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Testability Analysis of Synchronous Sequential 
Circuits Based On Structural Data 

Circuit 

Raghu V. Hudli and Sharad C. Seth 
Department of Computer Science 

University of Nebraska 
Lincoln NE 68588-0115 

#gates # FFs Bound Test Gen. 
(Emerhentall CPU sec. 

Abstract 

Bounds on test sequence length can be used as 
a testability measure. We give a procedure to com- 
pute the upper bound on test sequence length for 
an arbitrary sequential circuit. We prove that the 
bound is exact for a certain class of circuits. Three 
design rules are specified to yield circuits with lower 
test sequence bounds. 

1 Introduction 
The automatic generation of test sequences for sequen- 
tial digital systems has proven to be a hard problem to 
solve. Unlike combinational circuits for which test gen- 
eration algorithms exist[8, 9, 17, 181 to mention a few, 
that use only structural information to generate a test for 
any fault in the circuit, no complete algorithm is avail- 
able for sequential circuits. While some recent progress 
is evident and promising [2, 12, 141, the best current im- 
plementations still spend several CPU hours on circuits 
of moderate size. Neither does a theoretical basis exist 
for sequential circuits comparable to the theory of fault 
detection and diagnosis in combinational circuits. Effec- 
tive testability analysis techniques have been developed 
for combinational circuits and testability measures based 
on controllability/observability considerations have been 
used to speed up the test generation process. No effective 
testability measure exists for sequential circuits. Miczo 
[15] has proved a bound on the synchronizing sequence 
[ll] which may be used as a measure of testability. He 
has shown that circuits that have synchronizing sequences 
longer than 3" - 2" - 1 , where n is the number of flip-flops 
in the circuit, are untestable by an ATPG program which 
uses only structural data. The result however does not 
tell how circuits can be designed that are ATPG-testable. 

It is known that sequential circuits may require a very 
long input sequence to detect a fault in the circuit. Scan 
design techniques [20] are used to reduce the test sequence 
length. However, scan designs incur area overhead and 
speed penalties. Some manufacturers therefore still make 
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chips that have no scan paths. In such a scenario, it 
is necessary to design circuits so that the length of the 
longest test is minimal. 

Consider the following circuits [4] mentioned in the 
table 1 below. 

Table 1. Test Generation for Two Sequential Circuits 

I .  - 
TLC I 355 1 21 I 243 I 1245.65 

CHIP-A I 1112 I 39 1 102 I 268.80 

The column labeled "Bound" gives the length of the longest 
test to detect a fault. The CPU time was obtained on 
VAX 8650. Even though CHIP-A is three times larger 
than the Traffic Light Controller(TLC) circuit, it requires 
one-fifth the time for test generation. TLC has a bound 
on test sequence length of 243, which is almost 2.5 times 
the bound for CHIP-A. 

In literature, test sequence length is usually used to 
specify the number of test patterns that need to be ap- 
plied to achieve a particular fault coverage. Here, we use 
the phrase in the context of the worst-case fault. It de- 
notes the longest sequence needed to detect a fault in a 
sequential circuit. Test sequence length is an effective 
measure of testability of a sequential circuit as demon- 
strated by the above table. We obtain an upper bound' 
on the test sequence length to detect a fault. We also 
prove that the upper bound is exact for a certain class 
of circuits. As a by-product of the bound, we show that 
our results can also be used to design circuits that re- 
quire shorter sequences to test. A graph model is used for 
the circuit to derive the upper bound. We first partition 
the circuit into subcircuits, each of which is treated as an 
independent machine. The upper bound for testing the 
independent machines is computed. We then compute the 
bound on test sequence length in terms of the bound of 
the independent machines. 

'In this paper, the terms "bound", "upper bound" and "upper 
bound on the test sequence length" are used interchangeably. 
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2 Interconnections of Sequential 
Machines 

In this section, we look at two simple interconnection 
schemes of sequential machines from a test generation 
point of view. The series connection and the parallel con- 
nection of machines are examined. In a later section, we 
show that any circuit can be analyzed for upper bound 
using the analyses carried out in this section. Intercon- 
nection of machines has been studied in a different context 
earlier [ l l ]  for behavioral analysis. But here the intention 
is to find an upper bound for the interconnection in terms 
of the upper bounds of the constituent machines. 

