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ABSTRACT

The knowledge as to whether a software component is testable or not is important to the software
engineering process: a program that is not easily testable may have to go through several
iterations of program and test redesign.  In this paper, we formally investigate the meaning of
software testability.  We define a new concept, domain testability, by applying the concepts of
observability and controllability to software.  Observability refers to the ease of determining if
specified inputs affect the outputs; controllability refers to the ease of producing a specified
output from a specified input.  Observability and controllability properties are already used for
assessing the testability of hardware components.  A domain testable program is observable and
controllable: it does not exhibit any test input-output inconsistencies. We discuss the domain
testability properties of several programs that have been presented in the literature, and investigate
the observability and controllability properties of several programming structures. We also define
new testing metrics (that can be applied to programs or to functional specifications) that can be
used to easily assess the level of effort required to modify a program so that it becomes domain
testable.  We also show how testability can be assessed from program specifications, and discuss
an experiment that shows that it takes less time to build and test a program developed from a
domain testable specification than a similar program developed from a non-domain testable
specification.  In the Appendix, domain testability is defined in terms of denotational semantics.
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I.  Introduction

Testing is a crucial software development activity that is used for determining whether a program
has errors.  Testing is used to assess the compliance of a program to its intended specifications
and to assess the reliability of the program to inputs that were not intended to be part of the
specifications.  Good test inputs are those that result in a high probability of discovering errors
upon program execution.

Before testing begins it is necessary to identify the input and output data characteristics (ie, type,
format, range) of the component, and the "states" of the component.  During testing, the input-
output data characteristics may be inferred from specific identifiers in the program; states and
state transitions usually are not associated with specific identifiers.

Test plans are documented in a Test Design Specification [32].  This document specifies the test
inputs, the expected outputs, and information related to timing, display, or the test execution
environment.  The actual outputs, and information such as timing or display anomalies, (and
descriptions of attempts to repeat the test) are documented in the Test Incident Report [32].

Research in testing has focused on the following two problems:

o Test Effectiveness: What is the best selection of test data?
o Test Adequacy: How do we know that sufficient testing was performed?

Test effectiveness is concerned with generating the smallest set of input test data whose output
would result in the discovery of the largest set of errors.  The definition of an "effective" test was
addressed by [11,12]: if we can partition the input space into a finite set of input equivalence
classes then an effective test is a test that executes one input from each class.  The problem is in
finding the partition.  In the extreme case where the partition is discrete and the equivalence class
consists of singletons, the effective test becomes an exhaustive test: all inputs must be executed.
Exhaustive tests should be avoided on pragmatic grounds: they are combinatorially explosive,
and, for programs with infinite input domains, can never be completed.

A testing strategy can be considered to be a method of generating a finite set of input equivalence
classes.  These methods range from functional (specification or "black-box") methods that select
test inputs based on specification-derived values [20] to structural ("white-box") methods that
select test inputs based on a percentage of the  statements (or other structures) that can be
executed [16,29].  Test adequacy is concerned with determining the effectiveness of test selection
strategies.  Several strategies were experimentally compared by Basili in [2].  And, given a test
selection method, Weyuker [30] and Zweben[31] discuss sets of rules to determine whether or
not sufficient testing has been performed.

One assumption in determining test effectiveness or test adequacy is that testing can be improved
by improving the test selection strategy or the test adequacy criteria.  It is assumed that all
programs are "easily testable," or at least that the amount of work needed to identify the input and
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output data characteristics and states of the component is small.  The problem with this
assumption is that the emphasis is on selecting input data, and not on determining whether the
given program is easily testable or not.  In this paper, we address the following problem:

o Testability:  What are the properties of "easily testable" programs?

The knowledge as to whether a component is easily testable is important to the test planning and
budgeting process: a program that is not easily testable may have to go through several iterations
of test redesign.

Software engineering design methodologies have informally stated some properties of  "easily
testable" software components [3, 5, 6, 7, 14, 25, 27].  Some properties of  "easily testable"
hardware components  have been also identified in  [8,23].  Intuitively, a software component that
is "testable" has the following desirable properties:

Test sets are small and easily generated.  Exhaustive tests are infeasible.  Testing pragmatics
dictate finite test budgets.

Test sets are non-redundant.  Repeated values for test inputs are inefficient.  On the other hand,
something may be seriously wrong if the same test value yields different results.

Test outputs are easily interpreted.  Test cases are represented in a Test Specification [32], where
inputs and the anticipated outputs are tabulated.  The precise identification of these inputs and
outputs is necessary for an effective and adequate test.

Software faults are easily locatable.  Software faults are easily traced to specific components and
inputs.

The knowledge as to whether a program is easily testable software or not is not explicitly
provided to testers a priori.  During testing, testers may determine that certain software
components are not "easily testable" because they may exhibit one of the following Input-Output
Inconsistencies:

Input Inconsistencies.   If a test input value is repeated, its output result should be the same.  If it
is not then the test inputs are incomplete: the outputs are not functionally related to the inputs
alone, but on some other states that have not been identified by the testers.  For example, given
software component A with the following specification-based (black-box) context:

 type CODE is (0,1,2):
 type COLOR is (RED, YELLOW, GREEN):
function A (X:in CODE) return COLOR;

An excerpt from a Test Incident Report in Table 1 shows that function A returns different values
for  some identical inputs.  It may be that function A returns these values due to certain side-
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effects in the execution environment.  There may be  undiscovered state and state transition that
are not associated by the tester with specific inputs.   Input inconsistency illustrates the fact that
just because easily testable programs should have non-redundant test sets, it does not imply that
any program has a non-redundant test set.  This type of inconsistency occurs in applications
involving database management systems and distributed systems.

