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Abstract—Optimization is considered to be one of the pillars 

of statistical learning and also plays a major role in the design 

and development of intelligent systems such as search engines, 

recommender systems, and speech and image recognition 

software. Machine Learning is the study that gives the 

computers the ability to learn and also the ability to think 

without being explicitly programmed. A computer is said to 

learn from an experience with respect to a specified task and its 

performance related to that task. The machine learning 

algorithms are applied to the problems to reduce efforts. 

Machine learning algorithms are used for manipulating the data 

and predict the output for the new data with high precision and 

low uncertainty. The optimization algorithms are used to make 

rational decisions in an environment of uncertainty and 

imprecision. In this paper a methodology is presented to use the 

efficient optimization algorithm as an alternative for the 

gradient descent machine learning algorithm as an optimization 

algorithm. 
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I.  INTRODUCTION  

Machine Learning is a field that grew out of artificial 
intelligence giving new capabilities for computers. In a world 
of high uncertainty and imprecision the decisions should be 
taken which provide results in an efficient way. For this 
purpose machine learning algorithms are used. The amount of 
data in the world seems increasing and computers make it 
easy to save the data. As the volume of data increases, 
inexorably, the proportion of it that people understand 
decreases alarmingly [5]. When there are very large amounts 
of data, there is a need to use the efficient algorithms for data 
analysis and providing accurate results.  

Depending on the types of data, machine learning 
algorithms are further classified into supervised learning 
algorithm, unsupervised learning algorithm, reinforcement 
learning algorithm and others. Supervised learning algorithm 
refers to the fact that given an algorithm a data set and the 
task of the algorithm is to produce the right answers. This is 
also called a regression problem. Regression problem 
provides a continuous valued output. The term classification 
in the supervised learning refers to the fact that the algorithm 
is trying to predict a discrete valued output. In a supervised 
learning algorithm, the data is a set of training examples with 
the associated correct answers. The algorithm learns to 
predict the correct answer from this training set. An example 
of this would be learning to predict whether an email is spam 
if given a million emails, each of which is labelled as spam or 
non-spam. Unsupervised learning algorithm is also called as a 

clustering algorithm. Unsupervised learning algorithm breaks 
the data into clusters. In unsupervised learning algorithm the 
algorithm can find the trends in the data it is given without 
looking for some specific correct answer. The dataset is given 
as input to a learning algorithm and the hypothesis is formed. 
The hypothesis is a function that takes the dataset and gives 
the output precisely. The hypothesis can be represented as a 
linear function and nonlinear function depending on the type 
of data and the amount of datasets. A models performance is 
quantified by cost function. A cost function is computed 
using some parameters and then it is minimized to find the 
correct values for these parameters. Based on the values 
found by minimizing the cost function the hypothesis 
function is formed. An optimization problem is generally the 
problem of finding the best solution from all feasible 
solutions. Gradient descent and BFGS are the optimization 
problems. The gradient descent algorithm is used for finding 
the parameters. Gradient descent algorithm is an optimization 
algorithm used in many applications of machine learning. 
The aim of this paper is to explore the various stages 
involved in implementing optimization methods and choosing 
the appropriate one for a given task. From an optimization 
point of view learning in a neural network is equivalent to 
minimizing a global error function which is multivariate 
function that depends on the weights in the network [9]. 

 
II. GRADIENT DESCENT ALGORITHM 

i. Gradient Descent Algorithm 

Gradient descent algorithm offers a very good perspective for 

solving problems related to data analysis. It is an algorithm 

that is also used to minimize functions. Gradient descent 

algorithm when given a function with an initial set of 

parameter values starts the procedure iteratively and moves 

towards the parameter values that minimize the function. The 

iterative minimization is achieved by taking steps in the 

negative direction of the function gradient. The gradient 

descent can take many iterations to compute a precise local 

minimum. There are a large number of people still using 

gradient descent on neural networks and many other 

architectures. Gradient descent algorithm exploits the datasets 

given by the derivative of the function that is to be 

minimized. The goal of linear regression function is to fit a 

line corresponding to the dataset.  

The datasets can be plotted on a graph using the standard line 

equation y = mx+c where m is the slope of the line and b is 

the y intercept of the line. The best line that fits the given 

datasets can be found by finding the best set of slope m and y 

intercept b. A standard approach to solve this type of problem 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020334

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

273



is to define the cost function that takes the data sets as the 

input and returns the error value based on how well the line 

fits the dataset. The hypothesis function picks the input data 

and predicts the output for that input precisely. The sum the 

square of distances between each point’s y value and the 

candidate line’s y value is calculated for computing the error 

for the line that fits the dataset by iterating through each point 

in the dataset. It is always suggested to square this distance to 

ensure that it is positive and to make the cost function 

differentiable. Gradient descent can also be used to solve the 

system of nonlinear equations. Gradient descent is an 

iterative optimization procedure that uses this information to 

adjust a function’s parameters. It takes the value of the 

derivative, multiplies it by a small constant called as learning 

rate and subtracts the result from the current parameter value. 