2.1 Series Connection of Machines 
Two machines may be connected in series as shown in Fig. 
1. The primary inputs feed M1,  whose outputs feed M2. 
Both M1 and M2 are driven by a single master clock. 
Let the bounds for machine M1 be B1 and for M2 be 
B2. For the present, one may assume that B1 and B2 
are the number of states in M1 and M2 respectively. 

Fig. 1 Series Connection 

Claim: The upper bound on test length 
for series interconnection is B1 + B2. 

Proof: A fault could be in either M1 or 
M2. Consider the case when the fault is in 
M1. It requires in the worst case B1 clock 
pulses to propagate the effect of fault to the 
output of M1. Once the fault is visible at the 
output of M1 ( or equivalently at the input of 
M2),  B2 is the bound on the number on the 
clock pulses needed to propagate the effect of 
the fault to the output of M2. Hence we need 
B1 + B2 clock pulses. In other words, we 
need a test sequence of length B1 + B2. 

Consider the case when theie is a fault in 
M2. It requires at most B2 clock pulses to 
propagate the effect of the fault to the primary 
output and set up line justification problems 
for the input lines of M2. The input lines of 
M2 are the output lines of M1. It requires 
a maximum of B1 input vectors to solve the 
line justification problems at the input of M2. 
Hence to detect a fault in M2,  at most B1 + 
B2 input vectors are needed. 

Hence for the series connection of two ma- 
chines, in the worst case B1 + B2 input vec- 
tors are needed to detect a fault. 

A typical example of series connected machines is the 
shift register. We can think of each flip-flop as a primitive 
sequential machine, whose upper bound for test genera- 
tion is l ,  since any fault in the flip-flop can be detected 
by applying one test vector. Only input/output faults 
are being considered here. A shift register consists of sev- 
eral flip-flops serially connected. The upper bound on the 
length of test sequence is the sum of the upper bounds 
of each flip-flop. Hence the upper bound is equal to the 
number of flip-flops in the register. 

Note however that the number of states of the equiv- 
alent machine of a series interconnection, is equal to the 
product of the states of each machine [ I l l .  For Fig. 1 ,  we 
would have B1 * B2 states. But we do not have to visit 
all the B1 * B2 states to detect a fault. Also, consider 
the circuit shown in Fig. 2, which is the circuit for a mod 
256 counter constructed from two mod 16 counters. Each 
counter is a ripple counter. Since the interconnection has 
two asynchronous machines, our analysis does not apply. 
For the ripple counter, 256 clock pulses are needed to test 
for a fault. 

2.2 Parallel Connection of Machines 
We consider the connections shown in Fig. 3 as parallel 
connections of machines. In parallel connections of ma- 
chines, there are some inputs that fan out to more than 
one machine and there is a reconvergence of the inputs. 
Let the bounds on the test length for M1 and M2 be B1 
and B2 respectively. 

U U 

(a1 (VI 
Fig. 3 Parallel Connection 01 Machmes 

--- 
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Claim The upper bound for the parallel 
interconnection is B1* B2. 

Proof: In Fig. 3(a), consider the case 
when there is a fault in M1. In order for the 
fault to be detectable, the effect of the fault 
has to be propagated to the output of M1 and 
also the output of M2 has to have propagat- 
ing values. Since the two constraints have to 
be solved simultaneously, by a common input, 
in the worst case we have to visit all the states 
of the equivalent machine. Hence the upper 
bound for detecting the fault will be B1* B2. 
The case in which there is a fault in M2 is 
identical to the case we have discussed. 

Similarly in Fig. 3(b), since the input can 
simultaneously change the state of M1 and 
M2, we require in the worst case B1* B2 vec- 
tors to detect a fault in either M1 or M2. 

