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Abstract—This paper proposes a new testability analysis and
test-point insertion method at the register transfer level (RTL),
assuming a full scan and a pseudorandom built-in self-test de-
sign environment. The method is based on analyzing the RTL
synchronous specification in synthesizable very high speed inte-
grated circuit hardware descriptive language (VHDL). A VHDL
intermediate form representation is first obtained from the VHDL
specification and then converted to a directed acyclic graph
(DAG) that represents all data dependencies and flow of control
in the VHDL specification. Testability measures (TM’s) are com-
puted on this graph. The considered TM’s are controllability and
observability for each bit of each signal/variable that is declared
or may be implied in the VHDL specification. Internal signals of
functional modules (FM’s) such as adders and comparators are
also analyzed to compute their controllability and observability
values. The internal signals are obtained by decomposing at the
RTL large FM’s into smaller ones. The calculation of TM’s is
carried out at a functional level rather than the gate level, to
reduce or eliminate errors introduced by ignoring reconvergent
fanouts in the gate network, and to reduce the complexity of
the DAG construction. Based on the controllability/observability
values, test-point insertion is performed to improve the testability
for each bit of each signal/variable. This insertion is carried out
in the original VHDL specification and thus becomes a part of it
unlike in other existing methods. This allows full application of
RTL synthesis optimization on both the functional and the test
logic concurrently within the designer constraints such as area
and delay. A number of benchmark circuits were used to show
the applicability and the effectiveness of our method in terms of
the resulting testability, area, and delay.

Index Terms—Built-in self-test, register transfer level, testabil-
ity analysis, testability measures, test point insertion.

I. INTRODUCTION

NOWADAYS, register transfer level (RTL) synthesis or
logic synthesis has become an integral part of a design

process of digital circuits. Most industrial digital designs use
automated RTL synthesis and we can thus achieve design-for-
testability (DFT) by incorporating test and synthesis into a
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single methodology that is as automated as possible. Indeed,
considering testability during design synthesis can reduce the
overall design and manufacturing time. Even more important,
the testability enhancement at the entry level to a synthesis
tool makes it independent of the tool and the implementation
technology. It becomes part of the design specification and
may be optimized with the other synthesis tasks in terms of
area and delay.

The main objective of our method is thus to raise the
level of abstraction at which testability analysis and test-
point insertion are performed. We propose a new testability
analysis and test-point insertion method at the RTL, assuming
full scan and pseudorandom built-in self-test (BIST) design
environment. Full scan in combination with pseudorandom
patterns is widely adopted in the industry due to its ease
of implementation and fault diagnostic. Unfortunately, the
presence of random pattern resistant faults in many practical
circuits poses a serious limitation to its success. The solutions
to tackle this limitation can be broadly classified as those that
modify the input patterns or those that modify the circuit-
under-test. In this paper, we are interested in the second class
of solutions, circuit modifications, that introduce test points to
improve the random pattern testability of a circuit. Our goal is
to analyze and modify the very high speed integrated circuit
hardware descriptive language (VHDL) RTL description of the
circuit, in order to generate an easily testable gate-level circuit
by a pseudorandom sequence under the BIST environment.
This is the main advantage and motivation of this work. That
is, whatever the complexity of the circuit, our objective is
to apply synthesis compilation and optimization technology
directly to a testable VHDL description, thus optimizing
functional and inserted test logic concurrently, rather than
introducing testability after the VHDL has been compiled to
gate-level.

The proposed method uses as the starting point a VHDL
specification given at the synthesizable synchronous RTL. It
is analyzed to produce an intermediate representation, called
the VHDL intermediate format (VIF), and transformed into a
DAG on which testability analysis is performed by computing
and propagating testability measures (TM’s) forward and
backward through the VHDL statements. The TM’s are the
controllability and the observability for each bit of each
signal/variable. Internal signals of functional modules (FM’s)
such as adders, comparators, and multiplexers are also an-
alyzed to determine their controllability and observability
values. The internal signals are obtained by decomposing
at the RTL large FM’s into smaller FM blocks, each such
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block would be obtained from a library. TM’s are used to
identify bits of signals/variables having too low controlla-
bility or observability. Test-point insertion is performed to
improve controllability and observability, again at the RTL.
Test points at the VHDL RTL are described by a set of
synthesizable VHDL functions and procedures that insert
control and observation points on bits of signals/variables.
These functions/procedures are defined in a package which
is included in the original specification.

