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Abstract. Test access mechanisms (TAMs) and test wrappers are integral parts of a system-on-chip (SOC) test
architecture. Prior research has concentrated on only one aspect of the TAM /wrapper design problem at a time, i.e.,
either optimizing the TAMs for a set of pre-designed wrappers, or optimizing the wrapper for a given TAM width.
In this paper, we address a more general problem, that of carrying out TAM design and wrapper optimization in
conjunction. We present an efficient algorithm to construct wrappers that reduce the testing time for cores. Our
wrapper design algorithm improves on earlier approaches by also reducing the TAM width required to achieve these
lower testing times. We present new mathematical models for TAM optimization that use the core testing time values
calculated by our wrapper design algorithm. We further present a new enumerative method for TAM optimization
that reduces execution time significantly when the number of TAMs being designed is small. Experimental results
are presented for an academic SOC as well as an industrial SOC.
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1. Introduction and efficient system integration. Test development is

now seen as a major bottleneck in SOC design, and

System-on-chip (SOC) integrated circuits composed of
processors, memories, and peripheral interface devices
in the form of embedded cores, are now commonplace.
Nevertheless, there remain several roadblocks to rapid
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test challenges are a major contributor to the widening
gap between design and manufacturing capability [22].

The 1999 International Technology Roadmap for
Semiconductors [18] clearly identifies test access for
SOC cores as one of the key challenges for the near
future. Test access mechanisms (TAMs) and test wrap-
pers have been proposed as important components of
an SOC test access architecture [22]. TAMs deliver
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pre-computed test sequences to cores on the SOC,
while test wrappers translate these test sequences into
patterns that can be applied directly to the cores.

Test wrapper and TAM design is of critical
importance in SOC system integration since it directly
impacts the vector memory depth required on the ATE,
as well as testing time, and thereby affects test cost. A
TAM and wrapper design that minimizes the idle time
spent by TAMs and wrappers during test directly re-
duces the number of don’t-care bits in vectors stored on
the tester, thereby reducing vector memory depth. The
design of efficient test access architectures has become
an important focus of research in core test integration
[1,3-6, 12, 15, 17]. This is especially timely and rele-
vant, since the proposed IEEE P1500 standard provides
alot of freedom in optimizing its standardized, but scal-
able wrapper, and leaves TAM optimization entirely to
the system integrator [10, 16].

The general problem of SOC test integration in-
cludes the design of TAM architectures, optimization of
core wrappers, and test scheduling. The goal is to min-
imize the testing time, area costs, and power consump-
tion during testing. The wrapper/TAM co-optimization
problem that we address in this paper is as follows.
Given the test set parameters for the cores on the SOC,
as well as the total TAM width, determine an optimal
number of TAMs for the SOC, an optimal partition of
the total TAM width among the TAMs, an optimal as-
signment of cores to each TAM, and an optimal wrap-
per design for each core, such that the overall system
testing time is minimized. In order to solve this prob-
lem, we examine a progression of three incremental
problems structured in order of increasing complexity,
such that they serve as stepping-stones to the more gen-
eral problem of wrapper/TAM design. The first prob-
lem Pyy is related to test wrapper design. The next two
problems Paw and Ppaw are related to wrapper/TAM
co-optimization.

1. Pw: Design a wrapper for a given core, such that
(a) the core testing time is minimized, and (b) the
TAM width required for the core is minimized.

2. Paw: Determine (i) an assignment of cores to TAMs
of given widths and (ii) a wrapper design for each
core, such that SOC testing time is minimized. (Item
(ii) equals Py.)

3. Ppaw: Determine (i) a partition of the total TAM
width among the given number of TAMs, (ii) an
assignment of cores to the TAMs, and (iii) a wrapper
design for each core, such that SOC testing time is
minimized. (Items (ii) and (iii) together equal Payw.)

These three problems lead up to Pnpaw, the more
general problem of wrapper/TAM co-optimization de-
scribed as follows.

Pnpaw: Determine (i) the number of TAMs for the
SOC, (ii) a partition of the total TAM width among
the TAMs, (iii) an assignment of cores to TAMs, and
(iv) awrapper design for each core, such that SOC test-
ing time is minimized. (Items (ii), (iii) and (iv) together
equal PPAW-)

In the remainder of this paper, we formally define
and analyze these problems, and propose solutions for
each.

In this paper, we assume the “test bus” model for
TAMs. We assume that the TAMs on the SOC operate
independently of each other; however, the cores on a
single TAM are tested sequentially. This can be imple-
mented either by (i) multiplexing all the cores assigned
to a TAM, or (ii) by testing one of the cores on the
TAM, while the other cores on the TAM are bypassed.
Furthermore, in this paper, we are addressing the prob-
lem of core test only; hence, we do not discuss issues
related to test wrapper bypass and interconnect test.

The organization of this paper is as follows. In Sec-
tion 2, we discuss prior work in the area of TAM and
test wrapper design. In Section 3, we present two SOCs
that we use as running examples throughout the paper.
In Section 4, we address Problem Pw. In Section 5, we
develop improved integer linear programming (ILP)
models for optimizing core assignment to TAMs (Prob-
lem Paw). In Section 6, we present new ILP models for
TAM width partitioning (Problem Ppaw). In Section 7,
we present an enumerative method that can often re-
duce the execution time required to solve Ppaw when
the number of TAMs is small. Finally, in Section 8, we
examine Pnpaw, the general problem of wrapper/TAM
co-optimization. Section 9 concludes the paper.

2. Prior Work

Test wrappers provide a variety of operation modes, in-
cluding normal operation, core test, interconnect test,
and (optional) bypass [14]. In addition, test wrappers
need to be able to perform test width adaptation if the
width of the TAM is not equal to the number of core ter-
minals. The IEEE P1500 standard addresses the design
of a flexible, scalable wrapper to allow modular testing
[10, 16]. This wrapper is flexible and can be optimized
to suit the type of TAM and test requirements for the
core.



A “test collar” was proposed in [20] to be used as a
test wrapper for cores. However, test width adaptation
and interconnect test were not addressed. The issue
of efficient de-serialization of test data by the use of
balanced wrapper scan chains was discussed in [6].
Balanced wrapper scan chains, consisting of chains
of core I/0Os and internal scan chains, are desirable
because they minimize the time required to scan in
test patterns from the TAM. However, no mention was
made of the method to be used to arrive at a balanced as-
signment of core I/Os and internal scan chains to TAM
lines. The TESTSHELL proposed in [14] has provi-
sions for the IEEE P1500 required modes of operation.
Furthermore, heuristics for designing balanced wrap-
per scan chains, based on approximation algorithms
for the well-known Bin Design problem [7], were pre-
sented in [15]. However the issue of reducing the TAM
width required for a wrapper was not addressed.

A number of TAM designs have been proposed in
the literature. These include multiplexed access [11],
partial isolation rings [19], core transparency [8], ded-
icated test bus [20], reuse of the existing system bus
[9], and a scalable bus-based architecture called TEST-
RAIL [14]. Bus-based TAMs, being flexible and scal-
able, appear to be the most promising. However, their
design has largely been ad hoc and previous meth-
ods have seldom addressed the problem of minimiz-
ing testing time under TAM width constraints. While
[1] presents several novel TAM architectures (i.e., mul-
tiplexing, daisy chaining and distribution), it does not
directly address the problem of optimal sizing of TAMs
in the SOC. In particular, only internal scan chains are
considered in [1], while wrappers and functional 1/0s
are ignored. Moreover, the lengths of the internal scan
chains are not considered fixed, and therefore [1] does
not directly address the problem of designing test ar-
chitectures for hard cores.

