
Tested Paradigm to Include Optimization in

Machine Learning Algorithms

Aishwarya Asesh
School of Computing Science and Engineering

VIT University

Vellore, India

Abstract—Optimization is considered to be one of the pillars

of statistical learning and also plays a major role in the design

and development of intelligent systems such as search engines,

recommender systems, and speech and image recognition

software. Machine Learning is the study that gives the

computers the ability to learn and also the ability to think

without being explicitly programmed. A computer is said to

learn from an experience with respect to a specified task and its

performance related to that task. The machine learning

algorithms are applied to the problems to reduce efforts.

Machine learning algorithms are used for manipulating the data

and predict the output for the new data with high precision and

low uncertainty. The optimization algorithms are used to make

rational decisions in an environment of uncertainty and

imprecision. In this paper a methodology is presented to use the

efficient optimization algorithm as an alternative for the

gradient descent machine learning algorithm as an optimization

algorithm.

 Keywords—BFGS;Cost Function;Data Analysis

I. INTRODUCTION

Machine Learning is a field that grew out of artificial
intelligence giving new capabilities for computers. In a world
of high uncertainty and imprecision the decisions should be
taken which provide results in an efficient way. For this
purpose machine learning algorithms are used. The amount of
data in the world seems increasing and computers make it
easy to save the data. As the volume of data increases,
inexorably, the proportion of it that people understand
decreases alarmingly [5]. When there are very large amounts
of data, there is a need to use the efficient algorithms for data
analysis and providing accurate results.

Depending on the types of data, machine learning
algorithms are further classified into supervised learning
algorithm, unsupervised learning algorithm, reinforcement
learning algorithm and others. Supervised learning algorithm
refers to the fact that given an algorithm a data set and the
task of the algorithm is to produce the right answers. This is
also called a regression problem. Regression problem
provides a continuous valued output. The term classification
in the supervised learning refers to the fact that the algorithm
is trying to predict a discrete valued output. In a supervised
learning algorithm, the data is a set of training examples with
the associated correct answers. The algorithm learns to
predict the correct answer from this training set. An example
of this would be learning to predict whether an email is spam
if given a million emails, each of which is labelled as spam or
non-spam. Unsupervised learning algorithm is also called as a

clustering algorithm. Unsupervised learning algorithm breaks
the data into clusters. In unsupervised learning algorithm the
algorithm can find the trends in the data it is given without
looking for some specific correct answer. The dataset is given
as input to a learning algorithm and the hypothesis is formed.
The hypothesis is a function that takes the dataset and gives
the output precisely. The hypothesis can be represented as a
linear function and nonlinear function depending on the type
of data and the amount of datasets. A models performance is
quantified by cost function. A cost function is computed
using some parameters and then it is minimized to find the
correct values for these parameters. Based on the values
found by minimizing the cost function the hypothesis
function is formed. An optimization problem is generally the
problem of finding the best solution from all feasible
solutions. Gradient descent and BFGS are the optimization
problems. The gradient descent algorithm is used for finding
the parameters. Gradient descent algorithm is an optimization
algorithm used in many applications of machine learning.
The aim of this paper is to explore the various stages
involved in implementing optimization methods and choosing
the appropriate one for a given task. From an optimization
point of view learning in a neural network is equivalent to
minimizing a global error function which is multivariate
function that depends on the weights in the network [9].

II. GRADIENT DESCENT ALGORITHM

i. Gradient Descent Algorithm

Gradient descent algorithm offers a very good perspective for

solving problems related to data analysis. It is an algorithm

that is also used to minimize functions. Gradient descent

algorithm when given a function with an initial set of

parameter values starts the procedure iteratively and moves

towards the parameter values that minimize the function. The

iterative minimization is achieved by taking steps in the

negative direction of the function gradient. The gradient

descent can take many iterations to compute a precise local

minimum. There are a large number of people still using

gradient descent on neural networks and many other

architectures. Gradient descent algorithm exploits the datasets

given by the derivative of the function that is to be

minimized. The goal of linear regression function is to fit a

line corresponding to the dataset.

