction task during the training phase behaves as a

regularizer to complement the deblurring task. On the other

hand, reconstructing the blurry image at test time allows the

model to learn specific blurry information, such as location

of motion blur and motion trajectory. More importantly, the

loss function of this auxiliary task only requires the blurry

image itself, so it can be used for test-time adaptation.

As shown in Fig. 2, we utilize residual learning for the

deblur branch and let the reconstruction branch to learn the

RGB blurry image. The primary and auxiliary tasks share

most of the parameters except the last few layers. The

residual image generated at the primary branch is passed to

the auxiliary branch to complement the self-reconstruction

task. More importantly, the primary branch can also get up-

dated during the test-time adaptation stage based on specific

test images. This is different from the architecture in [38]

where the primary branch is always freezed.

We then use the multi-scale L1 loss for both tasks as:

LPri =

3
∑

z=1

∥

∥

∥
Icz − Îcz

∥

∥

∥

1

,LAux =

3
∑

z=1

∥

∥

∥
Ibz − Îbz

∥

∥

∥

1

. (1)

where z denotes the corresponding scale level. The above

losses are normalized by the image dimensions.

Joint training: We decompose the parameters of the entire

network as θ = {θS , θPri, θAux}, where θS denotes the

shared weights, θPri and θAux are the task-specific weights

for the primary deblurring branch and the auxiliary recon-

struction branch, respectively. The predicted clean image

Îc and the reconstructed input image Îb can be obtained by:

Îc = fpri(I
b; θS , θPri), Îb = faux(I

b; θS , θAux
, θ

Pri), (2)

where fpri(·) and faux(·) are the primiary deblurring

branch and the auxiliary reconstruction branch, respec-

tively. Note that θPri is also needed for the auxiliary task,

since the auxiliary task uses the output from the primary

task. This is crucial for the test-time adaptation (Sec 3.2).

A straightforward way to train the model is to jointly

minimize the combination of primary and auxiliary losses:

LPri(Î
c
, I

c; θS , θPri) + LAux(Î
b
, I

b; θS , θAux
, θ

Pri) (3)

In our experiments, we call the model learned from Eq. 3

the pre-trained model. We use the pre-trained model as the

initialization for the meta-auxiliary learning in Sec. 3.2.

3.2. Metaauxiliary learning

The model obtained from the joint training (Eq. 3) is sub-

optimal since it only exploits the external data and does not

take advantage of internal information from test images. We

propose a meta-auxliary learning to learn model parame-

ters to facilitate test-time adaptation. For a test image, our

model is updated and adapted to this specific test image.

Our method is partially inspired by [38], where test-time

training is leveraged via a self-supervised auxiliary loss.

The goal is to explore the distribution of each test sam-

ple, such that the updated parameter is tailored to that dis-

tribution. However, we have found that naively applying

test-time training as in [38] leads to catastrophic forgetting

as shown in Fig. 7. As the performance of two tasks are

not connected, the weights updated via the auxiliary loss is

more biased to only improve the reconstruction quality, not

the primary deblurring quality.

Meta-auxiliary training: To overcome the foregoing is-

sues, we propose to integrate the auxiliary-learning and

meta-learning. Concretely, at the meta-training phase, we

enforce the constraint that the parameter update via the

auxiliary loss should improve the primary deblurring task.

Given a pair of training images (Icn, I
b
n) and the pre-trained

model θ, we first perform adaptation on Ibn via a small num-

ber of gradient updates based on only the auxiliary loss:

θ̃n ← θ − α∇θLAux(Î
b
n, I

b
n; θ), (4)

where α is the adaptation learning rate. Here θ̃n =
{θ̃Sn , θ̃

Pri
n , θ̃Aux

n } can be seen as the model parameters

adapted to the input Ibn via internal-learning. Note that the

adaptation step in Eq. 4 involves all the parameters.