More recently, integrated TAM design and test
scheduling has been attempted in [13, 18]. However, in
[13, 17], the problem of optimizing test bus widths and
arbitrating contention among cores for test width was
not addressed. In [17], the cost estimation for TAMs
was based on the number of bridges and multiplexers
used; the number of TAM wires was not taken into
consideration. Furthermore, in [12] the impact of TAM
widths on testing time was not included in the cost func-
tion. The relationship between testing time and TAM
widths using ILP was examined in [3, 5], and TAM
width optimization under power and routing constraints
was studied in [4]. However, the problem of effective
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test width adaptation in the wrapper was not addressed.
This led to an overestimation of testing time and TAM
width. Improved wrapper designs and new ILP models
for TAM design are therefore necessary.

In this paper, we present a new wrapper/TAM co-
optimization methodology that overcomes the limita-
tions of previous TAM design approaches that have ad-
dressed TAM optimization and wrapper design as inde-
pendent problems. The new wrapper design algorithm
that we present improves upon previous approaches by
minimizing the core testing time, as well as reducing
the TAM width required for the core. We propose an
approach based on ILP to solve the problems of deter-
mining an optimal partition of the total TAM width and
determining an optimal core assignment to the TAMs.
We also address a new problem, that of determining the
optimal number of TAMs for an SOC. This problem
gains importance with increasing SOC size. This pa-
per, to the best of our knowledge, is the first in which a
wrapper/TAM co-optimization methodology has been
applied to an industrial SOC.

3. Example SOCs

In order to illustrate the proposed wrapper/TAM co-
optimization methods presented in this paper, and to
demonstrate their effectiveness, we use two representa-
tive SOCs as running examples throughout this paper.
The first one is an academic SOC named d695 (de-
scribed as system S; in [5]), and the second one is an
industrial SOC from Philips, named p93791. The num-
ber (e.g., 93791) in each SOC name is a measure of its
test complexity. This number is calculated by consider-
ing the numbers of functional inputs n;, functional out-
puts m;, bidirectional I/Os b;, scan chains sc;, internal
scan chain lengths /; 1, [; 2, ..., l; s, and test patterns
pi for each Core i, as well as the total number of cores
N in the SOC, all of which contribute to the complexity
of the wrapper/TAM co-optimization problem. We cal-
culate the SOC test complexity number using the for-
mula N - Z,N=1 pi-(ni+mi+bi+ Y% 1) - m.
The letters “d” and “p” in d695 and p93791 refer to
Duke University and Philips, respectively.

SOC d695 consists of two combinational ISCAS’85
and eight sequential ISCAS’89 benchmark circuits.
Table 1 presents the test data for each core in d695.
We assume that the ISCAS’89 circuits contain well-
balanced internal scan chains. The proposed wrapper/
TAM co-optimization methodology is also applicable



216 Iyengar, Chakrabarty and Marinissen

Table 1. Test data for the cores in d695 [5].

No. of No. of No.of  Scan chain lengths

Circuit Test Primary Scan

(core) patterns 1/0s chains Min Max
c6288 12 64 - - -
c7552 73 315 - - -
s838 75 35 1 32 32
§9234 105 75 4 52 54
338584 110 342 32 44 45
s13207 234 214 16 39 41
s15850 95 227 16 33 34
85378 97 84 4 44 46
835932 12 355 32 54 54
838417 68 134 32 51 55

to SOCs containing non-scanned sequential cores,
since these cores can be treated as combinational
(having zero-length internal scan chains) for the pur-
pose of testing time calculation. SOC p93791 con-
tains 32 cores. Of these, 18 are memory cores embed-
ded within hierarchical logic cores. Table 2 presents the
data for the 14 logic cores and 18 embedded memories
in SOC p93791.

The experimental results presented in this paper were
obtained using a Sun Ultra 80 with a 450 MHz proces-
sor and 4096 MB memory.

4. Test Wrapper Design

A standardized, but scalable test wrapper is an inte-
gral part of the IEEE P1500 working group proposal
[10]. A test wrapper is a layer of DfT logic that con-
nects a TAM to a core for the purpose of test [22]. Test
wrappers have four main modes of operation. These
are (i) Normal operation, (ii) Intest: core-internal test-
ing, (iii) Extest: core-external testing, i.e., interconnect
test, and (iv) Bypass mode. Wrappers may need to per-
form test width adaptation when the TAM width is not
equal to the number of core terminals. This will often
be required in practice, since large cores typically have
hundreds of core terminals, while the total TAM width
is limited by the number of SOC pins. In this paper,
we address the problem of TAM design for Intest, and
therefore we do not discuss issues related to Bypass
and Extest.

A core usually contains several core I/0Os as well
as several internal scan chains consisting of flip-flops
connected in serial within the core for the purpose

Table 2. Test data for the cores in p93791.

No. of No.of  No.of  Scan chain lengths

Test Primary Scan
Core patterns 1/0s chains Min Max
Core 1 409 213 46 1 168
Core 2 192 74 - - -
Core 3 648 69 - - -
Core 4 11 117 23 4 5
Core 5 6127 248 - - -
Core 6 218 813 46 500 521
Core 7 177 41 - - -
Core 8 177 41 - - -
Core 9 192 77 - - -
Core 10 1164 395 - - -
Core 11 187 286 11 17 82
Core 12 391 369 46 92 93
Core 13 194 214 46 173 219
Core 14 194 214 46 173 219
Core 15 288 78 - - -
Core 16 396 201 - - -
Core 17 216 283 43 145 150
Core 18 42 113 - - -
Core 19 210 903 44 97 100
Core 20 416 220 44 132 181
Core 21 42 113 - - -
Core 22 42 76 - - -
Core 23 234 205 46 1 175
Core 24 3072 21 - - -
Core 25 2688 45 - - -
Core 26 96 76 - - -
Core 27 916 109 46 50 68
Core 28 396 159 - - -
Core 29 172 231 35 185 189
Core 30 192 77 - - -
Core 31 204 218 - - -
Core 32 3084 396 - - -

of scanning test data in and out of the core. To per-
form test width adaptation, wrapper scan chains are
constructed by connecting core I/Os and internal scan
chains in serial. The number of wrapper scan chains
constructed is equal to the TAM width provided to the
core; hence each wrapper scan chain is assigned to a
single unique TAM line. Thus the test data width (num-
ber of core terminals) of the core is adapted to the TAM
width.



The problem of designing an effective width adap-
tation mechanism for Intest can be broken down into
three problems [15]: (i) partitioning the set of wrapper
scan chain elements (internal scan chains and wrap-
per cells) into several wrapper scan chains, which are
equal in number to the number of TAM lines, (ii) or-
dering the scan elements on each wrapper chain, and
(iii) providing optional bypass paths across the core.
The problems of ordering scan elements on wrapper
scan chains and providing bypass paths were shown
to be simple in [15], while that of partitioning wrap-
per scan chain elements was shown to be N/P-hard.
Therefore, in this section, we address only the problem
of effectively partitioning wrapper scan chain elements
into wrapper scan chains.