Test 1 Test 2 Test 3 Test 4 Test 5

      Input X:  0 1 2 3 0

Output A(X):   RED GREEN RED GREEN GREEN

Table 1.  Input-Output Table showing  Test Anomalies

Output Inconsistencies.  If an output identifier is specified to range over a domain of values, we
should be able to construct a test input whose execution can "cover" any one of the specified
values for the output identifier.  If the component is a predicate in a conditional statement or a
loop, an output inconsistency can imply the existence of unreachable statements or unreachable
control paths.

Domain specifications are stated in identifier declarations, type definitions, comments, and in
functional specifications.  For example, the excerpt from the Test Incident Report in Table 1
shows that A(X) never returns the value YELLOW for all test inputs specified.  It may be that
either

• A was never specified in the functional requirements to assume YELLOW.
• A was incorrectly or incompletely specified.
• A returns the value YELLOW due to unidentified states in the execution
• A contains an infinite loop, and the tester (via the run-time environment)     

interrupts computation so that an interrupting value is returned.



Testability of Software Components

5

An example of this last possibility seen in the call to A as in the following testing environment:

procedure MAIN is
type CODE is (0,1,2):
 type COLOR is (RED, YELLOW, GREEN):
function A (X:in CODE) return COLOR  is ... end A;
OUTPUT : CODE := GREEN;  --  initial_value;
...

begin
loop

GET(INPUT); -- generate an input
OUTPUT := A(INPUT); -- compute an output

-- print last output if interrupted
when INTERRUPT =>  PUT (INPUT, OUTPUT);
PUT (INPUT, OUTPUT);

end loop;
end MAIN;

Input-Output inconsistencies lead to large, redundant test sets, where test outputs are not easily
understood because of a dependency on unidentified states.  Programs with input-output
inconsistencies are not easily testable.   In some sense, input-output inconsistencies are a
consequence of using von Neumann programming languages [1].  Input-Output inconsistencies
can provide evidence for program errors [3, 14, 25] , but do not imply that the program has
faults: a program containing unreachable statements or an infinite loop may not be easily testable
but may be correct.

In this paper, we formally define a property called domain testability as an extensional property of
programs.  Programs that are domain testable have no input-output inconsistencies, so in some
sense, they are are “easily testable.”   Domain testability is defined in terms of the properties of
observability and controllability.   Informally, a software component is observable if distinct
outputs are observed for distinct inputs: observability is the ease of determining if specified inputs
affect the outputs.   A software component is controllable if given any desired output value, an
input exists that "forces" the component output to that value: controllability is the ease of
producing a specified output from a specified input.

Observability  and controllability were first developed for dynamical systems and automata [17].
Dynamical systems have inputs, outputs, states, and state transition functions.  For hardware
components, the state transition functions are more easily identifiable than the state transition
functions for software components.  Controllability and observability properties have been used
for specifying hardware testability [19].
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Our initial focus is in specifying the observability and controllability properties for two software
components: expression procedures (similar to Ada function subprograms) and command
procedures (similar to Ada procedure subprograms).   The domain testability properties of these
components are defined and generalized in Section II.  We define metrics for practically
comparing observability and controllability.  The properties and metrics are illustrated In Section
III.  In Section IV, we discuss how testability can be assessed from program specifications, and
discuss an experiment that shows that it takes less time to build and test a program developed
from a domain testable specification than a similar program developed from a non-domain testable
specification.  In Section V, other aspects of software observability and controllability are
suggested for future work.

We show in the Appendix how software inputs, outputs, and state transitions can be represented
with the direct execution models of denotational semantics [13, 24, 26] to yield a more formal
definition of observability and controllability.

II.  Domain Testability

Domain testability is defined in terms of the execution semantics of program inputs and outputs.
Our model programming language has the syntax of an Ada-like language: a more formal
definition of domain testability in terms of denotational semantics is specified in the Appendix.

Domain testability is defined by specifying the semantics of expression evaluation and command
execution.  Expressions are denoted by functions (also called expression procedures).  For
example, the following function

function SIDE_EFFECT(X: in INTEGER) return INTEGER is
begin

GLOBAL_VARIABLE := GLOBAL_VARIABLE + 1;
return X*GLOBAL_VARIABLE;

end SIDE_EFFECT;

shows that the evaluation of an expression depends on the state, and results in a value and a new
state.

Commands are denoted by commands (also called command procedures).  For example, the
following command procedure
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procedure SIDE_EFFECT(X: in INTEGER; Y: out INTEGER) is
begin

GLOBAL_VARIABLE := GLOBAL_VARIABLE + 1;
Y:= X*GLOBAL_VARIABLE;

end SIDE_EFFECT;

shows that execution depends on the state, and results in a new state.

A.  Observability

An  expression procedure F is observable if distinct outputs are generated from distinct inputs.
Since the evaluation of the output of F is a function of the evaluation of its input and the state,
observability implies that the output value of F is a function of the input value only.

For example, the following expression procedure is not observable:

function F(X: in INTEGER) return INTEGER is
begin

return X*GLOBAL_VARIABLE;
end F;

The reason that it is not observable is that subsequent calls to the function F with the same
arguments can yield different results.  In an environment where GLOBAL_VARIABLE evaluates
to 0, the function evaluation  F(3) evaluates to 0.  If the environment is changed after this function
call where GLOBAL_VARIABLE = 2, then F(3) = evaluates to 6.

In general, given an expression procedure F:

function F (E1: in T1; E2: in T2; ... ; En: in Tn) return TF;

F is observable if

F (B1, ..., Bn) ?   F (A1, ..., An) implies (B1, ..., Bn) ?  (A1, ..., An).