The datasets can be plotted on a graph using the standard line

equation y = mx+c where m is the slope of the line and b is

the y intercept of the line. The best line that fits the given

datasets can be found by finding the best set of slope m and y

intercept b. A standard approach to solve this type of problem

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020334

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

273

is to define the cost function that takes the data sets as the

input and returns the error value based on how well the line

fits the dataset. The hypothesis function picks the input data

and predicts the output for that input precisely. The sum the

square of distances between each point’s y value and the

candidate line’s y value is calculated for computing the error

for the line that fits the dataset by iterating through each point

in the dataset. It is always suggested to square this distance to

ensure that it is positive and to make the cost function

differentiable. Gradient descent can also be used to solve the

system of nonlinear equations. Gradient descent is an

iterative optimization procedure that uses this information to

adjust a function’s parameters. It takes the value of the

derivative, multiplies it by a small constant called as learning

rate and subtracts the result from the current parameter value.

This is repeated for the new parameter value and so on until a

minimum is reached. The datasets along with the standard

line are pointed on a graph as shown in figure 1 and figure 2.

Figure 1

When the function is minimized the best line that fits the data

is drawn over the dataset. The equation for gradient descent

algorithm after partial differentiation can be calculated by

following the above procedure and is shown below.

(theta)j := (theta)j – (alpha/m) * Σ(i=1 to m) (htheta(x(i))-

y(i))xj(i) (for all j)

The values of theta are to be updated simultaneously. Here m

is the number of training sets or data sets and theta is the

parameter. If alpha is small then the algorithm takes small

steps. If it is larger the algorithm takes big steps. It is also

called as batch gradient descent. Each step of the gradient

descent uses all the training examples.

Figure 2

ii. Computational Example

The learning rate determines the step size and hence how

quickly the search converges. If it is too large and the cost

function has several minima, the search will overshoot and

miss a minimum entirely. If it is too small, progress toward

the minimum may be slow. The gradient descent can only

find a local minimum. The example of the gradient descent

algorithm implemented in octave and the screenshot of the

code for the cost function and the values of the parameters

are shown below in figure 3 and figure 4.

Figure 3

Taking the values of the function as

X = [1 1; 1 2; 1 3];

y = [1; 2; 3];

theta = [0;1];

The output cost function value after applying gradient
algorithm is zero. The corresponding screenshot of the
implementation in octave is shown in figure 4.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020334

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

274

 Figure 4

In this way the algorithm should be implemented for different
values of theta. For different values of theta the
corresponding cost function values are computed. All the
values of cost function are noted down and the lowest value
among them is considered to be the best value. The values of
theta for which the cost function’s value is least are the
correct values for the hypothesis function that gives the
gradient descent boundary.

iii. Disadvantages of Gradient Descent

There are equal disadvantages of using gradient descent
algorithm on the datasets available. The disadvantages are as
given below.

1. The value of step size alpha has to be experimentally
chosen in the gradient descent algorithm.

2. Calculating partial derivatives of the cost function is
mandatory.

3. The number of iterations should be chosen
experimentally in the gradient descent algorithm.

4. Gradient descent algorithm takes time to converge to
the correct point based on the value of alpha.

Gradient descent is relatively a slow algorithm when
compared with the others. As the number of training
examples increases the asymptotic rate of convergence
becomes very slow. Gradient descent increasingly zigzags for
poorly conditioned convex problems. For non-differentiable
functions, gradient methods are ill-defined and difficult to
find the local minimum. Gradient descent can be slow.
Taking infinitesimal steps in the direction of the gradient
would take a lot of time to compute, so finite step sizes must
be used to compute faster. The value of precise step size is
unclear. Many algorithms have been developed by people for
adjusting the step size. Many of these algorithms are not
robust to noise and they scale badly with the number of
parameters. Gradient descent where the step size is adjusted
by a simple momentum heuristic is used by many people.
Gradient descent on many architectures does not result in a
global optima.