Recent research on wrapper design has stressed the
need for balanced wrapper scan chains [6, 15]. Bal-
anced wrapper scan chains are those that are as equal
in length to each other as possible. Balanced wrap-
per scan chains are important because the number of
clock cycles to scan in (out) a test pattern to (from) a
core is a function of the length of the longest wrapper
scan-in (scan-out) chain. Let s; (s,) be the length of the
longest wrapper scan-in (scan-out) chain for a core. The
time required to apply the entire test set to the core is
then given by 7' = (1 + max{s;, s,}) - p + min{s;, s,},
where p is the number of test patterns. This time T
decreases as both s; and s, are reduced, i.e., as the
wrapper scan-in (and scan-out) chains become more
equal in length.

Fig. 1 illustrates the difference between balanced
and unbalanced wrapper scan chains; Bypass and Ex-
test mechanisms are not shown. In Fig. 1(a), wrap-
per scan chain 1 consists of two input cells and two

Wrapper Wrapper
scan chain | /'scan chain 1
LY
y ! | 1 .
Core Core
I FFL
2 FF J |—1 2 FF ::I
|-| 8 FF [ 8 FF
Wrapper \ Wrapper
! Wrapper | Wray per
scan chain 2 scan chain 2
(a) (b)

Fig. 1. Wrapper chains: (a) unbalanced, (b) balanced.
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output cells, while wrapper scan chain 2 consists of
three internal scan chains that contain 14 flip-flops in
total. This results in unbalanced wrapper scan-in/out
chains and a scan-in and scan-out time per test pat-
tern of 14 clock cycles each. On the other hand,
with the same elements and TAM width, the wrap-
per scan chains in Fig. 1(b) are balanced. The scan-
in and scan-out time per test pattern is now 8 clock
cycles.

The problem of partitioning wrapper scan chain ele-
ments into balanced wrapper scan chains was shown
to be equivalent to the well-known Multiprocessor
Scheduling and Bin Design problems in [15]. In this pa-
per, the authors presented two heuristic algorithms for
the Bin Design problem to solve the wrapper scan chain
element partitioning problem. Given k TAM lines and
sc internal scan chains, the authors assigned the scan el-
ements to m wrapper scan chains, such that max{s;, s,}
was minimized. This approach is effective if the goal
is to minimize only max{s;, s,}. However, we are ad-
dressing the wrapper design problem as part of the more
general problem of wrapper/TAM co-optimization, and
therefore we would also like to minimize the number of
wrapper chains created. This can be explained as fol-
lows. Consider a core that has four internal scan chains
of lengths 32, 8, 8, and 8, respectively, 4 functional in-
puts, and 2 functional outputs. Let the number of TAM
lines provided be 4. The algorithms in [15] will parti-
tion the scan elements among four wrapper scan chains
as shown in Fig. 2(a), giving max{s;, s,} =32. How-
ever, the scan elements may also be assigned to only 2
wrapper scan chains as shown in Fig. 2(b), which also
gives max{s;, s,} =32. The second assignment, how-
ever, is clearly more efficient in terms of TAM width

| Scan chain — 32 FF

| 1 I I |Scanchain-EFFiD|
[oncwn=er0]
[Eemmn-172

(a)

| Scan chain = 32 FF ]

[ 1 [ 1 ]t [scan chain — 8 Fi{scan chain— 8 Fi{Scan chain - s F{ 0 [ 0 |

(b)

Fig. 2. Wrapper design example using (a) four wrapper scan
chains, and (b) two wrapper scan chains.
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Fig. 3. Decrease in s; with increasing k for Core 6 of p93791.

utilization, and therefore would be more useful for a
wrapper/TAM co-optimization strategy.

Consider Core 6, the largest logic core from p93791.
Core 6 has 417 functional inputs, 324 functional out-
puts, 72 bidirectional I/Os, and 46 internal scan chains
of lengths: 7 scan chains x 500 bits, 30 scan chains x
520 bits, and 9 scan chains x 521 bits, respectively. The
Combine algorithm [15] was used to create wrapper
configurations for Core 6, for values of k between 1 and
64 bits, where k is the number of TAM lines provided
to the core. Since the functional inputs in Core 6 out-
number the functional outputs, max{s;, s,} = s;. The
value of s; obtained for each value of k is illustrated
in Fig. 3. From the graph, we observe that as k in-
creases, s; decreases in a series of distinct steps. This
is because as k increases, the core internal scan chains
are redistributed among a larger number of wrapper
scan-in chains; thus s; decreases only when the in-
crease in k is sufficient to remove an internal scan chain
from the longest wrapper scan-in chain. For example,
when the internal scan chains in Core 6 are distributed
among 24 wrapper scan-in chains, s; = 1040 bits long.
The value of s; remains at 1040 until k£ reaches 39,
when s; drops to 1020. Hence, for 24 < k < 38, only 24
wrapper scan-in chains need be designed. Our wrap-
per design strategy is therefore to (i) minimize testing
time by minimizing max{s;, s,}, and (ii) identify the
maximum number &k’ of wrapper scan chains that actu-
ally need to be created to minimize testing time, when
k TAM lines are provided to the wrapper. The set of

values of k" corresponding to the values of 1 <k < oo
is known as the set of pareto-optimal points for the
graph.

Pw, the two-priority wrapper optimization problem
that this section addresses can now be formally stated
as follows.

e Pw: Given a core with n functional inputs, m func-
tional outputs, sc internal scan chains of lengths
Iy, Iy, ..., L, respectively, and TAM width k, assign
the n + m + sc wrapper scan chain elements to k’ <k
wrapper scan chains such that (i) max{s;, s,} is mini-
mized, where s; (s,) is the length of the longest wrap-
per scan-in (scan-out) chain, and (ii) k¥’ is minimum
subject to priority (i).

Priority (ii) of Pw is based on the earlier observation
that max{s;, s, } can be minimized even when the num-
ber of wrapper scan chains designed is less than k.
This reduces the width of the TAM required to connect
to the wrapper. Problem Py is therefore analogous to
the problem of Bin Design (minimizing the size of the
bins), with the secondary priority of Bin Packing (min-
imizing the number of bins). If the value of k,,,, in
Problem Py is always fixed at k, then Problem Py re-
duces to the Partitioning of Scan Chains (PSC) Problem
[15], and is therefore clearly A/P-hard, since Problem
PSC was shown to be N"P-hard in [15].

We have developed an approximation algorithm
based on the Best Fit Decreasing (BFD) heuristic [7]
to solve Pw efficiently. The algorithm has three main
parts, similar to [15]: (i) partition the internal scan
chains among a minimal number of wrapper scan
chains to minimize the longest wrapper scan chain
length, (ii) assign the functional inputs to the wrap-
per scan chains created in part (i), and (iii) assign
the functional outputs to the wrapper scan chains cre-
ated in part (i). To solve part (i), the internal scan
chains are sorted in descending order. Each internal
scan chain is then successively assigned to the wrap-
per scan chain, whose length after this assignment is
closest to, but not exceeding the length of the cur-
rent longest wrapper scan chain. Intuitively, each in-
ternal scan chain is assigned to the wrapper scan chain
in which it achieves the best fit. If there is no such
wrapper scan chain available, then the internal scan
chain is assigned to the current shortest wrapper scan
chain. Next the process is repeated for part (ii) and
part (iii), considering the functional inputs and out-
puts as internal scan chains of length 1. The pseu-
docode for our algorithm Design_wrapper is as follows.