We use a number of benchmark circuits which are random
pattern resistant to show the effectiveness and the viability
of the proposed method in terms of the resulting testability,
area, and delay. The paper is organized as follows: Section II
gives a summary of previous work in the literature. The
overall approach is summarized in Section III. Section IV
describes the DAG construction, while Section V presents the
main formulas of TM’s calculations. The test-point insertion
method is discussed in Section VI. Section VII presents the
experimental results, and Section VIII concludes the paper.

II. PREVIOUS WORK

Recently, several RTL and behavioral level design and
synthesis-for-testability approaches were proposed to generate
easily testable circuits for partial scan, sequential ATPG, and
BIST testing methodology [17]. The proposed approaches
include RTL scan selection [7], [18], [19], modifications to the
behavioral description of a design to improve the testability of
the synthesized circuit [13], [20], and considering testability
during the behavioral synthesis process [21]–[24]. The high-
level techniques concentrate on improving the testability of
datapaths, assuming that the controller can be tested indepen-
dently and that its outgoing control signals to the datapath are
fully controllable in the test mode [14], [25]. For hierarchical
designs, a technique has been developed in [11], [15], and
[20] to generate top-level test modes and constraints required
to realize module’s local test modes. The process of generating
global test modes may reveal that some constraints cannot be
satisfied, in which case, either the top level description or an
individual module must be modified to satisfy the constraints.

Some RTL testability analysis methods were proposed to
generate easily testable circuits for sequential ATPG [26],
[27], [29]. The main objective of these methods is to reduce
the ATPG CPU time at the expense of area overhead. In
[26], an RTL testability method was proposed which allows
testing using combinational test patterns. The methodology
uses existing paths between registers, and with the help of
multiplexers it loads combinational test patterns into the circuit
flip-flops (FF’s) without having to use scannable FF’s. A
technique was proposed later in [27] that can also use existing
paths through functional units. Appropriate constants (identity
elements) need to be added to the side inputs of the units to
create I-paths [28]. Finally, an RTL testability analysis method
was proposed in [5]. The authors use Verilog RTL models and
functional verification patterns to improve the fault coverage
of the resulting gate-level circuit. However, test-point insertion
at the RTL was not addressed in this method and it was left
as the designer’s responsibility.

Fig. 1. Hardware synthesis with incorporated testability analysis and
test-point insertion.

III. T HE PROPOSEDMETHOD

Fig. 1 depicts the overall structure of our testability analysis
environment which can operate as a front-end to an RTL
synthesis tool. In the first step, a VHDL analyzer from LEDA1

is used to produce the VIF representation, and to identify
all registers (full scan is assumed) and sequential VHDL
statements. A DAG is used to store this information by linking
the present states of registers with the next states through the
VHDL statements. All integers are converted to bits or bit
vectors and VHDL operations are modeled by their Boolean
functional models. The TM’s are the controllability and the
observability of each bit of each signal/variable. They are then
computed using this DAG by initializing the controllability of
primary and pseudoprimary inputs to 0.5 (both zero and one),
the observability of primary and pseudoprimary outputs to one,
and by propagating them forward and backward through the
VHDL statements.

The computed TM’s allows us to identify hard-to-detect
bits of signals/variables of the VHDL specification including
the internal signals of FM’s. This information is used to
insert test points, again in the specification at the RTL by
locally converting the affected signal/variable to the bit level
and back. Each test point is described by a synthesizable
VHDL function/procedure defined in a package. The function
(procedure) is used to insert a control (observation) point on
a given bit of a signal/variable in the VHDL specification
and on internal signals of FM’s. As a result of the test-
point insertion, our method again produces a synthesizable
RTL VHDL specification which can be input to an RTL
synthesis tool. This allows designers to optimize their designs

1LEDA VHDL System, Version 4.0.3., LEDA S.A. 35 Avenue du Granier
38240 Meyland, France.
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Fig. 2. VHDL specification of a Moore machine.

for different design constraints (e.g., area and delay) including
testability. The algorithm in Fig. 1 was implemented in the
C language in about 14 000 lines of code. In the following
sections, we describe each step of the algorithm.