Ideally, we would like the updated {θ̃Sn ,
˜θPri

n } to enhance

the deblurring task and minimize the primary loss. Accord-

ingly, the meta-objective is defined as:

min
θS ,θPri

N
∑

n=1

LPri(Î
c
n, I

c
n; θ̃

S
n , θ̃

Pri
n ), (5)

Note that LPri(·) in Eq. 5 is a function of θ̃n, but the op-

timization is over θ. The meta-objective in Eq. 5 can be

minimized by performing gradient descent as:

θ ← θ − β

N
∑

n=1

∇θLPri(Î
c
n, I

c
n; θ̃

S
n , θ̃

Pri
n ), (6)
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Deblur
(Pri. branch)

Reconstruction
(Aux. branch)

Meta-Auxiliary training Test-time update via self-supervised reconstruction

Deblur
(Pri. branch)

Reconstruction
(Aux. branch)

Shared weights

Single blurry image

Meta-testing

External blurry-clean pairs

Model

Sample  

Inner update

Outer update

Gradient flow

Feature passing

Figure 4: Illustration of the proposed meta-auxiliary learning. At the meta-auxiliary training phase, we first obtain the adapted

parameters based on the auxiliary loss in the inner loop. Then, we evaluate the updated weights on the primary task. Finally,

the model weights are updated at the outer loop based on the primary loss computed on adapted parameters. At meta-testing,

we simply apply the adaptation step to update the model specifically to each test blurry image.

where β represents the meta-learning rate. In practice, we

use a mini-batch in Eq. 6 instead of the entire training set.

The entire training procedure is elaborated in Algorithm 1

and Fig. 4. Note that, since the primary branch involves θS

and θPri, only those two sets of parameters will be updated

at the outer loop. θAux will be updated at the inner step.

Meta-auxiliary testing: The meta-learned parameters θ

have been learned specifically to facilitate test-time adap-

tation, so they are less prone to the problem of catastrophic

forgetting. In the meta-testing phase, given a test blurry im-

age, the adapted parameter θ̃ is obtained by simply applying

Eq. 4. Then θ̃ is adopted to deblur the given image.

4. Experiments

4.1. Implementation details

We follow [36, 48, 23] to train our network on the Go-

Pro training dataset [23], which consists of 2103 training

pairs. We first perform joint training by optimizing the loss

in Eq. 3 with Adam optimizer [11]. The initial learning rate

is set to 10−4, and reduced by a factor of 2 when the loss

reaches a plateau. The training converges after 4000 epochs

with a batch size of 6. During meta-auxiliary training, we

fix the learning rates α and β to be 2.5×10−5. For the adap-

tation step, we perform 5 gradient updates. We randomly

crop 256 × 256 patches for data argumentation, as well as

random horizontal/vertical flipping. During meta-testing,

the loss is computed based on the whole image. The pixel

values of all images are scaled to [-1, 1] and the activation

function is set to LeakyReLU [45] with a slope of 0.1. All

the experiments are conducted on Nvidia V100 GPUs.

4.2. Evaluation datasets and metrics

We evaluate the performance of the proposed method on

widely used dynamic scene deblurring datasets, including

GoPro test set [23] (1103 images) and HIDE [32] test set

(2025 images). To further demonstrate the test-time adap-

tation capability of the proposed method under distribution

Algorithm 1: Meta-Auxiliary training

Input: α, β: learning rates

Input: (Ib, Ic) pairs

Output: θ: meta-auxiliary learned parameters

Initialize the model with pre-trained weights:

θ = {θS , θPri, θAux};
while not converged do

Sample a batch of training pairs {Ibn, I
c
n}

N
n=1

;

for each n do

Evaluate auxiliary reconstruction loss LAux;

Compute adapted parameters with gradient

descent: θ̃n = θ − α∇θLAux(Î
b
n, I

b
n; θ) ;

Update:

θAux ← θAux − α∇θLAux(Î
b
n, I

b
n; θ

Aux) ;

end

Validate the primary task and update:

θ ← θ − β
∑N

n=1
∇θLPri(Îcn, I

c
n; θ̃

S
n , θ̃

Pri
n );

end

shift, we also conduct comprehensive ablation studies on

two video deblurring datasets: Adobe240 [35] (6708 im-

ages) and REDS validation set [22] (3000 images). For

all datasets, the image resolution is 720 × 1280. We adopt

PSNR and SSIM [43] as the evaluation metrics.