An execution of a command procedure is observable if distinct outputs are generated from distinct
inputs.  For example, the following command procedure is not observable:

procedure C(X: in INTEGER; Y: out INTEGER) is
begin

Y :=  X*GLOBAL_VARIABLE;
end C;
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The reason that it is not observable is that subsequent calls to the procedure with the same
arguments can yield different results.  In an environment where GLOBAL_VARIABLE = 0,
C(3,Y) yields Y = 0.  If the environment is changed after this function call where
GLOBAL_VARIABLE = 2, then Y = 6.

In general, given a command procedure P:

procedure P (E1: in S1; ...En: in Sn; V1: in T1;...Vm: out Tm);

P is observable if

 (Y1,..., Ym) ?  (Z1, ..., Zm) implies  (X1, ..., Xn) ?  (U1, ..., Un)

given the executions

P  (X1, ..., Xn, Y1,..., Ym);
and

P  (U1, ..., Un, Z1, ..., Zm);

for all  (X1, ..., Xn) and  (U1, ..., Un) in domains (S1, ..., Sn).

B.  Controllability

Given a state s, the domain of values of the evaluation for expressions is usually a proper subset
of the target type.  An evaluation of expression procedure F(E) is controllable if, for any state s,
the domain of values of the evaluation map  equals the domain of values denoted by its output
specification.

For example, in an environment where type POSITIVE denotes the set of values
{0,1,2,...,MAX_INTEGER}, and given the expression procedure G

function G(X: in POSITIVE) return POSITIVE is
begin

return X mod 3;
end;

G is observable, because if G(A1) = b1 and G(A1) = b2 then b1 = b2.   However, the expression
procedure G is not controllable.  Even though G returns a subset of type POSITIVE, for every
input (the set {0,1,2}), there is no set of inputs that evaluates to POSITIVE: {0,1,2}?
POSITIVE.

If expression procedure F
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function F (E1: in T1; E2: in T2; ... ; En: in Tn) return TF;

is controllable, then for for all input values of A1, ..., An

{ all evaluations of F (A1, ..., An) } = TF

If F is observable and controllable, them F is an onto function.

Observability is not required for controllability:  programming languages that define  functions
having no input variables may be controllable but not observable.  For example, given

function RANDOM() return INTEGER;

If  the set of all evaluations of RANDOM() covers all values in INTEGER, then RANDOM is
controllable.

An execution of a command procedure is controllable if,  for any state s, the domain of each
output value equals its type.  Given command procedure P

procedure P (E1: in S1; ...En: in Sn; V1: in T1;...Vm: out Tm);

P is controllable if

 {(Y1,..., Ym) } =  (T1, ..., Tm)

given all executions

P  (X1, ..., Xn, Y1,..., Ym);

for all  (X1, ..., Xn) in  (S1, ..., Sn).

C.  Domain Testability

Since testing assesses the compliance of a program to intended input-output specifications, it is
necessary to identify the data characteristics of the explicit test inputs and outputs (inferred from
specific identifiers in the program) and implicit test inputs and outputs (inferred from component
states -- not from specific identifiers).  Part of the difficulty with testing is concerned with
identifying and specifying implicit program inputs and outputs from states as auxiliary inputs and
outputs that can be controlled and observed, so that test results do not exhibit the input-output
inconsistencies defined in Section I.
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The definitions of observability and controllability immediately establish the following:

Corollary:  If an expression (command) procedure is not observable, then its evaluation
(execution) may exhibit output inconsistencies.  If an expression (command) procedure is not
controllable, then its evaluation (execution) can exhibit input inconsistencies.

Definition:  An expression (command) procedure is domain testable if it is observable and
controllable.

Programs that are not domain testable can be difficult to test.  For example, the following is a
specification for a common expression procedure that returns a random floating point number
between zero and one according to a uniform probability distribution:

function RANDOM(): return REAL;

This function is not observable since it has no input (in fact, it is not supposed to be observable by
design).   It is desired to be controllable.  Testing this function is difficult without any additional
knowledge about its internal states.

Most function and expression procedures are not a priori observable or controllable.  This means
that without any further modification, effective and adequate testing is difficult to assess: there
may be input or output inconsistencies.  In order to test, many software engineers modify the
program by explicitly creating additional program inputs and outputs that denote the implicit
program states.  This improves testability by making these states observable and controllable: the
program can then be input to a test driver.  One problem with this modification is that the tested
component may be different from the actual deployed component.

We formalize this program modification process with the following

Definition:  Domain testability refers to the ease of modifying a program so that it is observable
and controllable.

The program modifications required to achieve domain testability are called extensions.
Observable extensions introduce program inputs based on implicit states; controllable extensions
modify outputs.

D.  Observable Extensions

Let F denote the expression procedure definition

function F (E: in T) return TF;
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F has an observable extension with observability index n if there exists an observable expression
procedure FO, with definition

function FO (E: in T ; E1: in T1; E2: in T2; ... ; En: in Tn) return TF;

such that for all inputs of F, there exists inputs for FO such that

F(E) =FO (E, E1, E2, ... ,En)

For example, the following expression procedure F

function F(X: in INTEGER) return INTEGER is
begin

return X*GLOBAL_VARIABLE;
end F;

has an observable extension FO:

function FO (X: in INTEGER; G: in INTEGER) return INTEGER is
begin

return X*G;
end FO;

FO is observable, since for given inputs (A1, A2) and (B1,B2), F(A1,A2) ?F(B1,B2) implies
(A1,A2) ? (B1,B2).