3 Bound for an Arbitrary Circuit 
In this section, we describe a scheme for computing the 
upper bound on the test sequence length for an arbitrary 
circuit. In [16], a bound for the search space is obtained. 
The search space bound is 2"'+", if there are m latches in 
the circuit and n inputs. Implicitly, the bound on the test 
sequence length is 2". However, if ATPG is used and the 
initial state is assumed to be unknown then the bound will 
have to be modified as 3", since ATPG uses three logical 
values viz. 0,1, and X. This is a very pessimistic bound. 
Consider for example a 4-bit shift register. The bound on 
the test length given by the above formula would be 3', 
but since the shift register is a series connection of 4 flip- 
flops, each of which has a bound of unity, the upper bound 
on test sequence length would be 4 and not 3'. We give a 
tighter bound on test sequence length and prove that the 
bound is exact for a certain class of circuits. From the 
previous section, it is obvious that our method gives an 
exact bound on shift registers and the class of synchronous 
circuits which can be recursively decomposed it to a series 
or parallel connection of sub-machines. 

The circuit is represented as a directed graph. There 
is an edge for each line in the circuit. The primary inputs, 
gates, flip-flops and fanout stems are represented as nodes 
in the circuit graph. The graph for a general sequential 
circuit is a cyclic graph because of feedback lines in the 
circuit. Fig. 4 shows an example sequential circuit and 
its graph representation is shown in Fig. 5. 

As a first step in computing the bound we partition 
the circuit into strongly connected components, that is, 
within each component every node is reachable from any 
other node. Each strongly connected component is col- 
lapsed into a single supernode. The supernode represents 
the submachine. The graph thus transformed will be an 

1 -  I 

Fig. 4 A Sequential Circuit Example 

Fig. 5 (a) A directed graph representation of circuit in Fig. 4 

Bound - 3 
Bound - 1 

- 1  1 

I I 
Bound - 0  

5 u n d  - 1  

Fig. 5(b) Graph after condensation and collapsing cominational elements 

acyclic graph representing connections between indepen- 
dent submachines. Finding the strongly connected com- 
ponents and transforming the graph into an acyclic graph 
is the standard problem of finding the condensation of 
a cyclic graph [e, 101. All the strongly connected com- 
ponents of a graph can be found in polynomial time. A 
linear algorithm exists [19], which uses depth-first search 
on the graph for finding the strongly connected compo- 
nents. It can be proved that the condensation of a cyclic 
graph is unique. 

After the condensation graph is found, the following 
collapsing is done for combinational elements. Combi- 
national elements that form a fanout free region [I] are 
collapsed into a single combinational element with bound 
of zero and merged into a sequential machine that is fed 
by the combinational gates. If no sequential machine is 
driven by the fanout free region, then the region is left as 
is, with a bound of zero. Fanout nodes are merged into 
machines that feed the fanout nodes. This processing is 
illustrated in Fig. 5(c). F2 is merged into machine a, b 
and c are merged into f. F1 is merged into X. 
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The upper bound for each submachine in the graph is 
3", where n is the number of latches in the submachine. 
Since each flip-flop influences every other flip-flop - in 
a strongly connected in the circuit graph - in order to 
generate a test sequence, in the worst case, we have to 
go through all the states of the machine. There are 3" 
possible states, since each flip-flop can be either in the 
0,l or X (unknown or uninitialized) state. Flip-flops by 
themselves not contained in any machine have a bound of 
1. In addition, we do series collapsing of sub-machines; if 
two sequential machines are in series, we combine them 
as one and add the bounds of the two machines. 

An example of this graph transformation is shown in 
Fig. 6. The circuit [14] is an implementation of a sequen- 
tial machine [15] where it is claimed to pose a formidable 
task for an ATPG program. In Fig. 6, each submachine 
has an upper bound of 3. Since the transformed graph 
has a parallel connection of machines, it is clear from our 
discussion in the previous section that the upper bound 
for the entire circuit is 3 9  = 9. 

Qo 

Fig. 7 A series Parallel Structure 

Applying the reduction rules of the previous section, 
i.e., adding bounds of machines in series and multiplying 
bounds of machines in parallel, we will be able to compute 
the bound for the overall circuit. For example the circuit 
corresponding to Fig. 8, which is series-parallel graph has 
a bound of 32. We now give a general procedure for find- 
ing the bound for a circuit whose condensation graph is 
arbitrary. We prove that the procedure gives exact bound 
for circuits whose condensation is series-parallel. The 
problem we are faced with in a non-series parallel graph 
is the arbitrary reconvergence structure of submachines 
whose outputs fanout to more than one sub-machine. 