IV. CONSTRUCTION OF THEDIRECT ACYCLIC GRAPH

As shown in Fig. 1, a VHDL specification is compiled into
its VIF representation, and then a DAG is constructed that
represents the flow of information and data dependencies. Each
internal node of the DAG corresponds to an operation of the
VHDL specification such as arithmetic, relational, data transfer
and logical operations. The source (sink) nodes of the DAG
represent the present (next) state and primary inputs (outputs).
The present and the next states are given by the registers that
could be synthesized from the VHDL specification. Edges
represent signals/variables declared by the designer in the
specification and intermediate signals/variables as defined in
Definition 1.

Note that no operation sharing is performed during the
VHDL translation in the DAG. That means, each occurrence
of a VHDL operation corresponds to a new node in the DAG.

Definition 1: An intermediate signal/variable is an un-
named signal/variable formed by an expression which is not
a simple signal/variable name.

For example, in the expression , there are two
intermediate signals/variables: and .

In the rest of this paper, whenever a signal/variable is
mentioned, it refers to a signal/variable that is declared by

the designer in the VHDL specification or to an intermediate
signal/variable.

DAG Construction Steps:

1) generate control and data flow graph (CDFG) for each
process of the VHDL specification;

2) unroll all for loops and expand procedures/functions
by adding new nodes to the CDFG;

3) convert data types to bits;
4) translate the resulting CDFG’s into a DAG.

Example 1: Consider the VHDL specification as shown in
Fig. 2. It represents a Moore finite state machine with four
states ( , , , ) and one output . The specification
consists of two processes. Its DAG is shown in Fig. 3, the
primary and pseudoprimary inputs/outputs representing the
present and the next state registers are also indicated there. The
signal CURENTSTATEis synthesized as a register and thus
becomes a pseudoprimary two bit-wide input/output, since it is
declared as an enumerated data type of four possible values.
The constants , , , and are encoded as 00, 01,
10, and 11, respectively. Each multiplexer corresponds to a
conditional statement (if-then-else, case).

V. TESTABILITY COMPUTATION

Our testability analysis method handles most VHDL oper-
ations at the functional level in addition to logical operations.
The following operators are supported by our method:-bit
adders, -bit comparators, -bit multipliers, -bit subtractors,
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Fig. 3. DAG for TM’s computation.

and multiplexers which are inferred by the conditional state-
ments (“if-then-else,” “ case”). All of these are represented
functionally, meaning that the controllability/observability
propagation through them is computed with a high degree of
accuracy. This is not the case with gate-level models, because
reconvergent fanouts in such models may introduce errors in
the calculations. Note that reconvergent fanouts at the RTL
still remain between FM’s and thus may introduce similar
errors. However, the number of such reconvergent fanouts
at the RTL is negligible when compared to the number of
reconvergent fanouts at the gate level. In addition, it has been
shown that most gate-level testability analysis tools still obtain
good results within the presence of reconvergent fanouts. Thus,
our testability analysis at the RTL can only be more accurate.

In our method we compute controllability of zero () and
of one ( ), and observability ( ) values on each bit of each
signal/variable and of internal signals of FM’s. We show next
the propagation of , , and through typical VHDL
operators.

Definition 2: Combinational controllability [2] is the prob-
ability that a signal has a specific value. We have two mea-
sures, 1-controllability and 0-controllability
such that .

Definition 3: Combinational observability of a line
on output is defined as the probability that a signal change

on will result in a signal change on an output. For multiple
output modules, the observability of a line must be computed
relative to each output and the overall observability of
is computed based on formula given in (14) (Appendix A).

A. Controllability Calculations

In this section, we give the formulas for determining the
controllability of an output of some VHDL operators, given the
controllability of the inputs. We show next the controllability
formula for an -bit adder, the other formulas are included in
Appendix A.

We wish to compute the controllability of the outputs of an
-bit adder, given the controllability of its inputs, assuming

that the inputs are independent.
The 1-controllability measures and can be

computed by considering the minterms leading to a one on
the respective output

(1)

(2)

where

(3)

Note that is the probability that and,
consequently, is the probability that .

To compute the controllability of each output of an-bit
adder, we can use a cascade offull adders configured as a
ripple-carry adder as shown in Fig. 4. There is no reconvergent
fanouts in this circuit and all inputs are independent, hence the
controllability computed on this tree structure is exact. To find
the controllability measure at the output , (1)–(3) can
be used for each 1-bit adder, and bitcan be evaluated when
bits 0, 1, , 1 have been computed. The calculation can
be made in linear time in terms of the number of inputs. The
same structure can be used to compute the controllability of a
subtractor using 2’s-complement representation of negation.