Procedure Design_wrapper

Part (i)
1. Sort the internal scan chains in descending
order of length
2. For each internal scan chain /
3. Find wrapper scan chain S,,,, with current
maximum length
4. Find wrapper scan chain S,,;, with current
minimum length
5. Assign [ to wrapper scan chain S, such that
{length(S,,.x) — (Iength(S) + length(l))}
is minimum
6. If there is no such wrapper scan chain S then
7. Assign [ to Sy
Part (ii)
8. Repeat steps 1 through 7 to add the primary inputs
to the wrapper chains created in part (i)
Part (iii)
9. Repeat steps 1 through 7 to add the primary inputs
to the wrapper chains created in part (i)

We base our algorithm on the BFD heuristic mainly
because BFD utilizes a more sophisticated partitioning
rule than First Fit Decreasing (FFD), since each scan
element is assigned to the wrapper scan chain in which
it achieves the best fit [7]. FFD was used as a subroutine
to the wrapper design algorithm in [15]. In our algo-
rithm, a new wrapper scan chain is created only when
it is not possible to fit an internal scan chain into one
of the existing wrapper scan chains without exceeding
the length of the current longest wrapper scan chain.
Thus, while the algorithms presented in [15] always
use k wrapper scan chains, Design_wrapper uses as few
wrapper scan chains as possible, without compromis-
ing test application time. The worst-case complexity of
the Design_wrapper algorithm is O (sc-log sc + sc- k),
where sc is the number of internal scan chains and & is
the limit on the number of wrapper scan chains.

We next present a wrapper design for the exam-
ple Core A in [15]. Core A has 8 functional inputs
a[0:7], 11 functional outputs z[0:10], 9 internal
scan chains of lengths 12, 12, 8, 8, 8, 6, 6, 6, and 6 flip-
flops, and a scan enable control sc. The test wrapper
for A is to be connected to a 1-bit TAM STP (as man-
dated by the IEEE P1500 standard [10]) as well as to
a 4-bit TAM MTP [0: 3] . Furthermore, the test wrap-
per is to contain a bypass from TAM inputs to TAM
outputs [16]. The Design_wrapper algorithm was used
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Table 3.  Wrapper scan chains for Core A.

Wrapper scan chains

1 2 3 4

Internal scan chains 12+6 1246 84+46+6 8+38

Wrapper input cells 2 2 0 4
Wrapper output cells 3 3 0 5
Scan-in length 20 20 20 20
Scan-out length 21 21 20 21

e

E Scan chain — 12 FF b
Scan chain - 6 FF —LzD"'
Scan chain — 12 FF [#—1 i
Scan chain — 6 FF_|9— ""=| e

:

MTPi[0:3

MTPo[0:3]

I-| Scan chain — 8 FF I
:]

D-| Scan chain - 6 FF i
Scan chain — 8 FF ':D_'

I‘| Scan chain — 8 FF |

:

a[0:7] 2[0:10]

STPi §TPo

tc[0:4]

Fig. 4. Wrapper design for example Core A from [15].

to design the wrapper for Core A. The scan elements
in the core were partitioned among four wrapper scan
chains using the Design_wrapper algorithm as shown
in Table 3. This partition yields a longest scan-in chain
of length 20, and a longest scan-out chain of length 21,
both of which are optimal values for a 4-bit TAM. The
wrapper designed for Core A is illustrated in Fig. 4.
From Fig. 3, we further observe that as k is increased
beyond 47, there is no further decrease in testing time,
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since the longest internal scan chain of the core has been
assigned to a dedicated wrapper scan chain, and there
is no other wrapper scan chain longer than the longest
internal scan chain. We next derive an expression for
this maximum value of TAM width k,,,, required to
minimize testing time for a core.

Theorem 1. Ifa core has n functional inputs, m func-
tional outputs, and sc internal scan chains of lengths
I, o, ..., I, respectively, an upper bound k.., on the

TAM width required to minimize testing time is given
by |—max{n,m} + >0k 1

max; {/;}

Proof: The test application time for a core is given
by T = (1 + max{s;, s,}) - p+ min{s;, s,}, where s;
(s,) is the length of the longest wrapper scan-in (scan-
out) chain, and p is the number of test patterns in
the test set. A lower bound on 7', for any TAM width
k, is therefore given by (1 + ming{max{s;, s,}}) - p +
ming {min{s;, s,}}. The lowest value that max{s;, s,}
and min{s;, s,} can attain, is given by the length of
the core’s longest internal scan chain max;{/;}. There-
fore, min{7T'} = (1 + max;{/;}) - p + max;{/;}. Let the
upper bound on k at which min{7T} is reached be
denoted as k... At this value of k, the number of
flip-flops assigned to each wrapper scan chain (either
scan-in or scan-out, whichever has more flip-flops) is
at most max;{/;}. Therefore k,,,, is the smallest in-
teger, such that k., - max;{l;} is at least the sum
of all the flip-flops on the wrapper scan chains, i.e.,
kmay - max;{l;} > max{n, m} + >_j=, ;. Thus, kyq is
the smallest integer, such that kgwx > %
Therefore, k0 = f%] [ ]

The value of k,,,, for each core can further be used
to determine an upper bound on the TAM width for any
TAM on the SOC. In Section 6, we show how k,,,, can
be used to bound the TAM widths, when obtaining an
optimal partition of total test width among TAMs on
the SOC.

Table 4 presents results on the savings in TAM width
obtained using Design_wrapper for Core 6. For larger
values of k, the number of TAM lines actually used is
far less than the number of available TAM lines; thus,
with respect to TAM width utilization, Design_wrapper
is considerably more efficient than the wrapper design
algorithms proposed in [15].

In the next section, we address Paw, the sec-
ond problem of our TAM/wrapper co-optimization
framework—determining an assignment of cores to

Table 4. Savings in TAM width utilization for Core 6
of p93791.

Available TAM  TAM width Length of longest

width utilized wrapper scan chain
1 1 24278
2 2 12139
3 3 8263
4 4 6202
5 5 5142
6 6 4141
7 7 3621
8 8 3101
9 9 3081
10 10 2581
11 11 2561
12 12 2080
13 13 2061
14 14 2060
15 15 2041
16-19 16 1560
20-21 20 1540
22 22 1521
23 23 1056
24-38 24 1040
39-42 39 1020
4345 43 1000
46 46 528
47-64 47 521

TAMs of given widths and optimizing the wrapper de-
sign for each core.

5. Optimal Core Assignment to TAMs

In this paper, we assume the “test bus” model for TAM
design. We assume that each of the B TAMs on the SOC
are independent; however, the cores on each TAM are
tested in sequential order. This can be implemented
either by (i) multiplexing all the cores assigned to a
TAM as in Fig. 5(a), or (ii) by testing one of the cores
on the TAM, while the other cores on the TAM are in
Bypass mode as in Fig. 5(b). Furthermore, the core by-
pass may either be an internal bypass within the wrap-
per or an external bypass. This paper does not directly
address the design of hierarchical TAMs. The SOC
hierarchy is flattened for the purpose of TAM design
and hierarchical cores are considered as being at the
same level in test mode.
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Fig. 5. Test bus model of TAM design: (a) multiplexed cores, (b) cores with bypass on a test bus.

The problem that we examine in this section, that of
minimizing the system testing time by assigning cores
to TAMs when TAM widths are known, can be stated
as follows.

e Paw: Given N cores and B TAMs of test widths
wi, Wy, ..., wg, determine an assignment of cores
to the TAMs and a wrapper design for each core,
such that the testing time is minimized.