U 

Bound Consists of G2 and FFl r I lL + ai 

Fig 6. An example sequential circuit and its collapsed 
schematic corresponding to its condesation graph 

It is highly improbable that all circuit graphs reduce to 
one of the three forms discussed in the previous section. 
Some circuits may reduce to series-parallel structure as 
shown in Fig. 7. 

Total Bound is 32 

Fig. 8 Computing the bound for a Simple 
series-parallel stem 

We use the idea of stem regions [13] to analyze such 
reconvergence structures. A reconvergent point that is 
not driven by any other reconvergent point is called a 
closing reconvergent point of a stem. We are concerned 
only with closing reconvergences of stems for finding the 
bound. The stem regions can be found in O(nlog(n)) 
time[7]. The region of a stem X, which lies in the region 
of stem Y is properly contained in the stem region of stem 
Y. 

In the condensation graph, we identify each node with 
a level. Primary inputs are at level 0. A node is at level 
i+ l ,  where i = max{ level of predecessor nodes}. We 
maintain a list of stems, ordered by level. Within a stem 
region of stem s, we define the (relative) depth of each 
node as the difference between the levels of the node and 
the stem 8 .  The depth of a stem region corresponding 
to a closing reconvergence is defined as the difference in 
the levels of the reconvergent node and the stem. The 
number of submachines in any path from the stem to its 
reconvergence is at most equal to the depth of the stem 
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region corresponding to that reconvergence node. The 
procedure to find the bound for an arbitrary stem region 
is describe below. 

1. 

2. 

3. 

4. 

5 .  

6. 

Consider the stem at the lowest level, that is still 
unprocessed. 

i = 1. For all closing reconvergent points do steps 3 
- 6  

Starting at depth i, find the minimum set of ma- 
chines (nodes) that when removed from the circuit, 
will isolate the stem and the reconvergent point - 
i.e., find the cutset for the two nodes in the graph. 
The level of any machine has to be at most i, also 
it has to be as close to i as possible. If any machine 
is a stem, mark it as processed. The stem region of 
this machine is enclosed in the region of the stem in 
question. 

The set of machines found in step 3, are machines 
that are in different paths from the stem to its recon- 
vergence point. In other words, they are in parallel 
and can therefore be reduced to a single machine 
whose bound is equal to the product of the bounds 
of each machine. 

If reconvergence is not reached, increment i and goto 
step 3. 

We get an equivalent machine at each depth follow- 
ing the processing described in steps 3 and 4. The 
equivalent machines at depth i, i + 1, i + 2, ... are 
in series. The bounds of the equivalent machine at 
each depth are added. Finally the bound of the re- 
convergence is added. 

For combinational elements in the condensation graph, 
the following processing is done. If a stem region has only 
combinational elements, the bound is 0. If a combina- 
tional element occurs in a cutset, the bound is considered 
to be 1. If the combinational element occurs by itself, 
then the bound is considered to be 0. 

Consider Fig. 9(a), which shows a stem region of ar- 
bitrary structure. The stem A has two closing reconver- 
gence points F and K. Each box is a submachine. The 
depths are indicated above the boxes. The bound for each 
submachine is indicated in the corresponding box. Con- 
sider the reconvergence F. The stem region has a depth of 
2. At level 1, the cutset is { B,C} with the bound of 27. 
At level 2, the bound is again 27, with D and E forming 
the cutset. The overall bound is therefore 27+27 = 54, to 
which we add the bound of F to get 56. This equivalent 
connection is shown in Fig. 9(b). Similarly, we compute 
the bound for the region corresponding to K as the recon- 
vergence. Note in this case I is an element of the cutset 
at depths 1, 2, and 3. The equivalent structure is shown 
in Fig. 9(b). 

2 

Fig. 9(a) An arbitrary stem region 

86 3'9'3'2 + 9'6'2 +S2 + 6 % 
Fig. 9(b) Equivalent Structure 

After the above processing is done, the corresponding 
circuit graph becomes a forest. Some of the nodes may 
be shared between two or more trees as shown in Fig. 10. 
The overall bound can be computed by finding the path 
with the most weight, where the bound of each node is 
considered as the weight. This can be done using depth 
first traversal for each tree in the forest. 