A command procedure P

procedure P (E: in T; O: out TP);

has an observable extension with observability index n if there exists an observable command
procedure PO, with definition

 procedure PO (E: in T; E1: in S1; ...En: in Sn; O: out TP; OE: TE);

such that for all inputs for P, there exists a set of inputs for PO such that after the execution of

P (E, O);
and

PO (E, E1, ..., En, OE)

then O = OE.
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For example, command procedure C

procedure C(X: in INTEGER; Y: out INTEGER) is
begin

Y :=  X*GLOBAL_VARIABLE;
end C;

 has is an observable extension of command procedure CO:

procedure CO (X: in INTEGER; G: in INTEGER; Y: out INTEGER) is
begin

Y :=  X*G;
end CO ;

E.  Controllable Extensions

Given

function F (E1: in T1; ... ; En: in Tn) return TF;

F has an controllable extension if there exists a type TC that is a subset of TF and a controllable
expression function FC, with definition

function FC (E: in T ; E1: in T1; E2: in T2; ... ; En: in Tn) return TC;

such that for all inputs and any state s for F, there exists a state s* for FC such that

F(E1, ... ,En) =  FC (E1, ... ,En)

For example, the following expression procedure GC is a controllable extension of G (defined in
Section II.C):

type SMALL is POSITIVE range 0..2;
function GC (X: in POSITIVE) return SMALL is
begin

return SMALL'(X mod 3);
end GC;

GC is controllable, since the set of values it returns is the same set denoted by the type SMALL:

{GC (E) for all E} = { 0,1,2 } = SMALL
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Moreover, for all states s for G, there exists an s* for GC so that

G(E) =  GC (E)

A command procedure P

procedure P (E: in T; O1: out S1; ... ; Om: out Sm);

has a controllable extension with controllability index m if there exists a types T1,...,Tm that are a
subset of S1,...,Sm respectfully, and a controllable command procedure PC, with definition

procedure PC (E: in T; OC1: out T1; ... ; OCm: out Tm);

such that for all inputs and any state s for P, there exists a state s* for PC such that

(O1,...,Om) = (OC1,...OCm)

Given the executions

P(A,B1,...Bm);
and

PC (A,BC1,...BCm);

Controllable extensions depend on the richness of type domain definitions.  For conventional
languages, these definitions may be modeled by inductive assertions [10].  For functional
languages, type domains are function domains [1].

F.  Measures of Domain Testability

We formally define domain testability measures in terms of controllable and observable
extensions.

Observability is the ease of determining if specified inputs effect the outputs; Controllability ease
of producing a specified output from a specified input.
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Given the following expression procedure

function F (E: in T) return TF;

and observable extension with observability index n:

function FO (E: in T ; E1: in T1; E2: in T2; ... ; En: in Tn) return TF;

For an exhaustive test, the extra number of test cases required would be a multiple of

|T1|* ... *|Tn| = |Tmax|n

Here, |Tk| denotes the cardinality of the domain Tk, and |Tmax| is the maximum cardinality of the

domain over all input types.  Even though this value can be infinite for dynamic data structures
such as strings and lists, during testing we enforce pragmatic limits to dynamic data structures.

The extra testing work associated with the n extra inputs depend on the type; we can normalize
this factor by considering the effective number of extra binary inputs:

Ob = log2 (|T1|* ... *|Tn| )

Ob is the measure of observability and corresponds to the number of extra binary inputs required
to make a program observable.  The measure of observability for command procedures is similar.

Given the command procedure P

procedure P (E: in T; O1: out S1; ... ; Om: out Sm);

and  controllable extension with controllability index m

procedure PC (E: in T; OC1: out T1; ... ; OCm: out Tm);

We define

Ct = log2 (|T1|* ... *|Tm| )

Ct is the measure of observability and corresponds to the number of  binary inputs that must be
modified to make a program controllable.

We note that 

0 = Ob = n * log2 (|Tmax| )
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0 = Ct = m * log2 (|Tmax| )

These last two expressions are similar in form to the software science volume complexity metrics
[25].  The lower bounds are obtained if the program is observable or controllable.

For imperative programming languages, we have the following results that allow us to easily
compute Ob and Ct so that they can be compared. These results follow from the definition of the
logarithm and the combinatorial (multiplicative) nature of additional testing inputs.

1.  Sequence

The measures of observability and controllability of a sequence (composition) of commands
(expressions) is the sum of the measures of the components:

In other words

Ob(C1; C2) = Ob(C1) + Ob(C2)
Ct(C1; C2) = Ct(C1) + Ct(C2)

2.  Selection

Given an observable predicate E, the measures of observability and controllability of a selection of
commands is a function of the measures of the components:

In other words

Ob (if E then C1; else C2 end if;) = Ob(C1) + Ob(C2)
Ct (if E then C1; else C2 end if;) = Ct(C1) + Ct(C2) + Ct(E)

3.  Iteration

Given an observable predicate E, the measures of observability and controllability of the iteration
of a command is a function of the measures of the components:

In other words

Ob (while E loop C1; end loop;) = Ob(C1)
Ct (while E loop C1; end loop;) = Ct(C1) + Ct(E)

III.  Examples

A.  Text Formatter
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Naur [22] investigated the application of formal program proving in the construction of a simple
formatting program.  This program was subsequently tested and analyzed by Goodenough [11].
Meyers [21] translated the program to PL/I and had it tested by a number of professional
programmers.  Basili[2] also used this program in a similar study of test effectiveness.  In a review
of the Meyers study, House [15] stated that the program was virtually untestable since it was so
poorly specified.

Part of the problem was in its reliance on the side-effects of input and output.  For example, the
PL/I output character procedure is shown in Figure 2.