B. Observability Calculations

In this section, we give the observability formula for an
-bit adder. The other formulas can be found in Appendix A.
Consider again the-bit ripple-carry adder shown in Fig. 4,

and let us compute the observability of each input. According
to the Boolean function of a 1-bit adder, the change on any
input , , or is always observable at . It follows that:

(4)
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0

Fig. 4. A ripple-carry adder composed ofn full adders.

The observability of an input at levelat the other outputs,
, depends on the propagation of the carry from stage

to these outputs. For instance, to observeat such
that , we have to set and

, for all such that . Equation
(5) gives the general formula to compute the observability of
each input at outputs , such that

(5)

Similar formulas can be used to compute the and
(in particular for ).

VI. TEST-POINT INSERTION

In this section, we derive from the original VHDL specifica-
tion a modified one that includes a set of test points expressed
using synthesizable VHDL functions and procedures. Func-
tions (procedures) are used to improve the controllability
(observability) on bits of some signals/variables and the in-
ternal signals of FM’s. The modified VHDL specification
describes both the normal and the test modes of the given
circuit.

Each test point to be inserted corresponds to a new
node in the DAG. In turn, this node corresponds to a
function/procedure to be added to the original VHDL
specification. Therefore, we have to establish the relationship
between the DAG representation and the VHDL specification.
Each signal/variable candidate for test-point insertion is
identified by a label, that is the name of the hierarchical
path and the line number in the modified VHDL specification.
The internal signal is identified by the line number in which
the corresponding FM should have a test point inserted. At the
VHDL level, control points consist of the logicalOR or AND
operations which combine as inputs a given bit of a given
signal/variable and some extra control inputs that become
part of the circuit inputs. TheOR (AND) operation is used to
increase the 1-controllability (0-controllability) value on the
given bit of the given signal/variable. An observation point is
implemented using a FF that loads the corresponding bit of
the given signal/variable.

In the following, we first show how to insert test points on
signals/variables in the VHDL specification and then on the

Fig. 5. VHDL example for controllability test-point insertion.

internal signals of FM’s. The algorithm used for selecting test
points is presented after this section.

A. Test Points Insertion on Signals/Variables

In this section, we show how to insert control and ob-
servation points on bits of signals/variables in the VHDL
specification. Functions (procedures) are used to insert control
(observation) points. The functions/procedures are overloaded
for different signal types and new parameters. The number
of parameters depends on the data type of the corresponding
signal/variable which can be either an integer, array of bits or
a single bit.

1) Control-Point Insertion: Fig. 5 shows an example of a
VHDL specification. Suppose that we want to insert three
control points on signals , , and which are declared
as three different data types. Assume that we want to increase
the 0-controllability on single bit , to increase the 1-
controllability on bit position two of signal and to increase
the 1-controllability on bit position zero of signal . The
modified VHDL specification including the required control
points is shown in Fig. 6. To insert a control point, we use
the same name of the function calledInsert Control Point()
which is defined in Fig. 6. For signal , which is declared
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Fig. 6. Modified VHDL specification including three control points.

as a single bit (stdlogic), we need as function parameters the
expression assigned to the signal, the type of the control point
to insert (AND operation), an extra control input (TESTIN 1),2

and the signalTestMode which is used to switch from the
normal mode to the test mode and vice-versa. TheAND
operation combines the output bit of the expression, the control
input TESTIN 1 and the signalTestMode. The function
is defined here in the architecture, but usually it would
be placed in a package. The constant signalCONT TYPE
declared as an enumerated type is used to select between the
control point type. In Fig. 6, we showed only the function
definition to insert a control point on signal of type
std logic.

The same overloaded function name is used to insert a
control point on signals and which are of different
types. For signal , another parameter is used to specify the
bit position and for signal , we need a parameter which
is used to specify the number of bits required to convert the
integer type.

2) Observation-Point Insertion:Fig. 7 shows another
VHDL example. It consists of one unclocked process with
two sequential assignment statements. Assume now that we
want to increase the observability value on bit position two
of variable . An observation point is thus required on this
bit position. This consists of attaching a FF to this specific
bit position and loading it by that bit value. The modified
VHDL specification is shown in Fig. 8. A procedure called
Insert ObservationPoint() is used to achieve this effect at the
VHDL level. Bit 2 of is first transferred to an internal signal

. Next, signal is transferred to a signalSCANOUT which
is assigned in a clocked process in order to infer a register.