4.3. Comparison with the stateofthearts

We compare the proposed method extensively with the

state-of-the-art learning-based methods: HumanAware[32],

MS-CNN [23], DeblurGAN [12], DeblurGANV2 [13],

SRN [40], DMPHN [48], MT-CNN [25], RADN [27], Suin

et al. [36]. All of the above methods, including ours, are

trained on GoPro dataset [23]. Therefore, the comparison is

fair and faithful across different datasets. For each of these

methods, we either obtain its result directly reported in the

original paper or use the released official model with default

parameters.
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(a) Blurry image (b) Blurry patch (c) DeblurGAN-V2 (d) SRN (e) DMPHN (f) Ours (g) GT

Figure 5: Qualitative comparison with state-of-the-art approaches. The first two rows are from the GoPro dataset [23] and

last two rows are from the HIDE dataset [32]. Our method yields sharper results than the state-of-the-art approaches.

Input SRN DMPHN No Aux. Aux.

Input SRN DMPHN No update 5 updates

Figure 6: Qualitative examples to show the effectiveness of

aux. task and test-time adaptation on real dataset[49].

Quantitative comparison: Table 1 reports PSNR and

SSIM measures on GoPro [23] and HIDE [32]. We also

report the results from the pre-trained model optimized

by Eq. 3. As shown in Table 1, our pre-trained model,

which only employs auxiliary-learning, consistently outper-

forms the existing approaches. With meta-auxiliary learn-

ing scheme, our method enables test-time adaptation to uti-

lize the internal information for every test image. Notably,

with test-time adaptation, we observe 0.2dB improvement

over the pre-trained model on both datasets. More impor-

Methods
GoPro [23] HIDE [32]

PSNR SSIM PSNR SSIM

MS-CNN [23] 29.08 0.914 26.81 0.890

DeblurGan [12] 28.70 0.858 24.51 0.871

DeblurGanV2 [13] 29.55 0.934 26.61 0.875

SRN [40] 30.26 0.934 28.36 0.915

HumanAware[32] 30.26 0.940 28.89 0.930

DMPHN [48] 31.20 0.940 29.09 0.924

MT-CNN [25] 31.15 0.945 - -

RADN [27] 31.76 0.953 - -

Suin et al. [36] 32.02 0.953 29.98 0.930

Pre-trained 32.30 0.955 30.35 0.932

Ours 32.50 0.958 30.55 0.935

Table 1: Comparison of our model with existing state-of-

the-art. Our pre-trained model obtained by optimizing Eq. 3

already outperforms existing state-of-the-art. This demon-

strates the effectiveness of using image construction as an

auxiliary task during training. With meta-auxiliary learn-

ing, our approach further improves the results.

tantly, it outperforms the best existing approach [36] by

0.48dB and 0.57dB on GoPro and HIDE, respectively.

Qualitative comparison: Fig. 5 shows the visual compar-

isons on challenging examples. Our method yields cleaner

results, especially near the edge boundaries. For the areas

that suffer from both camera shake and motion blur, the

performance of the existing methods usually degrades. As

shown in the 1st and 4th row of Fig. 5, artifacts are visi-

bly observed from the results of existing approaches. Simi-

lar performance degradation is also observed on real blurry

images as shown in Fig. 6. Due to the distribution shift,
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Figure 7: Illustration of PSNR after each gradient update for models with K={1, 3, 5}, and pre-trained model. Without meta-

auxiliary learning, the pre-trained model consistently performs worse. In contrast, the meta-auxiliary learned models are able

to gain performance via test-time adaptation. And peak PSNR is achieved when K is matched during training and testing.

Methods
GoPro [23] HIDE [32]

PSNR SSIM PSNR SSIM

Single-scale 31.04 0.937 28.79 0.904

+ Aux. (share half encoder) 31.07 0.938 28.86 0.906

+ Aux. (share encoder) 31.07 0.938 28.87 0.908

+ Aux. (share until 2nd deconv) 31.10 0.939 28.88 0.909

+ Aux. (share until last deconv) 31.14 0.940 28.92 0.910

Multi-scale 31.79 0.949 29.89 0.925

+ feature recurrence 32.03 0.953 30.22 0.930

+ feature recurrence + Aux. 32.30 0.955 30.35 0.932

Table 2: Ablation studies on network structures. Incorporat-

ing the auxiliary-learning via self-reconstruction improves

the primary deblurring task. More improvement from the

auxiliary task is observed when multi-scale is employed.

the compared methods suffer from poor generalization with

incomplete blurry removal and artifacts. In contrast, our

method produces visually pleasing results. We believe this

is because our model has learned to effectively adapt to the

internal information of each test image.