III. BROYDEN-FLETCHER-GOLDFARB-SHANNO

ALGORITHM

i. BFGS Algorithm

The family of Quasi-Newton methods to mimic Newton’s

Method, so it is called as Quasi-Newton method. The

approximations of the Hessian based on gradient and past

update step information are used in this method. Quasi-

Newton methods are faster per every iteration than the

Newton’s method as they are not explicitly computing the

Hessian. Newton’s method is an alternative to the gradient

descent methods for fast optimization and convergence.

Newton’s method often converges faster than gradient

descent methods. In the gradient descent algorithm, if the

hypothesis function is non-linear function and there are

enormous amounts of datasets then the algorithm would take

lot of time to compute the cost function values and also takes

time in choosing the learning rate. It will become a difficult

process to calculate the parameter values for the non-linear

function. Considering the above disadvantages for the

gradient descent algorithm for computing cost function,

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm can

be used as an alternative for gradient descent algorithm. Due

to their combination of computational efficiency and

asymptotic convergence, the BFGS quasi-Newton method

and its memory-limited LBFGS variant are considered to be

the efficient algorithms for nonlinear optimization. For

constructing the Hessian matrix, the BFGS method

approximates the objective function locally as a quadratic

without evaluating the second partial derivatives of the

objective function. The Hessian matrix is approximated by

the previous gradient evaluations, such that there won’t be

any vertical scalability issue when computing the Hessian

matrix in the Newton’s method. As a result, BFGS often

achieves faster convergence compared with other first-order

optimization techniques.

The BFGS algorithm techniques can be used in various

machine learning algorithms such as Linear Regression and

Logistic Regression by passing the gradient of objective

function and the updater into optimizer instead of using the

training application programming interfaces. Application of

second order methods is not suggestible practically because

computation of the objective function Hessian inverses

amounts for a very high computational cost. BFGS modifies

gradient descent algorithm by introducing a Hessian

approximation matrix computed from finite gradient

differences. The BFGS method is considered as one of the

most popular and efficient algorithms of this class. The L-

BFGS is a limited-memory version of BFGS algorithm and is

particularly used for the problems with very large numbers of

variables. The L-BFGS algorithm should be modified to

handle the functions that include non-differentiable

components and constraints as the BFGS is designed to

minimize the functions without constraints. These methods of

modifying the algorithms are called active set methods as it is

based on the concept of the active set. The idea is that the

function and constraints can be simplified when restricted to

a small neighborhood of the current iterate.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020334

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

275

ii. Computational Example

BFGS method is based on Newton's method but performs

different calculations in an efficient way.

Here is a sample session to find the optimum for the

following function:

y = 10 + (X (1) - 2) ^2 + (X (2) + 5) ^2

The above function resides in file fx1.m. The search for the

optimum 2 variables has the initial guess of [0 0] and with a

minimum guess refinement vector [1e-5 1e-5]. The search

employs a maximum of 100 iterations, a function tolerance of

1e-7, and a gradient tolerance of 1e-7. The corresponding

screenshots of the function fx1 and the implementation of the

BFGS algorithm in octave are shown below.

Figure 5

Figure 6

IV. RESULTS

The BFGS algorithm has few advantages over the gradient

descent algorithm such as BFGS increases the efficiency of

the computation. There is no need to pick alpha manually

using the BFGS algorithm. BFGS is often considered to be

faster than the gradient descent. The only disadvantage with

BFGS over gradient descent algorithm is that it is more

complex. The BFGS method is used to train the hypothesis

function properly and provide the accurate predictions for the

new inputs by giving precise parameter values. Several

experiments are performed and implemented using MATLAB

and Octave and the results proved that the BFGS algorithm is

efficient in finding the hypothesis and predictions than the

Gradient Descent algorithm. The disadvantage of the

optimization algorithms like BFGS and Conjugate Gradient

are that they are more complex algorithms than the gradient

descent algorithm and are difficult to understand and

implement. BFGS helps in predicting the output for the

nonlinear second order equations. Each BFGS iteration will

be more expensive but it takes fewer of the iterations to reach

a local minimum.

V. CONCLUSION

BFGS is a quasi-Newton method and will converge in fewer

steps than gradient descent and has a little less tendency to

get stuck while performing computations. Indeed, it has been

noted that in cases where BFGS does not encounter any non-

smooth point, it often converges to the optimum [14].