This problem can be shown to be A/P-hard using
the techniques presented in [5]. However, for realistic
SOCs the sizes of the problem instances were found
to be small and could be solved exactly using an ILP
formulation in execution times less than a second.

To model this problem, consider an SOC consisting
of N cores and B TAMs of widths wy, ws, ..., wg. If
Core i is assigned to TAM j, let the time taken to test
Corei be given by T; (w;) clock cycles. The testing time
Ti(w;) is calculated as T;(w;) = (14 max{s;, s,}) -
pi; + min{s;, s,}, where p; is the number of test pat-
terns for Core i and s; (s,) is the length of the
longest wrapper scan-in (scan-out) chain obtained from
Design_wrapper. We introduce binary variables x;;
(where 1 <i < N and 1 < j < B), which are used to de-
termine the assignment of cores to TAMs in the SOC.
Let x;; be a 0-1 variable defined as follows:

1, if Corei is assigned to TAM j

Xij = .
0, otherwise

The time needed to test all cores on TAM j is given by
Z,I-Vzl T;(w;) - x;;. Since all the TAMs can be used si-

multaneously for testing, the system testing time equals
N
maxi<j<p Y ;1 Ti(w)) - xij.
A mathematical programming model for this prob-
lem can be formulated as follows.

Objective: Minimize 7 = max<j<p Y i, Ti(w;) -
X;j, subject to Zle x;jj=1,1<i <N,i.e.,every core
is connected to exactly one TAM.

Before we describe how a solution to Paw can be
obtained, we briefly describe ILP, and then present the
ILP formulation based on the above mathematical pro-
gramming model to solve Paw. The goal of ILP is to
minimize a linear objective function on a set of integer
variables, while satisfying a set of linear constraints
[21]. A typical ILP model can described as follows:

minimize: AXx

subjectto: Bx < C, suchthat x > 0,

where A is an objective vector, B is a constraint matrix,
C is a column vector of constants, and X is a vector of
integer variables. Efficient ILP solvers are now readily
available, both commercially and in the public domain
[2].

The minmax objective function of the mathematical
programming model for Paw can be easily linearized
to obtain the following ILP model.

Objective: Minimize 7, subject to

1.7 =YY Ti(w)-xj,1 <j<B,ie., T is the
maximum testing time on any TAM

2. Zle xijj = 1,1 <i < N, ie., every core is as-
signed to exactly one TAM
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Table 5. Core assignment to TAMs of given widths for SOC d695.

TAM Testing time
TAM widths assignment (clock cycles)
8+16 (2,1,1,1,2,2,2,1,2,1) 30086
8+ 16+32 (2,3,1,1,3,2,3,1,2,3) 14016
8+ 12+16420 (2,3,1,1,3,4,4,1,2.2) 13323

345417419423 (4,5,1,2,5,4,3,1,2,3) 11228
4+74+16+17+28+31 (4,4,4,2,6,5,4,1,4,3) 9878
5+7+11+24+27434437 (7,6,3,7,6,5,6,4,1,7) 9869

We solved this simple ILP model to determine op-
timal assignments of cores to TAMs for the SOCs
introduced in Section 3. The number of variables and
constraints for this model (a measure of the complexity
of the problem) is given by NB, and N + B =O(N),
respectively. The user time was less than a second in
all cases. The optimal assignments of cores to TAMs of
given widths for SOC d695 are shown in Table 5. Note
that the testing times shown are optimal only for the
given TAM widths; lower testing times can be achieved
if an optimal TAM width partition is chosen. For ex-
ample, Table 6 in Section 6 shows that a testing time
lower than 29451 cycles can be achieved using two
TAMs, if an optimal TAM width partition is chosen.
In Sections 6 and 7, we will address the problem of
determining optimal width partitions.

Lower Bounds on System Testing Time. For an SOC
with N cores and B TAMs of widths wy, w, ..., wp,

Table 6. Testing time for d695 obtained for B = 2.

respectively, a lower bound on the total testing time
T is given by max;{T; (k)}, where k = max;{w;}. The
testing time for Core i depends on the width of the test
bus to which it is assigned. Clearly, the testing time
for Core i is at least min;{7;(w;)}. Since the overall
system testing time is constrained by the core that has
the largest test time, therefore 7 > max; {7; (k)}, where
k = max ;{w;}. Intuitively, this value is the time needed
to test the core that has the largest testing time when
assigned to the widest TAM. For SOC d695 with two
TAMs of 32 bits and 16 bits, respectively, the lower
bound on the testing time is 6215 cycles. This corre-
sponds to the testing time needed for Core 5 if it is
assigned to TAM 1.

A lower bound on system testing time that does not
depend on the given TAM widths can further be de-
termined. This bound is related to the length of the
longest internal scan chain of each core. The lower
bound becomes tighter as we increase the number of
TAMs. From Theorem 1, we know that for a Core i,
where Core i has sc; internal scan chains of lengths
Lit,lia, ..., i s, respectively, and the test set for Core
i has p; test patterns, a lower bound on the testing
time is given by (1 + max,{/;,}) - p; + max,{/;,}.
Therefore, for an SOC with N cores, a lower bound
on the system testing time is given by max;{(l +
max,{/; »}) - p + max,{/; ,}}. Intuitively, this means
that the system testing time is lower bounded by the
time required to test the core with the largest testing
time.

Results in [5]

Current wrapper/TAM co-optimization

Total TAM width  Partition w; + wy,  Testing time

Partition w + wy

Testing time Core assignment Execution time (min)

16 1541 2423712 6+ 10
20 19+1 2363126 4416
24 1945 2278443 6+ 18
28 4 - 8420
32 3+29 2202286 11421
36 4432 2174501 16 + 20
40 9+31 2149720 8+ 32
44 12 432 2123437 10 + 34
48 32+ 16 2099390 16 + 32
52 32420 2086542 20+ 32
56 25+ 31 2069738 19 + 37
60 28 +32 2044346 20+ 40
64 32432 2029753 20+ 44

45055 (12,1,1,2,1,2,1,2,2) 0.7
34444 (12,1,1,2,2,1,1,2,2) 0.8
29501 (12,1,1,2.2,1,1,1,2) 2.1
26964 (1,1,1,1,2,2,1,1,1,2) 3.9
25442 (12,1,1,2,2,2,1,2,1) 523
23312 (1,1,1,1,2,2,2,1,1,1) 11.0
21359 (12,1,1,2.2,1,1,2,2) 125
20883 (12,1,1,2.2,1,1,2,2) 13.0
19938 (1,1,1,1,2.2,1,1,1,2) 32.1
19087 (2,1,1,1,2,1,2,2,2.2) 50.1
18434 (2.2,1,1,2,1,2,2,2.2) 52.8
18205 (2,2,1,1,2,1,2,2,2.2) 76.7
18205 (2,2,1,1,2,1,2,2,2.2) 158.7

2Not reported in [5].



6. Optimal Partitioning of TAM Width

In this section, we address Ppaw: the problem of deter-
mining (i) optimal widths of TAMs, and (ii) optimal
assignments of cores to TAMs, in conjunction with
wrapper design. This is a generalization of the core
assignment problem Paw. We describe how testing
times computed using the Design_wrapper algorithm
in Section 4 are used to design the TAM architecture.
We assume that the total system TAM width can be
at most W. From Theorem 1 in Section 4, we know that
the width of each TAM need not exceed the maximum
value of upper bound k,,,,, for any core on the SOC. We
denote this upper bound on the width of an individual
TAM as w,,,,. For TAMs wider than w,,,,, there is
no further decrease in testing time. Problem Ppaw of
minimizing testing time by optimal allocation of width
among the TAMs can now be stated as follows.

e Ppaw: Given an SOC having N cores and B TAMs
of total width W, determine a partition of W among
the B TAMs, an assignment of cores to TAMs, and
a wrapper design for each core, such that the total
testing time is minimized.