4.4. Ablation studies

We perform additional ablation experiments to further

study various aspects of the proposed approach.

Network structures: In Table 2, we evaluate the impact of

each component of the proposed network structure. Since

the auxiliary task aims to complement the primary task, we

first investigate the deblurring performance by changing the

number of shared layers. We train 4 models where both

tasks share the weights of 1) half of the encoder; 2) the en-

tire encoder; 3) until the second or 4) until last deconv layer.

As for the unshared parts, both tasks have the same struc-

ture, except the very last few layers, as shown in Fig. 2. Ta-

ble 2 (top 5 rows) reveals that the auxiliary reconstruction

better improves deblurring when more weights are shared

Methods
GoPro [23] HIDE [32] Adobe240 [35] REDS [22]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Pre-trained 32.30 0.955 30.35 0.932 32.70 0.944 20.76 0.87

K=1, N=5 32.30 0.957 30.37 0.932 32.67 0.943 29.70 0.85

K=3, N=5 32.38 0.957 30.38 0.934 32.75 0.945 29.76 0.87

K=5, N=1 32.37 0.957 30.41 0.934 32.65 0.944 29.83 0.88

K=5, N=3 32.43 0.958 30.50 0.935 32.71 0.945 29.92 0.88

K=5, N=5 32.50 0.958 30.55 0.935 32.87 0.946 29.96 0.89

Table 3: Evaluation of number of updates K and batch size

N on different datasets. Larger K and N yield better de-

blurring results. Larger K allows the model to better exploit

and adapt the internal information. While larger N prevents

from overfitting to any specific training example.

between two tasks. The qualitative evaluation in Fig. 6 (first

two rows) also shows the effectiveness of auxiliary task.

We also investigate the effect of using multi-scale. As re-

ported in Table 2 (bottom 3 rows), the multi-scale structure

boosts the deblurring performance by 0.75dB and 1.1dB on

two datasets, respectively. As feature recurrence allows the

features that may contain blur patterns to be shared among

scales, it further improves the performance. Finally, adding

the auxiliary task gives additional performance boost. More

importantly, the deblurring task takes more advantage when

it is integrated with the auxiliary task at multi-scale. The

improvement made by auxiliary-learning is observed to be

0.27dB for multi-scale, but only 0.1dB for single-scale.

Number of gradient updates and batch size: In this study,

we show the impacts of two factors in Algorithm 1: number

of gradient updates in the inner loop and batch size. Table 3

shows the results of models that are trained with various

number of gradient update K = {1, 3, 5} and batch size

N = {1, 3, 5}. Note the number of gradient updates is con-

sistent during training and testing. Overall, we observe that

larger K and N tend to produce better results. Our hypoth-

esis is that larger K allows the model to better adapt to the

internal structure of a test image, while larger N prevents
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Figure 8: Visual illustration of the unfolded adaptation process for model with K=5 on the GoPro dataset [23] (row 1-2)

and the HIDE dataset [32] (row 3-5). With the test-time adaptation, the artifacts and incomplete blur removal suffered from

distribution shift are resolved. Cleaner and sharper images are generated and are visually closer to the ground truth images.

the model from overfitting to any specific training exam-

ples. The results reported in Table 3 across 4 datasets are

consistent with our assumption. However, we found that,

further increasing K or N does not bring additional benefits.

4.5. Unfolding the adaptation process

To gain further insights of our model, we unfold the

adaptation process for models with K = {1, 3, 5} and the

pre-trained model. The results after each gradient update

on all 4 datasets are illustrated in Fig.7. We can make sev-

eral interesting observations. First, naively adapting the pre-

trained model degrades the performance instead of improv-

ing it. This is probably because the pre-trained model is

not learned in a way that facilitates test-time adaptation. In

contrast, the meta-auxiliary learned models are able to use

test-time adaptation to improve the deblurring. Another in-

teresting observation is that the number of gradient updates

during test-time adaptation should match that during train-

ing. This is intuitively reasonable. If we use a particular K

value (e.g. K=3) during training, the model has been trained

to perform the most effective adaptation with 3 gradient up-

dates. If we use a different K value (e.g. 1 or 5) at test time,

the adaption process does not match what has been learned.