2This signal can come from a register which will be included in the scan
chain.

Fig. 7. VHDL example for observability test-point insertion.

Note that the same procedure name is again overloaded to
observe any bit of any data type signal/variable.

B. Test-Point Insertion on Internal Signals of FM’s

In the previous section, we only analyzed the testability
of signals/variables that are explicitly declared or may be
implied in the VHDL specification. These signals/variables
are used to connect VHDL operators which are mapped to
FM’s (adders, comparators, etc.). It is well known that large
multibit FM’s can be difficult to test by random patterns due to
low controllability/observability of their internal signals such
as the carry lines inside an adder. These signals do not have a
direct correspondence in the VHDL specification for test-point
insertion as in the previous examples. In the following, we
show how we insert test points at the RTL on such internal
signals.
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Fig. 8. Modified VHDL specification including one observation point.

(a) (b)

Fig. 9. (a) The structure of ann-bit equality comparator and (b) the internal signals considered for test-point insertion.

1) Comparators: As an example, consider the equality
comparator. An -bit equality comparator can be decomposed
functionally into 1-bit equality comparators. It is known
that the -input AND operation is difficult to test with random
testing when the number of inputs is large. One solution is
to decompose the -input AND operation into a cascade of
( ) two-input AND operations as shown in Fig. 9(b). The
signals shown as dotted lines are considered as internal signals
and they are not visible in the original VHDL specification. To
make these signals visible, we decompose the comparator into
smaller comparator blocks. The number of comparator blocks
depends on the number of internal signals having low control-
lability/observability. Note that each block of the comparator

would still be obtained from the library and need not to be
resynthesized. Here also, we defined a function (procedure)
which inserts a given number of control (observation) points
at some internal signals of an equality comparator. Its use will
be illustrated next on an example.

Fig. 10 shows a VHDL specification of a 16-bit counter
in which a 16-bit equality comparator is used in the “if”
expression. We want to insert two control points at two
different internal signals of the comparator. For example,
we want to increase the 1-controllability on both signals.
Each internal signal is characterized by a position in the
equality comparator structure. The signal as shown in
Fig. 9(b) corresponds to comparatorand is assigned theth
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Fig. 10. A VHDL specification of a 16-bit counter.

position in the comparator structure (counting from zero). This
information is a parameter in the function (procedure) used
to insert a control (observation) point at a specific internal
signal, . The modified VHDL specification including the
required control points at positions five and ten, is shown
in Fig. 11. The functionInsert Control Equal() is used to
insert a given number of control points at internal signals
of the equality comparator. The function takes the following
parameters: The two operands of the comparisonand ,
the number of control points to insert , the corresponding
positions of the control points represented by the array,
the type of the control points (increasing the 1-controllability
or the 0-controllability), the required extra control inputs
as an arraySig array and the signalTestMode. Note that
this functions calls the functionInsert Control Point() defined
previously. Both of these functions are defined in the package
“TestPoints” which is included in the specification as shown
in Fig. 11. In the same manner, we define a procedure called
Insert ObservationEqual() which is used to insert a given
number of observation points on internal signals of the equality
comparator.

We can use a similar method as for the equality comparator
to insert test points on internal signals of the other comparator
types ( , , , ). For instance, the logic equation of
an -bit less than comparator is given in (9) in Appendix
A. This comparator requires an-input OR operation which
can be decomposed into a cascade of ( ) two-input OR
operations.

2) Adders: In an adder, the carry out lines (Fig. 4) are the
internal signals to consider for test-point insertion. Test-point
insertion inside multiplier FM’s is implemented based only on
the shift-add structure. Other implementations of the multiplier
are under investigation.

3) Multiplexers: Multiplexers are inferred by conditional
statements (“if-then-else,” “ case”) in the VHDL specification.
Fig. 12(a) shows a VHDL specification containing a “case”
statement. The corresponding DAG representation is given in
Fig. 12(b). A : 1 multiplexer (mux) can be difficult to test

when the number of inputs (i.e., the number of cases in the
“case” statement) increases, as is often the case in VHDL
designs. This difficulty comes from the internal signals that
are not visible at the VHDL level. Fig. 13 shows a possible
representation of a 4 : 1 mux by means of 2 : 1 muxes. The in-
ternal signals are shown as dotted lines. Test points inserted on
the internal signals do not have a direct correspondence in the
VHDL specification. One solution is to decompose the large
case statement into smaller nested case statements. However,
this may be difficult and can dramatically change the original
VHDL code. Another solution consists of using the inputs and
the outputs of the 4 : 1 mux to improve controllability and
observability values of the internal signals. In fact, we can
increase the observability of the mux output which is visible
in the VHDL specification. We thus insert an observation point
on variable which is the output of the 4 : 1 mux. We use
the same approach as defined in Section VI-A to insert an
observation point. This corresponds to adding the procedure
Insert ObservationPoint() just after the line corresponding to
the end “case” statement (see Fig. 14).