PCHAR: PROCEDURE (C);

DECLARE C CHAR,

OUTLINE (LINESIZE) CHAR STATIC INIT ((LINESIZE) (' ')),

I FIXED DECIMAL (3) STATIC INIT (1);

DECLARE SOUTPUT FILE STREAM;

IF (C=LINEFEED)

  THEN DO;

PUT FILE (SOUTPUT) SKIP EDIT (STRING (OUTLINE)) 

      (A (LINESIZE));

OUTLINE = ' ';

I = 1;

    END;

  ELSE DO;

OUTLINE (I) = C;

I = I + 1;

    END;

END;

END;

Figure 2.  Output Character Procedure for Formatting Example

This procedure has the side-effects (among others)  of writing a character to the output stream,
changing an implicit column number,  line number, or possibly a page number.  If the command
results include text output displays, subsequent executions of  PCHAR(X) result in different
results, so PCHAR is not observable.  In order to test it, an observable and controllable extension
such as

procedure PCHART(COLUMN: in COLUMN_TYPE;
LINE: in LINE_TYPE;
PAGE: in PAGE_TYPE;
FILE: in FILE_TYPE
ITEM: in CHARACTER;
STRING: out STREAM);
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can be defined so that the execution of this command would yield the same result for equal
arguments.  The execution of this procedure will write all literal "printable" characters to a
specified output stream.  In this example, the observability index is 4 and the controllability index
is 1.  Given the following domain cardinalities for the test

|COLUMN_TYPE| = 30
|LINE_TYPE| = 66
|PAGE: in PAGE_TYPE| =10
|FILE_TYPE| = 2
|CHARACTER| = 84

|STREAM|  = 20084

The STREAM cardinality assumes that a stream is 200 characters.  The observability measure is
21.7 and the controllability measure is 642.

B.  Calendar Program

This program, initially proved correct, was later discovered to have several errors.  This program
is discussed in Geller[10] and Lamport[18].  The program is specified in ALGOL-W in Figure 3.

The procedure is not observable since there is no output.  It is also not controllable: for example,
in the procedure, day1 is allowed be negative; allowing negative-valued days indicates an error in
the specification.

An observable and  controllable extension can be given as:

procedure calendart (day1, day2 in : DAY_TYPE;
 month1, month2 in MONTH_TYPE;

year: in YEAR_TYPE;
days_between: out POSITIVE_INTEGER);

This modification required five new inputs and one new output.  Given the following domain
cardinalities for a test:

|DAY_TYPE| =31
|MONTH_TYPE| = 12
|YEAR_TYPE| =300

|POSITIVE_INTEGER| = 231

The observability measure is 25.3 and the controllability measure is 31.
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procedure calendar (integer value day1, month1, day2, month2, year);
begin
integer days;
if month2 = month1 then days := day2 - day1

comment  if the dates are in the dame month, we can
compute the number of days between them

immediately
else
begin
integer array (1::12);
daysin(1):=31; daysin(3):=31; daysin(4):=31;

daysin(5):=31; daysin(6):=31; daysin(7):=31;
daysin(8):=31; daysin(9):=31; daysin(10):=31;
daysin(11):=31; daysin(12):=31;
if ((year rem 4) := 0) or

((year rem 100):= 0) and (year rem 400):= 0)

then daysin(2) := 28
else daysin(2) := 29;
comment    set daysin (2) according to whether or

     not year is a leap year;
days := day2 + daysin(month1) - day1);

comment    this gives (the correct number of days-

     days in complete intervening months);
for I := month1 + 1 until month2 - 1 do

days := daysin(I) + days;
comment     add in the days in complete intervening

months;

end;
write ( days );
end;

Figure 3.  The Calendar Program

C.  91 Function

This function was also discussed by Geller in [10] as an example of a program that was proved
correct.  The function returns the number 91 when X=101 or returns
X-10 when X>100.  Its full specification is

function F(X: in INTEGER) return INTEGER is
begin

if X>100 then return X-10
else return F(F(X+11));

end if;
end;

The function is observable.  It is not controllable since it does not return all integers.  A
controllable extension can be defined with the auxiliary type

type RETURN_TYPE is new INTEGER range 91..MAX_INT;
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If MAX_INT has a value of 231 then the controllability measure is

log2(231 - 90) = 30.99.

D.  Concurrent Tasks

This example demonstrates a common testing problem seen in transaction processing.  The testing
anomaly is discussed in Eswaren et al[4], and Gardarin and Valduriez [9].  In Ada-like syntax, we
have

procedure DBMS is
type T is ...
DATA: T;
READ (D: in T; X: out T) is .. end;  -- read D into X
WRITE (X: in T; D: out T; ) is .. end;  -- write X onto D
function UPDATE (X: in T) return T) is ... end;
task type TRANSACTION;
task body TRANSACTION is

Y: T;
begin

READ (DATA, Y);
...
Y := MODIFY(Y);
...
UPDATE (Y,DATA);

end TRANSACTION;

A, B: TRANSACTION;
begin

null;
end DBMS;

If READ and UPDATE are observable and controllable in a sequential execution environment,
they are not observable and controllable in a concurrent execution environment because of the
side-effects due to the scheduling of operations.  For example, suppose while task A starts reading
DATA, task B has already read and updated DATA.  Any subsequent reference to DATA by A
yields different results.  Consequently, READ is not observable.  Moreover, any updates made by
B are lost.  Consequently, UPDATE is not controllable.  Procedures READ and WRITE have
observable and controllable extensions if the tasks can be provided with serializable schedules [9]:
read and updating must be encapsulated so that these operations appear as if executing



Testability of Software Components

20

sequentially.  Observable and controllable extensions may introduce the states GLOBAL_TIME
and LOCK? as extra input and outputs.

IV. Discussion

A. Software Requirements, Specifications, and Domain Testability

A key principle of software engineering is that one of the best ways to prevent errors and to
improve the effectiveness of testing is by having a good specification and a good set of functional
requirements.