So the performance might drop due to this distribution shift.

Fig. 8 visually shows the unfolded adaptation process.

Initially, the network may suffer from artifacts or incom-

plete deblurring due to distribution shift. However, as more

specific blur patterns are learnt during test-time adaptation,

the model is more tailored to deblur every image. There-

fore, the outputs are getting cleaner and sharper.

4.6. Dynamic adaptation for video deblurring

The results on different datasets reported in Table 3 and

Fig. 7 consistently demonstrate the strong generalization of

the proposed meta-auxiliary learning. However, for video

deblurring, running the adaptation on every frame is te-

Dataset No update j = 1 j = 3 j = 5 j = 10

Adobe240 [35] 32.75 32.87 32.84 32.84 32.83

REDS [22] 29.73 29.96 29.94 29.93 29.92

Table 4: Evaluation of dynamic adaptation for video de-

blurring with various j. Due to the high correlation between

consecutive frames in videos, performing test-time adaption

on every j frame can achieve better speed-quality tradeoff.

dious and inefficient. Thus, we propose a dynamic adapta-

tion mechanism to improve efficiency. We apply the model

adaptation on every j frames, and allow the next j − 1
frames to use the same adapted weights. This is based on

the observation that the consecutive video frames are highly

correlated and are more likely drawn from the same distri-

bution. They may also share similar low-level statistics and

blur patterns. Reported in Table 4 are the results with vari-

ous j values. As we can see, increasing j from 1 to 10 only

drops 0.04dB for both datasets, but the inference time can

be reduced dramatically. With j = 10, the model is still

improved compared to the one without test-time adaptation.

5. Conclusion

In this work, we have introduced novel meta-auxiliary

learning for dynamic scene deblurring. We first built a self-

reconstruction auxiliary task to share certain layers with

the primary deblurring task. Integrated with meta-auxiliary

learning, the model is constrained so that the update via the

auxiliary task brings performance gain for the deblurring

task. Thus, the model is endowed with the ability for fast

adaptation. At test-time, adaptation is performed on test im-

ages to achieve superior deblurring. Extensive experiments

show that the proposed method outperforms state-of-the-art

methods by utilizing external and internal information.

9144



References

[1] Ayan Chakrabarti. A neural approach to blind motion deblur-

ring. In European Confererence on Computer Vison, 2016.

1, 2

[2] Zhixiang Chi, Xiao Shu, and Xiaolin Wu. Joint demosaick-

ing and blind deblurring using deep convolutional neural net-

work. In IEEE International Conference on Image Process-

ing, 2019. 1

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In International Conference on Machine Learning, 2017. 2,

3

[4] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dy-

namic scene deblurring with parameter selective sharing and

nested skip connections. In IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 2, 3

[5] Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian

Reid, Chunhua Shen, Anton Van Den Hengel, and Qinfeng

Shi. From motion blur to motion flow: a deep learning solu-

tion for removing heterogeneous motion blur. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017.

1, 2

[6] Ankit Gupta, Neel Joshi, C Lawrence Zitnick, Michael Co-

hen, and Brian Curless. Single image deblurring using mo-

tion density functions. In European Conference on Computer

Vision, 2010. 1

[7] Stefan Harmeling, Hirsch Michael, and Bernhard Schölkopf.

Space-variant single-image blind deconvolution for remov-

ing camera shake. In Advances in Neural Information Pro-

cessing Systems, 2010. 1

[8] Tae Hyun Kim, Byeongjoo Ahn, and Kyoung Mu Lee. Dy-

namic scene deblurring. In IEEE International Conference

on Computer Vision, 2013. 1

[9] Tae Hyun Kim and Kyoung Mu Lee. Segmentation-free dy-

namic scene deblurring. In IEEE Conference on Computer

Vision and Pattern Recognition, 2014. 1

[10] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-

necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray

Kavukcuoglu. Reinforcement learning with unsupervised

auxiliary tasks. In International Conference on Learning

Representations, 2016. 2

[11] Diederik P Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations, 2015. 5

[12] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
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