This is repeated for the new parameter value and so on until a 

minimum is reached. The datasets along with the standard 

line are pointed on a graph as shown in figure 1 and figure 2. 

 

 
Figure 1 

 

When the function is minimized the best line that fits the data 

is drawn over the dataset. The equation for gradient descent 

algorithm after partial differentiation can be calculated by 

following the above procedure and is shown below.  

 

(theta)j := (theta)j – (alpha/m) * Σ(i=1 to m) (htheta(x(i))-

y(i))xj(i) (for all j)  

 

The values of theta are to be updated simultaneously. Here m 

is the number of training sets or data sets and theta is the 

parameter. If alpha is small then the algorithm takes small 

steps. If it is larger the algorithm takes big steps. It is also 

called as batch gradient descent. Each step of the gradient 

descent uses all the training examples. 

 
Figure 2 

 

ii. Computational Example 

The learning rate determines the step size and hence how 

quickly the search converges. If it is too large and the cost 

function has several minima, the search will overshoot and 

miss a minimum entirely. If it is too small, progress toward 

the minimum may be slow. The gradient descent can only 

find a local minimum. The example of the gradient descent 

algorithm implemented in octave and the screenshot of the 

code for the cost function and the values of the parameters 

are shown below in figure 3 and figure 4. 

 

 
Figure 3 

Taking the values of the function as  

X = [1 1; 1 2; 1 3];  

y = [1; 2; 3];  

theta = [0;1];  

 

The output cost function value after applying gradient 
algorithm is zero. The corresponding screenshot of the 
implementation in octave is shown in figure 4. 
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  Figure 4 

In this way the algorithm should be implemented for different 
values of theta. For different values of theta the 
corresponding cost function values are computed. All the 
values of cost function are noted down and the lowest value 
among them is considered to be the best value. The values of 
theta for which the cost function’s value is least are the 
correct values for the hypothesis function that gives the 
gradient descent boundary. 

iii. Disadvantages of Gradient Descent 

There are equal disadvantages of using gradient descent 
algorithm on the datasets available. The disadvantages are as 
given below. 

 

1. The value of step size alpha has to be experimentally 
chosen in the gradient descent algorithm.  

2. Calculating partial derivatives of the cost function is 
mandatory.  

3. The number of iterations should be chosen 
experimentally in the gradient descent algorithm.  

4. Gradient descent algorithm takes time to converge to 
the correct point based on the value of alpha.  

Gradient descent is relatively a slow algorithm when 
compared with the others. As the number of training 
examples increases the asymptotic rate of convergence 
becomes very slow. Gradient descent increasingly zigzags for 
poorly conditioned convex problems. For non-differentiable 
functions, gradient methods are ill-defined and difficult to 
find the local minimum. Gradient descent can be slow. 
Taking infinitesimal steps in the direction of the gradient 
would take a lot of time to compute, so finite step sizes must 
be used to compute faster. The value of precise step size is 
unclear. Many algorithms have been developed by people for 
adjusting the step size. Many of these algorithms are not 
robust to noise and they scale badly with the number of 
parameters. Gradient descent where the step size is adjusted 
by a simple momentum heuristic is used by many people. 
Gradient descent on many architectures does not result in a 
global optima. 

 

III. BROYDEN-FLETCHER-GOLDFARB-SHANNO 

ALGORITHM 

 

i. BFGS Algorithm 

The family of Quasi-Newton methods to mimic Newton’s 

Method, so it is called as Quasi-Newton method. The 

approximations of the Hessian based on gradient and past 

update step information are used in this method. Quasi-

Newton methods are faster per every iteration than the 

Newton’s method as they are not explicitly computing the 

Hessian. Newton’s method is an alternative to the gradient 

descent methods for fast optimization and convergence. 