Gradient descent algorithm computes matrix-vector products,

which is useful if directional derivatives can be calculated

while the BFGS performs vector-vector products. BFGS will

calculate approximate Hessians using inner products of

gradient information so the gradient descent analysis does not

apply to BFGS. It is likely to get convergence in fewer

iterations with BFGS than the gradient descent algorithm.

From the above implementations of both the gradient descent

and BFGS algorithms, BFGS algorithm will be faster and

reaches local minimum in fewer steps. This paper described

the Gradient Descent and BFGS methods in the context of

linear systems and the relationships between each of the

algorithms. This paper presents a future scope for the

applications of optimization algorithms in the data analysis

and predictions. It also gives the scope on how to use the

optimization algorithms efficiently accordingly for producing

more efficient and accurate results. The implementation of

these algorithms demonstrate that BFGS is the best choice for

well-conditioned problems because of its faster convergence

to the local minimum. BFGS optimization algorithm is

always to be chosen as an alternative for gradient descent

accordingly for producing result as precisely as possible.

REFERENCES

[1] Malouf, Robert (2002). "A comparison of algorithms for maximum
entropy parameter estimation". Proc. Sixth Conf. on Natural Language
Learning (CoNLL). pp. 49–55.

[2] Andrew, Galen; Gao, Jianfeng (2007). "Scalable training of L₁-
regularized log-linear models". Proceedings of the 24th International
Conference on Machine Learning.

[3] C.; Byrd, Richard H.; Lu, Peihuang; Nocedal, Jorge (1997). "L-BFGS-
B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale
bound constrained optimization". ACM Transactions on Mathematical
Software 23 (4): 550–560.

[4] Fletcher, Roger (1987), Practical methods of optimization (2nd ed.),
New York: John Wiley & Sons, ISBN 978-0-471-91547-8.

[5] Venkata Karthik Gullapalli and Aishwarya Asesh, Data Trawling and
Security Strategies, ISSN – 2278-8727, IOSR Journal of Computer
Engineering, Volume 16, Issue 6, Ver. 1, Nov - Dec 2014.

[6] Danilo P Mandic, A Generalized Normalized Gradient Descent
Algorithm, IEEE Signal Processing Letters, Vol. 11, No. 2, February
2004.

[7] Freund, Y., Iyer, R., Schapire, R., & Singer, Y. (2003).An efficient
boosting algorithm for combining preferences. Journal of Machine
Learning Research, 4,933–969.

[8] Herbrich, R., Graepel, T., & Obermayer, K. (2000).Large margin rank
boundaries for ordinal regression Advances in Large Margin
Classifiers, MIT Press (pp. 115–132).

[9] Martin F. Moller, A Scaled Conjugate Gradient Algorithm for fast
Supervised learning, ISSN 0105-8517, Daimi PB 339, November 1990.

[10] D. E. Goldberg and J. H. Holland, Genetic Algorithms and machine
learning, Guest Editorial, Machine Learning 3: 95-99, 1988 Kluwer
Academic Publishers - The Netherlands.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020334

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

276

[11] R. Johnson and T. Zhang, Accelerating stochastic gradient descent
using predictive variance reduction, Adv. Neural Inf. Process. Syst., 26
(2013), 315–323.

[12] Mokbnache L., Boubakeur A. (2002) ‘’Comparison of Different Back-
Propagation Algorithms used in The Diagnosis of Transformer Oil’’
IEEE Annual Report Conference on Electrical Insulation and Dielectric
Phenomena, 244-247.

[13] Charalambous C. (1992) Conjugate Gradient Algorithm for Efficient
Training of Artificial Neural Networks, IEEE Proceedings, 139 (3),
301-310.

[14] Jin Yu, S. V. N. Vishwanathan, Simon Gunter, Nicol N. Schraudolph,
A Quasi-Newton Approach to Non Smooth Convex Optimization
problems in Machine Learning, Journal of Machine Learning Research,
March 2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020334

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

277