This problem can be shown to be NP-hard using
the techniques presented in [5]. However, for many re-
alistic SOCs, including p93791, the problem instance
size is reasonable and can be solved exactly using an
ILP formulation. This is also because the complexity
of our solutions is related to the number of cores on
the SOC and the numbers of their I/O ports and scan
chains, and not the number of transistors or nets on the
chip. A mathematical programming model for Ppaw is
shown below.

Objective: Minimize T = max; {3} 1, Ti(w;) - x;j},
subject to

B . . .
1. Zj:lxijzl, 1<i <N, ie., every core is con-

nected to exactly one TAM

2. 37 w;=W,1<j < B,ie.the sumof all TAM
widths is W

3. Wj < Wpar, 1 < j < B, i.e., each TAM is at most
Wpax Dits wide

The objective function and constraints of this mathe-
matical programming model must now be linearized in
order to express them in the form of an ILP model
that can be solved by an ILP solver. We first ex-
press Ti(w;) as a sum: T;(w;) = kazl 8k - Ti (k),
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by adding new binary indicator variables §;; (where
1 <j<B,1 <k <wyu)tothe mathematical program-
ming model, such that:

1, if TAM j is k bits wide
Sjk = .
0, otherwise

In addition, the following constraints are included in
the model:

1. w; = Z,l(”ff k-8, i.e., a TAM can have values of
width between 1 and w,q,
2. Y i 8 = 1,1.e.,a TAM can have only one width

Intuitively, for every TAM j there is exactly one
value of k for which §;; equals 1; therefore, the new
indicator variables determine the width w; of each
TAM. The objective function now becomes 7 = max
(N S ¥mec s - Ty (k) - x;;). The testing time T; (k) for
various values of TAM width k can be efficiently cal-
culated using the Design_Wrapper algorithm as shown
in Section 4, and stored in the form of a look-up table
for reference by the ILP solver.

Finally, the non-linear term §;; - x;; in the objec-
tive function can be linearized by replacing it with the
variable y;jx and the following two constraints:

Loxij+ 8 — yijk = 1
2. Xij +8jk_2'yijk > 0.

This is explained as follows. Consider first the case
when x;; = 0. From Constraints 1 and 2, we have
Vijk+1=8jand2-y;jx <8;i;sincedj; < 1, therefore,
vijx must equal 0. When x;; = 1, we have y;;x > i
and 8 + 1 > 2 - y;jx; therefore, y;jx = 6 k.

The new variables and constraints yield the follow-
ing ILP formulation.

Objective: Minimize 7 = max; {0, S iy -
T; (k)}, subject to

Xij + 8k — yije = 1
Xij+ 8k =2 yijk =0
Wmnax

wj =Dk
2l Sk =1

B
D=1

B
Zj:l wj = 4

A e

The number of variables and constraints for these
ILP models is given by B - (3N + wyex +2) = O(NB)
(since W,y is a constant), and B - (SN +5) + N =
O(NB), respectively. We solved the ILP model for
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Fig. 6. Testing time for d695 for B = 2.

Prpaw for several values of W and B. Table 6 and Fig. 6
present the values of testing time for SOC d695 ob-
tained with two TAMs. The total TAM width partition
among the two TAMs is shown and we also compare
the testing times obtained with the testing times ob-
tained in [5]. The testing time using the new wrapper
design is at least an order of magnitude less than the
time required in [5] for all cases. This was to be ex-
pected since an inefficient de-serialization model was
used in [5]. The reductions in testing time diminish
with increasing W. A pragmatic choice of W for the
system might therefore be the point where the system
testing time begins to level off. In Fig. 6, this occurs at
W =24,

Table 7 presents the values of testing time obtained
with three TAMs. The testing times for B = 3 are lower
than the values obtained for B =2 in general. However,
for W < 14, the testing time for B = 3 is more than that
for B =2 (not included in Table 7). This is because for
small values of W, a larger number of TAMs makes
the widths of individual TAMs very small. Once again,
the testing time begins to level off, this time at W = 32;
hence this is a good choice for trading off TAM width
with testing time.

Table 8 presents the system testing times for SOC
p93791 obtained using two TAMs. We halted the ILP
solver after 1 hour for each value of W and tabulated
the best results obtained. This was done to determine
whether an efficient partition of TAM width and the cor-
responding testing time can be obtained using the ILP
model within a reasonable execution time. In the next
section, we present the optimal testing times obtained

Table 7. Testing time for d695 obtained for B = 3.

Total TAM width Execution
TAM partition Testing time
width w; 4+ wy + w3 Core assignment time (min)
16 3+5+8 2,1,1,1,3,2,1,2,3,3) 42568 4.5

20 24+2+16
24 24+5+17

(2,3,2,23,3,1,2,3,3) 34444 16.0
(2,2,1,1,3,3,3,1,3,2) 28292 325

28 44+8+16 (2,3,1,1,2,3,3,1,1,3) 24812 52.3
32 4+10+18 (2,3,1,1,23,3,1,1,3) 21566 64.7
36 4+16+16 (2,2,1,1,23,2,1,2,3) 19564 85.0
40 4+17+19 (3,2,1,1,3,2,2,1,2,3) 17901 104.6
44 4+18+22 (3,2,1,1,23,2,1,2,3) 17051 180?
48 4+184+26 (2,2,1,1,3,2,2,1,2,3) 16984 1807
52 16+32+4 (32,1,3,2,1,23,22) 14852 180%
56 16+34+6 (3,2,33,2,1,23,1,2) 13637 1802

60 6+20+ 34
64 6+20+438

(2,2,1,1,3,2,3,1,2,3) 12987 180?
(2,2,1,1,3,2,3,1,2,3) 12941 180?

2Ipsolve was halted after 180 minutes.

Table 8. Testing time for p93791 obtained

with B = 2.

w wi + wy Testing time
16 9+7 1811860
20 10+ 10 1526200
24 1+23 1239880
28 9+19 1119160
32 9+23 944881
36 9427 924909
40 9+31 929848
44 9+35 873276
48 94139 835526
52 9+43 807909
56 9+47 537891
60 9+51 545154
64 9+55 551111

for p93791 using a new enumerative methodology, and
show that the testing times obtained in Tables 7 and 8
using the ILP model for Ppaw are indeed either optimal
or close to optimal.

Width Variant of Problem Ppaw. Closely related to
Praw is the problem of determining the minimum total
TAM width W needed to satisfy a given testing time
constraint. We call this problem the “width variant” of
Problem Ppaw.
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Fig. 7. The minimum TAM width needed to achieve a
given testing time for d695 using two TAMs.

e Ppaw width variant): Given N cores, B TAMs and
a maximum testing time 7, determine the mimi-
mum total TAM width W, an optimal partition of W
among the B TAMs, an assignment of cores to TAMs,
and test wrapper designs for cores such that the
testing time is less than 7.