C. Test Point Selection Algorithm

In this section, we present a greedy algorithm used for se-
lecting test points (control and observation) [6], [14]. However,
any more efficient test-point insertion method can be used to
select the best locations for insertion. Before we can describe
the algorithm, we give some definitions.

Definition 4 [4]: The detectability of a fault in a single-bit
signal is defined as follows.

When is stuck-at 1, we have

(6)

Similarly, if is stuck-at-0, then we have

(7)

Definition 5: We define a VHDL specification as random
testable if each bit of each signal/variable and of each internal
signal of FM’s has a Detectability value above a given
threshold th. The value of th comes from experience
and depends on the desired fault coverage, test length, and
circuit complexity. Detectability below the th value indicates
potential controllability and/or observability problems that
may negatively impact the length of the test sequence of the
resulting circuit.

The test-point insertion process starts with the calculation
of the Detectability value of each bit of each signal/variable
in the VHDL specification and the internal signals of FM’s.
Among the signals and variables with Detectability values
below a th, we first select those that have controllability
values below the controllability threshold. The candidates that
are nearest to the primary or the pseudoprimary inputs are
selected; this is because control point insertion there will affect
the controllability values not only of the insertion point, but
also of all the signals/variables driven by it. Once the insertion
is done, the controllability values are recomputed, and the
process is repeated until all controllability values are above
the threshold.
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Fig. 11. Modified VHDL specification of a 16-bit counter: control point insertion on the internal signals of an equality comparator.

Next, the analysis considers observability values. Decisions
to improve observability are deferred because a change in
controllability may affect observability, but a change in ob-
servability has no effect on controllability. If control points
are inserted, the observability values are recomputed on all
bits of all signals/variables and internal signals. Those with
observability values below the observability threshold are
candidates for observation point insertion; among them, the
ones closest to the primary and the pseudoprimary outputs
are selected first. Once observation point insertion is done,

the observability values are recomputed, and the process is
repeated until all observability values are above the threshold.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
on three benchmark circuits which are random pattern resis-
tant. Circuits and (Table I) are some design blocks
in an input–output chip3 that were designed at the RTL and
synthesized bySynopsystools to the gate-level. Circuit

3Private Benchmark Circuits, LogicVision, Ottawa, Ont., Canada.
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(a) (b)

Fig. 12. (a) A VHDL “case” statement. (b) DAG representation.

Fig. 13. Internal signals of a 4 : 1 mux.

is 32-bit counter. All circuits contain both control and data
operations. The largest circuit is which consists of about
1200 VHDL lines.

Each circuit is synthesized to the gate-level before and
after the test-point insertion. A random ATPG tool is used
to evaluate the fault coverage of the gate level circuit with
the full scan option before and after the test-point insertion.
For each circuit we fix the Detectability threshold valueth
depending on the circuit complexity and the test length,
and then determine the required test points. For the three
circuits under consideration, the Detectability threshold is set
to 0.001, the controllability threshold is set to 0.01, and the
observability threshold to 0.001. The circuits were synthesized

Fig. 14. Modified VHDL specification with one observation point to enhance
the detectability of the internal signals of a mux.

under various area and delay constraints. The delay is the worst
case propagation path in the resulting gate-level circuit.
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TABLE I
CIRCUIT INFORMATION

Tables II and III show the results obtained under two
different area and delay constraints. They are identified as
Optimization 1 (Table II) and Optimization 2 (Table III). In
each case, we performed a fault simulation of 32K random
patterns before and after the test-point insertion. We show the
following quantities in the tables: the resulting fault coverage
after applying 32K random patterns, the number of test points
(control/observation points) added to the VHDL specification,
the total cell area, the delay of the critical path incurred by
the test-point insertion, the corresponding percentage area, the
worst delay and the total number of faults over the number
of redundant faults. Note that each unit of the total cell area
corresponds approximately to a two-input gate.