Knowledge of module inputs, outputs, and states do not require executable programs: they should
be stated in a functional requirement or design specification.  Consequently, testability can be
assessed from program specifications.  By incorporating the ideas of observability and
controllability into the requirement and specification process, hidden program states are made
explicit in the specification.
This means that the testing task of “identifying the input and output, states, and state transitions,”
and modifying the program so that these characteristics are observable and controllable is
simplified.

By building software from domain testable specifications, software builders do not need to waste
time on input and output inconsistencies and the resultant program modifications.  A domain
testable program reduce the redundancy of test sets (and consequently, the amount of testing).
The test results are also more readable, since implicit states are made explicit.

B.  Advantages of Domain Testability: An Experiment

As observed above, programs developed from domain testable specifications should be “easier” to
test.  The following experiment shows that it takes less time to build and test a program
developed from a domain testable specification than a similar program developed from a non-
domain testable specification.

Eight undergraduate students were asked to build and test two Text Formatting programs in a
language of their choice.  They were given two references on the Text Formatter program, [15]
and [21] to help them develop their specifications.

For the first program, all students were asked to use the Meyers PL/I program as a specification
and translate the PL/I program into the language of their choice.  As observed in Section III.A,
this PL/I program contains components that are neither observable and controllable. They were
then asked to test the translated program to determine if their translation uncovered any of the 15
errors documented in [21].  They were not required to debug the program.  The students
recorded the number of hours required for this build-and-test activity.



Testability of Software Components

21

The second program involved a total redesign of the Text Formatter.  The students were split into
two groups.  Each student in Group A developed a domain testable specification of the Text
Formatter: their functions and procedures were specified to be domain testable as indicated in
Section III.A.  Each student in Group B did not develop a domain testable specification.  They
were then asked to test the redesigned program to determine if their program uncovered any of
the 15 errors documented in [21].  The students also recorded the number of hours required for
this build-and-test activity.

Our  hypothesis is that there is a measurable difference in time for the build-and-test activities
between domain testable and non-domain testable specifications.

The results of the experiment are in Figure 4.

Translation Redesign Redesign Time

Student Time Time Translation Time

Rivera 4 2.5 0.625

Hendrie 8 5 0.625

Finegan 8 5 0.625

Huang 11 9 0.818181818

Aoki 13 11 0.846153846

Ip 5 4.75 0.95

Chieu 10 10 1

Kornish 7.5 10.5 1.4

Average 8.3125 7.21875 0.861166958

Std. Deviation 2.99 3.05 0.26

Figure 4.  Text Formatter Experiment: Results.

As expected, there are large variances in reported development time.  One reason for these
variances may be due to a student bias in reporting times.  In order to eliminate this bias, we
compute a normalizing ratio

R = Redesign Time

Translation Time

which provides a normalized measure of productivity for each individual student.

In this experiment, the average value of R is 0.87; this means that the time required to develop a
“testable” program from the original PL/I specification was, in most cases, at least as great as the
time required to develop a redesigned program.  This was noted informally in [15].
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When we display the results in Figure 4 by Group, we see the advantages of  a domain testable
specification.  This is seen in Figure 5 for Group A and Figure 6 for Group B.

Translation Redesign Redesign Time

Student Time Time Translation Time

Aoki 13 11 0.846153846

Finegan 8 5 0.625

Huang 11 9 0.818181818

Rivera 4 2.5 0.625

Average 9 6.875 0.728583916

Std. Deviation 3.92 3.84 0.12

Figure 5.  Text Formatter Experiment: Group A Results.

Translation Redesign Redesign Time

Student Time Time Translation Time

Ip 5 4.75 0.95

Kornish 7.5 10.5 1.4

Chieu 10 10 1

Hendrie 8 5 0.625

Average 7.625 7.5625 0.99375

Std. Deviation 2.06 3.11 0.32

Figure 6.  Text Formatter Experiment: Group B Results.
We see that the average value of R for Group A is 0.72 and the average value of R for Group B is
0.99.  This indicates that it takes on the average 27% less time to build and test a program
developed from a domain testable specification than it takes to build and test a similar program
developed from a non-domain testable specification.

C.  Applying the Measures of Observability and Controllability

The observability and controllability measures of a domain testable component are zero.  For
components that are not domain testable, the observability and controllability measures can
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provide a practical normalized metric for assessing the work involved in modifying a program to
be domain testable.  It is important to note that these metrics indicate testing effort only so far as
the effort required to modify a component to a domain testable form.

The observability and controllability measures can also be used to develop a normalized metric for
for assessing the work involved in modifying a system to be domain testable:  according to the
properties in Section II.C., observability and controllability increase linearly with the number of
components.

The metrics can be calibrated by building a database of program components coupled with the
time used to make these components domain testable.  In this way, the metrics can be used
indirectly to assess testing time.
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V.   Conclusions and Future Work

A computer program can be modeled as a complex state machine that transforms inputs to
outputs.  In a liberal reading of the second law of thermodynamics, since a "perfect" machine does
not exist, it follows that a "perfect" computer program does not exist either.  The goal of testing
is less demanding than the goal of producing a "perfect" program: the testing goal is to determine
the likelihood of a program having errors.  This goal can be met if we understand the meaning of
software testability, as well as software computability.

The significant contribution of this paper was to formally investigate the meaning of software

testability.  We defined a new concept, domain testability, by applying the concepts of
observability and controllability to programs.  We showed that a domain testable program does
not exhibit any input-output inconsistencies.  Consequently, domain testable programs will
support small test sets, where test outputs are easily understood.

We also defined new metrics that can be used to assess the level of effort required in order to
modify a program so that it is domain testable.

Several other areas suggest themselves for future research.

Domain Testability for other programming structures.  Can observability and controllability be
defined for programming structures that are not restricted to commands or expressions, like
definitions, generic units and objects?  Are the denotational methods described in the Appendix
applicable?