This problem has been shown to be A/P-hard as well
[5]. However, an ILP formulation for the width variant
of Ppaw can be derived from the ILP model for Ppaw,
simply by replacing the earlier objective function with:

Objective: Minimize W = Z _, w; with the addi-
tional constraint:

N Wyax
max{ZZy,jk T(k)} <T

i=1 k=1

Fig. 7 presents the minimum values of W needed
to achieve a given testing time 7 for d695 using two
TAMs. In our experiments, 7 was decreased from
48000 clock cycles to 22000 clock cycles, and the
smallest value of W required to achieve a testing time
lower than 7 was obtained.

7. Enumerative TAM Sizing

In Section 6, we showed that TAM optimization can be
carried out using an ILP model for the Ppaw problem.
However, ILP is in itself an NP-hard problem, and
execution times can get high for large SOCs. A faster
algorithm for TAM optimization that produces optimal
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results in short execution times is clearly needed. In
Section 5, it was observed that the execution time of
the model for Problem Paw was less than 1 second in
all cases. We next demonstrate how the short execution
time of this ILP model can be exploited to construct
a series of Pyw models that are solved to address the
Prpaw problem.

The pseudocode for an enumerative algorithm for
Praw that explicitly enumerates the unique partitions
of W among the individual TAMs is as follows.

Procedure Ppsy _enumerate()

1. Let W = total TAM width

2. Let B = number of TAMs

3. While all unique partitions of W have not been
enumerated

4. ForTAMj=1toB

5.  For TAM width w; = 1 to LW Zk owa

6. Create an ILP model for P4 for the TAM
widths using Design_wrapper

7. Determine core assignment and testing time

8. Record the TAM design for the minimum

testing time

The ILP models generated for each value of W in
line 6 of Ppyw_enumerate are solved and the TAM
width partition and core assignment delivering the best
testing time are recorded. The solution obtained using
Ppaw -enumerate is always optimal, because we gener-
ate all unique TAM width partitions, and then choose
the solution with the lowest cost. Since lines 6 and 7
each take less than a second to execute, the execution
time for Ppaw _enumerate is at most 2 - pg (W) seconds,
where pg(W) is the number of partitions of W among
B TAMs enumerated in line 3. The problem of de-
termining the number of partitions pg (W) for a given
choice of B TAMs can be addressed using partition the-
ory in combinatorial mathematics [14] In[14], pp(W)
is shown to be approx1mately m for W oo.
For B =2, p,(W) = |_ ], since there are only |_ ]
unique ways of dividing an integer W into two smaller
integers w; and w,. Thus Ppay _enumerate obtains the
optimal solution for the Ppaw problem for W = 64 and
B = 2 in less than 64 seconds. For B = 3 the number
of partitions work out to p3(W) = Zl 2 LW (3’+1)J
From the above formula, the value of C for W = 64
and B = 3 is found to be 341. Therefore, the execution
time of Ppaw _enumerate for W = 64 is upper bounded
by 682 seconds or 11.6 minutes. This execution time
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is clearly reasonable, even for large W. In our exper-
iments, we used a Sun Ultra 80, which solved the P4
models in well under a second of execution time. The
time taken for Ppaw _enumerate was therefore signifi-
cantly lower than the upper bound of 2- pg (W) seconds
even for large values of W.

We used Ppaw _enumerate to obtain the optimal TAM
width assignment and minimal testing time for B =2
and B =3, for SOCs d695 and p93791. Results for
SOC d695 are presented in Table 9. While the testing
time for B =3 is always less than the testing time for
B =2 and W > 16, the difference between B =2 and
B =3 widens for larger W. This can be explained as fol-
lows. For smaller values of W, each individual TAM for
B =3 is narrow; hence, the testing time on each indi-
vidual TAM increases sharply, as was observed earlier
in Fig. 3.

Table 10 presents optimal results for enumerative
TAM optimization for the p93791 SOC. Comparing
these results with those presented in Table 8, we note
that the results in Table 8 are indeed close to opti-
mal. For example, for W =32, the testing time pre-
sented in Table 8 is only 5% higher than optimal.
Note that for both SOCs, the execution time for Paw
is under 1 second. Hence similar execution times
for Ppaw_enumerate are obtained for SOCs d695 and
p93791. These execution times are significantly lower
than those in Tables 6 and 7.

Table 9. Optimum testing time obtained for SOC d695 obtained
using Ppaw -enumerate.

B=2 B=3

Exec. Exec.
time time
W w; +w T (sec) wi+ w2+ w3 T (sec)

60 20+44 18205
64 20+44 18205

5+19+36 12941 63
S+17+42 12941 84

16 6410 45055 1 34548 42568
20 4416 34444 1 242+16 34444 6
24 6418 29501 1 24+5+17 28292 10
28 8420 26964 1 44+8+16 24812 12
32 11421 25442 1 4410+18 21566 16
36 16420 23312 1 44+16+16 19564 21
40 8+32 21359 2 44+17+19 17901 24
44 10+34 20883 2 44+19+21 16975 30
48 16+32 19938 2 4,19,25 16975 40
52 20432 19087 2 4,16,32 14852 44
56 19437 18434 2 5,18,33 13207 53

3

3

Table 10. Optimal testing time obtained for SOC p93791 using
Ppaw _enumerate.

B=2 B=3

Exec. Exec.
time time

W w; +wy va (sec) wi+ wy 4+ w3 T (sec)

16 4+12 1798740 1 5+3+8 1771720 5
20 4+16 1448010 1 S5+74+8 1426580 8
24 1423 1211740 7+8+9 1187990 10
28 5+23 1020620 2+3+23 1017120 13

32 9423 894342
36 13+23 813054
40 17423 747378
44 21423 706349
48 2446 622199
52 6446 565456
56 10446 524203
60 14446 499725
64 18446 467424

5+4+423 887751 17
9+4+423 789167 23
6+ 12423 698583 26
5416423 653788 33
9+16+23 599373 42
164+ 13+23 561875 46
10423423 514688 54
13423424 499468 65
184+23+23 460328 88

W LW W NN NN = ==

We compared the optimal testing times presented in
Tables 9 and 10 with the testing times obtained using an
equal partition of W among the B TAMs. The testing
time using an optimal partition of W was significantly
lower than that obtained using an equal partition for
all values of W. For example, for W =64 and B=2, a
partition of (wy, wy) = (32, 32) provided a testing time
of 611821 clock cycles, which is an increase of 28.6%
over the testing time of 475598 clock cycles obtained
using an optimal partition of (w;, w;) = (18, 46).

The execution time of Ppaw_enumerate is smaller
than that of the ILP model in Section 6 because the
number of enumerations for two and three TAMs is
reasonable. However, when TAM optimization is car-
ried out for a larger number of TAMs that have a larger
number of partitions of W, the ILP model for Ppaw is
likely to be more efficient in terms of execution time.
In addition, the ILP model presented in Section 6 is
likely to be more efficient when constraints arising from
place-and-route and power issues are included in TAM
optimization [4].

8. General Problem of Wrapper/TAM
Co-Optimization

In the previous sections, we presented a series of prob-
lems in test wrapper and TAM design, each of which



was a generalized version of the problem preceding it.
In this section, we present Pnpaw, the more general
problem of wrapper/TAM optimization that the prob-
lems of the preceding sections lead up to. We also show
how solutions to the previous problems can be used to
formulate a solution for this general problem.

The general problem can be stated as follows.

e Pnpaw: Given an SOC having N cores and a total
TAM width W, determine the number of TAMs, a
partition of W among the TAMs, an assignment of
cores to TAMs, and a wrapper design for each core,
such that the total testing time is minimized.