~ i ~ ,  10 Equivalent Structure Of the overall circuit 

To summarize the procedure for finding the upper 
bound on test sequence length for an arbitrary circuit, 
we restate the steps involved and give the complexity of 
each step. 

1. Find the condensation of the circuit graph. This 
can be done in O(n,e) , where n is the number of 
nodes and e is the number of edges in the graph. 

2. Find the stem regions for the condensed graph. This 

3. Find the equivalent machines using cutsets. In the 
complexity of this step is O(n1og n). 

worst case, this needs O(nz)  time. 

4. From the forest, find the bound for the overall cir- 
cuit. The time complexity of this step is O(n2).  

The overall complexity of the algorithm is therefore 
O(n2) .  
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Theorem: When the condensation graph 
is series-parallel, series-parallel reduction and 

B 

n 

1. 

the procedure described for arbitrary circuit8 
give the same bounds. 

Proof: The proof is by induction on the 
depth of the stem region. 

Fig. l l (a )  A series-parallel stern of depth 1. 
Assume the depth is 1, as shown in Fig. 
Il(a). Without loss of generality, we may 
assume that there are only two parallel 
paths. According to the algorithm de- t 

scribed, the bound for the stem region is 
a + b * c + d ,  since there is only one cut- 
set {B,C}. But also, if we apply series- 
parallel reduction on the graph, we can 
collapse the machines B and C into a sin- 
gle machine whose bound is b * c.  This 
machine is in series with A and D. Hence 
the bound for the stem region is a + b * 
c + d ,  which is also the bound given by 
Drocedure. 

. Depth 
n 

Cn-1 Cn 

An 

2. Assume that the procedure gives an iden- 
tical bound if the stem region is of depth 
n. Again without any loss of general- 
ity, we may assume that the stem region 
of depth n has the form shown in Fig. 
ll(b). The equivalent structure is shown 
in Fig. ll(c). The bound for machine E 
is 

3. We now prove that the procedure gives 
an identical bound for a stem region of 
depth n + 1. We can get a stem region 
of depth n + 1 from a region of depth n 
by adding machines An+l and Cn+l,  as 
shown in Fig. Il(d). Using the equiva- 
lent structure of Fig. ll(c), we get an al- 
ternate structure for Fig. l l (d)  as shown 
in Fig. ll(e). This is similar to the struc- 
ture shown in Fig. l l (a) .  Hence the 
proof. We can also prove by analyzing 
stem region shown in Fig. Il(d), that 
the procedure gives an exact bound. 

Using series parallel reduction, the bound 
is 

+G+l 
which can be written as 

Fig. 11 (b) A series-parallel stem of depth n 

m.-= 
BO E 

Fig. l l(c) Equivalent structure of fig. l l ( b )  

Fig. 11 (d) A series-parallel stem of depth n +1 

. 

an+l 
U 

Fig. l l ( e )  Equivalent structure of fig. l l (d)  
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bo+ C &*%+I *bi * + +  
i=1.3,6. ... 

n 

* %+I* ci + %+I* cn + cn+1. 
i=l 

We will now use the procedure described 
to compute the bound for Fig. Il(d). 
The cutsets have B’s and C’s alternately, 
but always have An+1. All cutsets up to 
depth ‘n’ also have An. So the cutsets 
are 

{ B1 1 B2 An An+1}, {CI An, An+l}i 

(B3iB4,An,An+l},{C2,An,An+l}, 

{Cni An+,} 

Taking the product of the bounds of ele- 
ments in each cutset and summing them, 
we get 

bl * b 2 * a , * a , + 1 + ~ i * a , * ~ + l + b 3 * b 4 * ~ * a , + l  

+cz * a, * a,+l + ... + c, * an+1 

Rearranging, we get, 

Adding to this the bounds of BO and Cn+l, 
we get 

bo + *%+I * bi * bi+l+ 
k1.3.5,  ... 