Considering the results of Tables II and III, we can see
that, first, the insertion of a small number of test points leads
to an increased fault coverage after applying 32K random
patterns. This indicates that our method provides good analysis
of testability, even though it is carried out at the RTL, while
the coverage analysis is done at the gate level. For example,
in the case of , inserting five test points improves the
fault coverage from 95.48 to 100% (86.98 to 99.76%) in the
case of Optimization 1 (Optimization 2). Similarly, remarkable
improvements can be observed for the other two circuits. The
area overheads range from 3%–10%. However, the delays
actually improved after test-point insertion for and
as shown in Table II, and for as shown in Table III.
This indicates that the insertion does not necessarily imply
an increase in area and delay if carried out at the VHDL
source code. The synthesis tool optimizes concurrently the
inserted test points and the functional logic within the design
constraints (delay and area). This is one of the main advantages
of inserting testability at the RTL before synthesis. Designers
have complete control of the overall optimization process and
the test points remain an integral part of the RTL specification.

Note that we can still obtain an improvement by modifying
the optimization constraints. Circuit is the highest random
pattern resistant circuit for which we obtained very good
results in terms of delay at the expense of a small increase
in area (approximately 3%). The fault coverage increased
approximately by 15% for this circuit. Note that the circuit
required ten test points inside the internal signals of some of
the equality comparators implied in the VHDL specification.

Another important criterion characterizing random pattern
testability of a circuit is the test length required to achieve
a certain fault coverage. For each of the circuits considered,
Table IV lists the test length which is necessary to obtain a
certain fault coverage before and after test-point insertion.
We consider only the constraints used in Optimization 1. It

can be seen that the test length can be reduced by several
orders of magnitude with very few test points. Since, the test
length is proportional to the time required to perform the self-
test, a similar reduction in the test time is achieved. We can
notice that for which is highly random test resistant, 95%
fault coverage is achieved with 19 test points. The maximum
fault coverage before test-point insertion is less than 80% for
10 random patterns, while we achieve 95% after test-point
insertion with only 2 10 random patterns.

VIII. C ONCLUSIONS

A new testability analysis and test-point insertion method
for RTL VHDL designs was proposed. We analyze and modify
the VHDL RTL description of the circuit, to generate an
easily testable gate-level circuit by a pseudorandom vectors
in a BIST environment. We identify hard-to-detect bits of
signals/variables that are explicitly declared or implied in the
VHDL specification. Test-point insertion is carried out again
at the RTL. Internal signals of FM’s are also analyzed and
may be modified at the RTL. Test points are defined using a
set of overloaded VHDL functions and procedures defined in
a package. Since the inserted test points are included in the
original VHDL code, they become part of the specification
before synthesis. This allows full use of RTL synthesis tools to
optimize both the functional and the inserted test logic together
within the required design constraints (delay and area) for a
given technology. In fact, the performances of the gate-level
circuit can be the same with or without the insertion of test
points. Another advantage of our method when compared to
other existing methods [7], [13], [14] is that we can affect
each bit of each signal/variable regardless its type (integer,
bit vector, single bit). A number of random-pattern-resistant
benchmark circuits were used to demonstrate the effectiveness
of our method.

APPENDIX

CONTROLLABILITY AND OBSERVABILITY COMPUTATION

In this Appendix, we give the main formulas for computing
the controllability and observability of some VHDL operators
at the functional level. The controllability formulas for logical
operators can be found in [3]. Note that the controllabil-
ity (observability) of the adder was given in Section V-A
(Section V-B).

A. Controllability Calculation

1) Controllability of the Outputs of an -Bit Multiplier:
Given the controllability measures of the inputs, the exact
controllability measures on a -multiplier outputs can be
found by performing 2 operations. The computation of the
probability of occurrence of each number( )
is based on the controllability measure on each input bit. The
method based on the truth table is exact for an-bit multiplier
with . However, when exceeds ten, the memory
requirements and the CPU time can become very excessive.
One solution to reduce this complexity is to decompose the
multiplier into a number of smaller multipliers. For example,
an -bit multiplier can be formed using four -bit multipliers
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TABLE II
EXPERIMENTAL RESULTS WITH OPTIMIZATION 1

TABLE III
EXPERIMENTAL RESULTS WITH OPTIMIZATION 2

TABLE IV
EXPERIMENTAL RESULTS: COMPARISON OF TEST LENGTH WITH OPTIMIZATION 1

(with ) as compactly described in Fig. 15. This
method does not compute the exact controllability but gives,
in our opinion, a good measure of controllability.