Observability and continuity.  Watkins [28] discusses a testing technique  based on a predictor-
corrector strategy that is based on the continuity properties of a real-valued expression procedure.
Can observability be extended to include a topology defined on an input domain, so that the
output is a continuous function of the input?

Domain testability and functional dependencies.  Is there a relationship between the  transitive
functional dependencies (used, for example, in normalizing databases [9]) and the functional
dependencies between inputs and outputs of an observable component?
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APPENDIX

Denotational semantics provides a rigorous mathematical description of the domains and function
spaces in applicative, conventional (von Neumann), and functional programming languages [1].
For our purposes, we explicitly specify the input, output and state transformations for our model
language to define a direct semantics.  The semantics of most conventional programming
languages are usually specified in terms of a continuation semantics. Continuations are used to
represent the meanings of constructs that depend on the rest of the program: state transformations
are specified indirectly [13].  In our discussion of testability, it is easier to consider direct
semantics.

A.  Specification of Test Execution Semantics

A direct semantics requires the specification of syntactic domains, syntactic clauses, semantic
domains, semantic functions, and semantic clauses.  Domains are sets that support recursive
definition [24].

Syntactic domains and clauses specify the form of our language.  We assume that the following
syntactic domains are defined:

Ide
The domain of programming language identifiers includes I, P, F, O,...

Type
The domain of types supported by the programming language includes INTEGER, FLOAT, ...

Exp
The domain of expressions.

Com
The domain of commands.

Def
The domain of definitions.

In the sequel, we denote

D∈Def
T1, T2, ..., Tn,... T*,... ∈Type

F, P, I1, I2, ..., In,... O1, O2, ..., On,... ∈Ide
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Here, a∈S denotes that a is an element of a set S.  Syntactic clauses are used to specify the form
of these domains.  We specify the forms of n-ary expression procedures and command procedures
in a variant of BNF (we follow the notation specified in [13,26]).

Expression procedure abstracts define "functions" for n arguments, n=0:

D::= function F (I1: in T1; I2: in T2; ... , In: in Tn;  ) return T*;

Similarly, command procedure abstracts define command procedures for n input arguments and m
output arguments, n,m=0:

D::= procedure P (I1: in T1; ... , In: in Tn;  O1: out T1*; ...Om: out Tm*);

The syntax of expressions and commands includes the evaluation of expression procedures and
the execution of command procedures:

For  E, E1, E2, ..., En,... ∈  Exp

E ::= F () | F(E1) | F(E1, E2) | ... | F(E1, E2, ..., En) | ...

C ::= P(); | P(E1); | P(O1); | P(E1, O1); | ... | P(E1, ..., En, O1, ..., Om); | ...

Semantic domains and clauses specify the denotations of our language.  We assume that the
following semantic domains are defined:

Err
A domain of error values.

Val

This denotes the domain of values.  We assume that the domain of values includes the domain Err

of error values.

Env = Ide → Val

The environment is the domain of all functions from the domain of identifiers to the domain of
values.   To simplify the discussion, we assume all identifiers are bound to a value (which may be
an error value).  In our notation, A? B denotes the set of functions from A to B.

TypeEnv = Ide → Type

The environment of types is the domain of all functions from the domain of identifiers to the
domain of types.
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State = [Env + TypeEnv] x Input x Output + Err

The states are denoted by the domain of all 3-tuples (u,i,o), where
u ∈Env + TypeEnv, i ∈Input is an input domain and o ∈Output is an output domain.  The
state also includes the domain Err which is used to capture program errors.  State
transformations are caused by the execution of commands and the evaluation of expressions.  In
our notation, A x B denotes a set of pairs (the cartesian product of sets A and B), and A + B

denotes set union.

Semantic functions  and clauses provide the semantics of our language by specifying the
correspondence between the syntax and literal values (the denotations).  We assume that the
following semantic functions are defined:

The semantics of expression evaluation is specified by

E: Exp →  (State →  (Val x State))

This means that the evaluation of an expression depends on the state, and results in a value and a
new state.  For example, the evaluation of the expression procedure F(E) is denoted by

E [ F (E) ] s = (v,s'), for v ∈  Val and s, s' ∈  State

To reduce the number of parentheses, it is convenient to place brackets ( [ ] ) around elements of
a syntactic domain.

In most programming languages, the result of evaluating an expression procedure affects the
state, as in

function SIDE_EFFECT(X: in INTEGER) return INTEGER is
begin

GLOBAL := GLOBAL + 1;
return X*GLOBAL;

end SIDE_EFFECT;

For convenience, we define a projection function getval

getval: Val x State → Val

Command execution depends on the state, and results in a new state:

C: Com → State → State

For example, the evaluation of the command procedure P(E, O) is denoted by
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C [ P (E, O); ] s = s', for s, s' ∈  State

Context evaluation for expressions depends on the state (the TypeEnv) and results in the type of
the expression:

T: Exp → State → Type

For example, the context evaluation of the expression procedure F(E) is denoted by

T [ F (E) ] s = t, where s ∈  State and t ∈  Type

B.  Observability

Given an expression procedure defined by definition

D::= function F(I: in T) return T*;

F is observable if for any s1 and s2,  distinct outputs are generated from distinct inputs:

getval (E [ F(E1) ] s1) = getval (E [ F(E2) ] s2
if
getval (E [ E1 ]  s1) = getval (E [ E2 ]  s2 )

We note that in general, the evaluation of the output of F is a function  F * of the evaluation of
the input and the states, such that for E [ E ] s = (i,s*) and

E [ F(E) ] s = (o, s+)

o = F * (i, s*)

In other words, the evaluation of the function procedure may have a side effect in changing the
state.