We use the method of restriction to prove that Pypaw
is N"P-hard. We first define a new Problem Pnraw, »
which consists of only those instances of Pypaw for
which (i) W = 2, and (ii) all cores on the SOC have a
single internal scan chain and no functional terminals.
Hence, each core will have the same testing time on
a 1-bit TAM as on a 2-bit TAM. An optimal solution
to Pnpaw, will therefore always result in two TAMs of
width one bit each. Problem Pxpaw, reduces to that of
partitioning the set C of cores on the SOC into two sub-
sets C; and C — Cy, such that each subset is assigned to
a separate 1-bit TAM, and the difference between the
sum of the testing times of the cores (on the first 1-bit
TAM) and the sum of the testing times of the cores (on
the 2nd 1-bit TAM) is minimized. Formally, the opti-
mization cost function for Pxpaw, can be written as:

Objective: Minimize ) .. Tec— D .cc_¢, Tc, Where
T, is the testing time of core ¢ on a 1-bit TAM.

Next, consider the Partition problem [7], whose op-
timization variant can be stated as follows.

e Partition: Given a finite set A and a size s(a) €
Z™* for each element a € A, determine a partition
of A into two subsets A; and A — A, such that

D aen, 8@ — D ca_a, s(a) is minimized.

That Problem Pnpaw, is equivalent to Partition can
be established by the following four mappings: (i) C =
A, (il) C; = Ay, (iii) T, = s(a), and (iv) ZL’ECI T. =
> wea, $(@). Since Partition is known to be N"P-hard
[7], Pnpaw, and Pxpaw must also be A/P-hard.

To solve Pnpaw, we enumerate solutions for Ppaw
over several values of B. Our method for enumeration

is outlined below.
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Procedure Pypsw _enumerate()

1. Let W = total TAM width

2. Let Byax = maximum number of TAMs

3. For B=2to BMAX

4. Execute Procedure Ppyy _enumerate

5. Record the TAM design for the minimum
testing time

For each value of W, the optimal number of TAMs,
TAM width partition, core assignment, and wrapper
designs for the cores are obtained. The solutions to
Prpaw for d695 for values of B ranging from 2 to 8
are illustrated in Fig. 8(a) and (b) for W values of
12, and 16 bits, respectively. In each figure, we ob-
serve that as B is increased from 2, the testing time
decreases until a minimum value is reached at a par-
ticular value of B, after which the testing time stops
decreasing and starts increasing as B is increased
further. This is because for larger B, the width per
TAM is small and testing time on each TAM increases
significantly.

We next present a conjecture that formalizes the ob-
servation made in Fig. 8(a)—(c) and (d).

Conjecture 1. Let T(S, W, B) denote the optimal
testing time for SOC S having B TAMs and a total
TAM width of W. If T(S, W, B) < T(S,W,B + 1),
then Vx.pT (S, W, B) <T(S, W, X).

We conjecture that during the execution of
Pnpaw _enumerate, if at a certain value of B, the test-
ing time is greater than or equal to the testing time at
the previous value of B for the same total TAM width
W, then the enumeration procedure can be halted and
the optimal value of B recorded. Therefore, Conjec-
ture 1 can be used to prune the search space for the
optimal wrapper/TAM design. Since the execution time
of Pypaw-enumerate is particularly high for large val-
ues of B, we can achieve significant speed-ups in TAM
optimization by halting the enumeration as soon as the
minimum value of T is reached.

Based on Conjecture 1, we executed
Pnpaw _enumerate for several values of W. In Table 11,
we present the best testing times obtained for d695
for the values of W. For each value of W, the num-
ber of TAMs, width partition, testing time, and core
assignment providing the minimum testing time is
shown.
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50.0

Testing time (1000 clock cycles)

2 3 4 5 6 7 8
Number of TAMs
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Fig. 8. Testing time for d695 obtained with increasing

(d) W =20.

9. Conclusion

We have investigated the problem of test wrapper/TAM
co-optimization for SOCs, based on the test bus model

Table 11. Best wrapper/TAM co-optimization results obtained for
d695 for several values of W.

TAM Optimum Optimal Optimum
width  number width Optimal core testing
w of TAMs partition asignment time

8 2 4+4 (1,1,1,1,1,2,1,1,2,1) ~ 83580
12 3 34445 (1,1,2,2,3,23,3,1,1) 56329
16 3 3+5+8 (2,1,1,1,3,2,1,2,3,3) 42568
20 3 24+2+16 (2,3,2,2,33,1,2,3,3) 34444
24 4 1+2494+12 (242,1,433224) 28289
28 4 1+24+94+16 (3,2,2,2434,134) 23997

90

85

80—

75—

0

65—

Testing time (1000 clock cycles)

60—

55

Number of TAMs

(b) W = 12

36

35
34 I |
33J . I . ‘ ‘

2 3 4 5 6

Number of TAMs

(d) W = 20

Testing time (1000 clock cycles)

values of B. (a) W=8; (b) W=12; (c) W=16;

of TAM design. In particular, we have formally defined
the problem of determining the number of TAMs, a
partition of the total TAM width among the TAMs, an
assignment of cores to TAMs, and a wrapper design for
each core, such that SOC testing time is minimized. To
address this problem, we have formulated three incre-
mental problems in test wrapper and TAM optimiza-
tion that serve as stepping-stones to the more general
problem stated above. We have proposed an efficient
heuristic algorithm based on BFD for the wrapper de-
sign problem Py that minimizes testing time and TAM
width. For Paw, the problem of determining core as-
signments and wrapper designs, we have formulated
an ILP model that results in optimal solutions in short
execution times. We have formulated an ILP model
to solve Ppaw, the problem of TAM width partion-
ing that Paw leads up to. This ILP model was solved



to obtain optimal TAM designs for reasonably-sized
problem instances. We have also presented a new enu-
merative approach for Ppaw that offers significant re-
ductions in the execution time. Finally, we have defined
anew wrapper/TAM design problem, Pxpaw, in which
the number of TAMs to be designed must be deter-
mined. Pnpaw is the final step in our progression of
incremental wrapper/TAM design problems, and it in-
cludes Pw, Paw and Ppaw. An enumerative algorithm
to solve Pnpaw has been proposed, in which the search
space can be pruned significantly when no further im-
provement to testing time would result.

We have applied our TAM optimization models to a
realistic example SOC as well as to an industrial SOC;
the experimental results demonstrate the feasibility of
the proposed techniques. To the best of our knowledge,
this is the first reported attempt at integrated wrapper/
TAM co-optimization that has been applied to an in-
dustrial SOC.

In future work, we intend to extend our TAM opti-
mization models to include several other TAM configu-
rations, including daisy-chained cores on TAMs [1] and
“forked and merged” TAMs [5]. We intend to extend
our models, such that multiple wrappers on the same
TAM are active in the test data transfer mode at the
same time; this will allow us to address the problems
of both testing hierarchical cores, as well as Extest.
While ILP is a useful optimization tool for reasonably-
sized problem instances, execution times can increase
significantly for complex SOCs and large values of B.
This is also true of our enumerative approach to Prob-
lems Ppaw and Pnpaw. We are in the process of de-
signing heuristic algorithms for each of the problems
formulated in this paper that can efficiently address
wrapper/TAM co-optimization for large TAM widths
as well as large numbers of TAMs. Furthermore, we
plan to add constraints related to power dissipation,
routing complexity and layout area to our TAM opti-
mization models.
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