Newton’s method often converges faster than gradient 

descent methods. In the gradient descent algorithm, if the 

hypothesis function is non-linear function and there are 

enormous amounts of datasets then the algorithm would take 

lot of time to compute the cost function values and also takes 

time in choosing the learning rate. It will become a difficult 

process to calculate the parameter values for the non-linear 

function. Considering the above disadvantages for the 

gradient descent algorithm for computing cost function, 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm can 

be used as an alternative for gradient descent algorithm. Due 

to their combination of computational efficiency and 

asymptotic convergence, the BFGS quasi-Newton method 

and its memory-limited LBFGS variant are considered to be 

the efficient algorithms for nonlinear optimization. For 

constructing the Hessian matrix, the BFGS method 

approximates the objective function locally as a quadratic 

without evaluating the second partial derivatives of the 

objective function. The Hessian matrix is approximated by 

the previous gradient evaluations, such that there won’t be 

any vertical scalability issue when computing the Hessian 

matrix in the Newton’s method. As a result, BFGS often 

achieves faster convergence compared with other first-order 

optimization techniques.  

 

The BFGS algorithm techniques can be used in various 

machine learning algorithms such as Linear Regression and 

Logistic Regression by passing the gradient of objective 

function and the updater into optimizer instead of using the 

training application programming interfaces. Application of 

second order methods is not suggestible practically because 

computation of the objective function Hessian inverses 

amounts for a very high computational cost. BFGS modifies 

gradient descent algorithm by introducing a Hessian 

approximation matrix computed from finite gradient 

differences. The BFGS method is considered as one of the 

most popular and efficient algorithms of this class. The L-

BFGS is a limited-memory version of BFGS algorithm and is 

particularly used for the problems with very large numbers of 

variables. The L-BFGS algorithm should be modified to 

handle the functions that include non-differentiable 

components and constraints as the BFGS is designed to 

minimize the functions without constraints. These methods of 

modifying the algorithms are called active set methods as it is 

based on the concept of the active set. The idea is that the 

function and constraints can be simplified when restricted to 

a small neighborhood of the current iterate. 
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ii. Computational Example 

BFGS method is based on Newton's method but performs 

different calculations in an efficient way.  

Here is a sample session to find the optimum for the 

following function:  

 

y = 10 + (X (1) - 2) ^2 + (X (2) + 5) ^2  

 

The above function resides in file fx1.m. The search for the 

optimum 2 variables has the initial guess of [0 0] and with a 

minimum guess refinement vector [1e-5 1e-5]. The search 

employs a maximum of 100 iterations, a function tolerance of 

1e-7, and a gradient tolerance of 1e-7. The corresponding 

screenshots of the function fx1 and the implementation of the 

BFGS algorithm in octave are shown below. 

 

 
 

Figure 5 

 

Figure 6 

IV. RESULTS 

The BFGS algorithm has few advantages over the gradient 

descent algorithm such as BFGS increases the efficiency of 

the computation. There is no need to pick alpha manually 

using the BFGS algorithm. BFGS is often considered to be 

faster than the gradient descent. The only disadvantage with 

BFGS over gradient descent algorithm is that it is more 

complex. The BFGS method is used to train the hypothesis 

function properly and provide the accurate predictions for the 

new inputs by giving precise parameter values. Several 

experiments are performed and implemented using MATLAB 

and Octave and the results proved that the BFGS algorithm is 

efficient in finding the hypothesis and predictions than the 

Gradient Descent algorithm. The disadvantage of the 

optimization algorithms like BFGS and Conjugate Gradient 

are that they are more complex algorithms than the gradient 

descent algorithm and are difficult to understand and 

implement. BFGS helps in predicting the output for the 

nonlinear second order equations. Each BFGS iteration will 

be more expensive but it takes fewer of the iterations to reach 

a local minimum. 

V. CONCLUSION 

BFGS is a quasi-Newton method and will converge in fewer 

steps than gradient descent and has a little less tendency to 

get stuck while performing computations. Indeed, it has been 

noted that in cases where BFGS does not encounter any non-

smooth point, it often converges to the optimum [14]. 

Gradient descent algorithm computes matrix-vector products, 

which is useful if directional derivatives can be calculated 

while the BFGS performs vector-vector products. BFGS will 

calculate approximate Hessians using inner products of 

gradient information so the gradient descent analysis does not 

apply to BFGS. It is likely to get convergence in fewer 

iterations with BFGS than the gradient descent algorithm. 

From the above implementations of both the gradient descent 

and BFGS algorithms, BFGS algorithm will be faster and 

reaches local minimum in fewer steps. This paper described 

the Gradient Descent and BFGS methods in the context of 

linear systems and the relationships between each of the 

algorithms. This paper presents a future scope for the 

applications of optimization algorithms in the data analysis 

and predictions. It also gives the scope on how to use the 

optimization algorithms efficiently accordingly for producing 

more efficient and accurate results. The implementation of 

these algorithms demonstrate that BFGS is the best choice for 

well-conditioned problems because of its faster convergence 

to the local minimum. BFGS optimization algorithm is 

always to be chosen as an alternative for gradient descent 

accordingly for producing result as precisely as possible. 
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