Observability implies that the output value of F is a function F of the input expression:

getval (E [ F(E) ] s)  = F (getval (E [ E ]  s) )
or

o = F  (i)
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For example, the following expression procedure is not observable:

function F(X: in INTEGER) return INTEGER is
begin

return X*GLOBAL_VARIABLE;
end F;

Subsequent calls to the function F with the same arguments can yield different results.  In an
environment where GLOBAL_VARIABLE = 0, F(3) = 0.  If the environment is changed after
this function call where GLOBAL_VARIABLE = 2, then F(3) = 6.  We note that

getval (E [ F(E) ] s) 
= getval(E [ GLOBAL]  s) * getval(E [ E ]  s)
= F* (g, e) ≠ F (e)

Observability can be defined for an expression procedure

D::= function F (I1: in T1; I2: in T2; ... , In: in Tn;  ) return T*;

F is observable if distinct outputs are generated from distinct inputs:

getval (E [ F(E11, E21, ..., En1) ] s1) = getval (E [ F(E12, E22, ..., En2)  ] s2
if
getval (E [ E11 ]  s1) = getval (E [ E12 ]  s2 )

getval (E [ E21 ]  s1) = getval (E [ E22 ]  s2 )

...
getval (E [ En1 ]  s1) = getval (E [ En2 ]  s2 )

Similar definitions of observability are defined for commands.  The execution of a Command
Procedure is observable if distinct outputs are generated from distinct inputs.  For explicit outputs
bound in the procedure abstract, the execution of C(E, O) is output observable where for C(E1,

O1) and C(E2, O2)

E [ O1 ] s1 = E [ O2 ] s2 if  getval (E [ E1 ] s1) = getval(E [ E2 ] s2)
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C.  Controllability

Given a state s, the domain of values of the evaluation map for expressions is usually a subset of
the target type:

T [ F ] s ⊇ { getval(E [ F(E) ] s) | for all E ∈  Exp }

For example, given the expression procedure G

function G(X: in POSITIVE) return POSITIVE is
begin

return X mod 3;
end;

G is observable since G returns a  subset of the type POSITIVE, for every  state s:

POSITIVE ⊇ { getval(E [ G(E) ] s), for all E ∈  Exp } = {0, 1, 2}

An evaluation of expression procedure F(E) is controllable if, for any state s, the domain of values
of the evaluation map  equals its type:

T [ F ] s = ∈  { getval(E [ F(E) ]  s )| for all E ∈  Exp }

For example, the expression procedure G is not controllable.

C.  Observable Extensions

Let expression procedure F have definition abstract

D::= function F (E: in T) return T*;

F has an observable extension if there exists an observable expression procedure Fo, with
definition abstract

D::= function Fo (E1: in T1; E2: in T2; ... ; En: in Tn) return T*;

such that for all E ∈  Exp  and any state s, there exists a state s* such that

getval(E [ F(E) ]  s) = getval(E [ Fo (E1, E2, ... ,En) ]  s*)
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For example, the following expression procedure Fo is an observable extension of F:

function Fo (X: in INTEGER; G: in INTEGER) return INTEGER is
begin

return X*G;
end Fo;

Fo is observable, since

getval(E [ Fo (A1, A2) ] s )

= getval(E [ A1 ] s)* getval(E [ A2 ] s)

= getval(E [ Fo (B1, B2) ] s)

= getval(E [ B1 ] s)* getval(E [ B2 ] s)

as long as both

getval(E [ A1] s) = getval(E [ B1] s)

getval(E [ A2] s) = getval(E [ B2] s)

Moreover, for all states we can set

getval(E [ GLOBAL] s) = getval(E [ E2 ] s)

so that
getval(E [ F(E) ]  s)

= getval(E [ GLOBAL]  s) * getval(E [ E ] s)
=  getval(E [ E1 ]  s) * getval(E [ E2 ] s)

= getval(E [ Fo (E1, E2) ]  s)

Let command procedure P have definition abstract

D::= procedure P (E: in T; O: out T*);

P has an observable extension of P if there exists an observable command procedure Po, with
definition abstract

D::= procedure Po (E1: in T1; E2: in T2; ... ; En: in Tn; O*: out T*);
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such that for all E ∈  Exp  and any state s, there exists a state s* such that

E [ O* ]  r* = E [ O ] r

where

r *= C [ Po (E1, E2, ... ,En,  O*); ]  s*

r  =  C [ P(E, O); ]  s

D.  Controllable Extensions

F has a controllable extension if there exists a controllable expression procedure Fc, with
definition abstract

D::= function Fc (E1: in T1; E2: in T2; ... ; En: in Tn) return Tc;

such that for all E ∈  Exp  and any state s, there exists a state s* such that

getval(E [ F(E) ]  s) = getval(E [ Fc (E1, E2, ... ,En) ] s*)

For example, the following expression procedure Gc is a controllable extension of G (defined in
Section II.C):

type Small is POSITIVE range 0..2;

function Gc (X: in POSITIVE) return SMALL is
begin

return SMALL'(X mod 3);

end Gc;

Fc is controllable, since

{ getval(E [ Fc (E) ] s) | for all E ∈  Exp } = { 0,1,2 } = SMALL = T [ Fc ] s

Moreover, for all states s,

E [ G(E) ]  s= E [ Gc (E) ]  s



Testability of Software Components

36

P has a controllable extension if there exists a controllable command procedure Pc, with definition
abstract

D::= procedure Pc (E1: in T1; E2: in T2; ... ; En: in Tn; O*: out T+);

such that for all E ∈  Exp  and any state s, there exists a state s* such that

E [ O* ] r* = E [ O ]  r

where

r* = C [ Pc (E1, E2, ... ,En,  O*); ]  s*

r = C [ P(E, O); ]  s