2) Controllability of the Output of an -Bit Comparator:
We compute the controllability of ( ) and ( ),
and deduce the controllability of the other ones. Let the
two -bit numbers to be compared have the form:

and .
The controllability of the output of an -bit equality com-

parator is as follows:

(8)

The logic equation for ( ) may be written as

(9)

Thus, 1-controllability of ( ) is given by the following

formula:

(10)

3) Controllability of the Output of a Multiplexer:Consider a
multiplexer of control inputs ( ) and 2 possible
data inputs, ( ) in which each input and the
corresponding output consist of bits. The general formula
to compute the controllability at the output is as follows:

control (11)

where , .
control is the 1-controllability on the control

inputs such that data input is selected to the output
.
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Fig. 15. n-bit multiplier composed of fourm-bit multiplier (m = n=2).

4) Controllability of a Fanout Stem:A fanout stem is a
point where a driving signal is connected to more than one
combinational or register inputs, these inputs are then the
fanout branches.

The controllability of a fanout branch is equal to the
controllability of its stem.

B. Observability Calculation

1) Observability of the Inputs of an-Bit Multiplier: To
compute the observability of the multiplier, we use the same
method used for computing the controllability of the inputs.
For an -bit multiplier with , we use the correspond-
ing truth table to compute the observability of each bit input.
However, when is over ten, we decompose the multiplier
into small blocks as shown in Fig. 15. Then, the observability
is propagated through multiplier and adder blocks.

2) Observability of the Inputs of an -Bit Comparator:
Consider a comparator with two inputs and of the form

and , and
output .

The observability of each input or at the output of
the comparators ( ) and ( ) is computed using (12).
The same equation can be used to compute the observability
of by interchanging for

(12)

To compute the observability of inputs of the ( )
comparator, let and

. Define and in a similar fashion.
The operation of this comparator is not commutative and thus
different formulas are used to compute the observability of

and . To observe the input bit , we have to maintain
and depending on the value of bit we have

to inspect the relation between and .
The observability of is computed using the following

equations:

for where

for

and

for where

By the same analysis, we can compute the observability values
of the other comparator types.

3) Observability of Multiplexer Inputs:Consider again a
multiplexer consisting of control inputs ( ) and
2 data possible inputs, ( ), in which each
input and the output consist of bits. The observability
computation for the data input is

control

where control is the 1-controllability of the control
inputs such that is connected to ,

and

The observability of a control input is computed using the
following formula:

Max

control (13)

where , ,
and control is the 1-controllability of the control
inputs such that the inputs and are mutually
exclusive, i.e., .

4) Observability Computation of a Fanout Stem [3]:The
observability of a fanout stem,, is related to the observability
at each fanout branch of the fanout stem. Letbe the number
of fanout branches for a fanout stem and let be the
observability value at theth branch. Then the observability
of the fanout stem is computed using the following equation:

(14)
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de Montŕeal, Montŕeal, PQ, Canada, in 1993 and
1998, respectively.

Currently, he is a Senior R&D Engineer in the
Test Synthesis Group at Synopsys, Inc., Mountain
View, CA. His principal research interests include
design-for-test, built-in self-test, and high-level

testing of digital circuits.

Eduard Cerny (M’73–SM’91), for a photograph and biography, see p. 345
of the March 1999 issue of this TRANSACTIONS.

Bozena Kaminska (M’88), for a photograph and biography, see p. 345 of
the March 1999 issue of this TRANSACTIONS.

Benoit Nadeau-Dostie (S’80–M’82–SM’95) re-
ceived the Ph.D. degree in electrical engineering
from Universit́e de Sherbrooke, Sherbrooke, PQ,
Canada, in 1985.

He has been a Chief Scientist at LogicVision,
Ottawa, Ont., Canada, since 1994. From 1986 to
1994, he was an Advisory Engineer at Bell-Northern
Research (BNR). He was the main architect of
BNR’s Design-for-Testability (DFT) strategy. From
1985 to 1986, he was with the Department of
Electrical Engineering of the Universit´e Laval

(Vision and Digital Systems Lab). His contributions were an auditory
prosthesis based on a microelectronics neural stimulator. He has published
several articles and holds five US patents related to memory, logic, and board
testing. His interests are in defining test strategies and algorithms with a
focus on embedded tests.