Q.E.D 

3.1 Results 
In Table 2 the results of the bound calculations for the 
various benchmark circuits [3] are given. Also shown in 
the table are the number of sub-machines into which the 
circuit can be partitioned and the maximum and mini- 
mum bounds of the sub-machines. In a recent paper [5] 
cycle analysis of the benchmark circuits was proposed for 
testability assessment. The result of that analysis is the 
product of the number of cydes in a circuit with the av- 
erage cycle length. These values are reproduced in the 
last column of Table 2. Our bounds calculations correlate 
very well with the cycle analysis of Cheng and Agrawal. 
But s526 is an anomalous case where the cycle analysis 
measure grows at a much greater rate than the bounds. 
It is worth noting that s420 and s526 require about the 
same time for test generation per fauZt. But the jump in 
the cycle measure for the two circuits is significant. The 
bounds are however not that apart. The large numbers 
for s641 and s5378 are due to the presence of large con- 
nected components. The bounds and the cycle measure 
are very high; they are not very indicative of the test gen- 
eration effort. The reason may be because the worst case 
scenario is considered for calculating the bounds. This 
simplistic approach may not suffice when the components 
are very large. A more detailed structural analysis of the 
individual sub-machines may yield a better bound. 

Apart from the testability measure, the bounds have 
application in test generation. The bounds of individ- 
ual sub-machines can be used for choosing the elements 
through which we want to propagate the fault effect or 
justify a line value. A similar approach based on tem- 
poral logic parameters has been used in a new test gen- 
eration algorithm for sequential circuits [12]. Also the 
bounds of the individual sub-machines can be used to de- 
termine which components (sub-machines) should be cho- 
sen to have scan flip-flops. Components that have higher 
bounds should have scan flip-flops. Cheng and Agrawal 
have proposed an algorithm that uses heuristics to choose 
which flip-flops should be made scan flip-flops [4]. Once, 
the component, is chosen, their analysis can be used to 
choose flip-flops using their method. 

Table 2 Structural Profile and Testability Measures of Benchmark Circuits 
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4 Design Rules 
We can now state the design rules for minimizing the up- 
perbound on the test sequence length. The design rules 
can be obtained based on the procedure described in the 
previous section. The design rules are intuitive and obvi- 
ous from the procedure. 

The bound of each independent submachine grows ex- 
ponentially with the number of flip-flops it has. Therefore 
the first step should be to minimize the bound on the in- 
dependent submachines. Hence the following design rule. 

Design Rule 1: 
Minimize the number of latches in strongly 

connected components in the circuits. 
In other words, the components should be 

small, and the feed back chains should be short. 
This reduces the bound for each submachine 
which in turn reduces the bound on test length 
for the entire circuit. 

The bound on the stem can be minimized if circuits 
are designed using the following two rules. These rules 
are based on the girth of stem regions, which is defined as 
the size of the largest cutset for the stem region, and the 
depth of stem regions, which was defined in the previous 
section. 

Design Rule 2: 
The girth of the stem region should be as 

narrow as possible. 
If the girth is wide, there will be more ma- 

chines in each cutset, which will increase the 
bound for test sequence length. 

Design Rule 3: The depth of the stem 
region should be as small as possible. 

A single machine that connects the recon- 
vergent point to the stem will be present in 
cutsets at all depths. Hence the bound of this 
machine multiplies the bounds of other ma- 
chines at different depths. If the depth is min- 
imized, it is clear that the overall bound will 
be minimized. 

5 Conclusions 
Test sequence length is an effective measure of testability 
of a sequential circuit. The lower the bound on the length, 
the more testable the circuit is. In this paper we have used 
graph theoretic approach to compute the bound on test 
sequence length for any sequential circuit. We first found 

the condensation of the graph, by collapsing the strongly 
connected components into single nodes. Analyzing each 

stem region, we can compute the bound on test sequence 
length for the entire circuit. The time complexity of the 
procedure is O(n2) where n is the number of nodes in the 
circuit graph. The bounds of the individual sub-machines 
can be used in test generation, scan design and built in 
self test (BIST) design. Since the test sequence length 
indicates the testability, it is important to design circuits 
with lower test length bounds. We have given three design 
rules that will yield circuits whose test sequence bounds 
are lower. 
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