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ABSTRACT
We concern ourselves with the hypothesis that two

variables have a perfect disattenuated correlation, hence measure the
same trait except for errors of measurement. This hypothesis is
equivalent to saying, within the adopted model, that true scores of
two psychological tests satisfy a linear relation. Statistical tests
of this hypothesis are derived when the relation is specified with
the exception of the additive constant. Two approaches are presented
and various assumptions concerning the error parameters are used.
Then the results are reinterpreted in terms of the possible existence
of an unspecified linear relation between true scores of two
psychological tests. A numerical example is appended by way of

illustration. (Author)
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TESTING A LINEAR RELATION BETWEEN TRUE SCORES OF TWO MEASURES

Walter Kristof

LIMEY

We concern ourselves with the hypothesis that two variables have a perfect

disattenuated correlation, hence measure the same trait except for errors of

measurement. This hypothesis is equivalent to saying, within the adopted model,

that true scores of two psychological tests satisfy a linear relation. Statisti-

cal tests of this hypothesis are derived when the relation is specified with the

exception of the additive constant. Two approaches are presented and various

assumptions concerning the error parameters are used. Then the results are

reinterpreted in terms of the possible existence of an unspecified linear rela-

tion between true scores of two psychological tests. A numerical example is

appended by.way of illustration,



TESTING A LINEAR RELATION BETWEEN TRUE SCORES OF TWO MEASURES1

1. Introduction

Let X = T + E and Y = U + F be two random variables made up of true

scores T U and errors of measurement E F . Suppose there is a linear

relation between T and U ThEa X and Y may be viewed as measuring che

same dimension, but each individual measurement will be disturbed by an error.

This error will cause X and Y to be less than perfectly correlated although

the disattenuated correlation will still be perfect.

The statistical problem of deciding whether a disattenuated correlation

may be assumed to be perfect is of obvious practical significance. However,

earlier techniques proposed for this purpose (Forsyth & Feldt, 1969, 1970;

Lord, 1957; McNemar, 1958) have been recently assess!d by Lord (1971) as

IIcumbersome, approximate, or flawed."

Lord (1971) suggested instead a procedure based on the construction of a

confidence interval for the coefficientr, of a linear relation between true

scores. This procedure is an adaptation of a result by Villegas (1964).

However, simple techniques for testing whether a disattenuated correlation

is perfect can be obtained even when the statistical assumptions underlying

Lord's suggestion are considerably relaxed. The derivation of such techniques

is the main concern of this paper.

In particular, we plan to proceed as follows. (i) Statistical tests will

be derived for the hypothesis that there is a linear relation between true

scores of two measures. This relation will be specified with the exception of

the additive constant. Two approaches will be presented) and various assump-

tions concerning the error parameters will be used. (ii) The results will be

'Research reported in this paper has been supported by grant GB-18230 from

National Science Foundation.
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reinterpreted in terms of the possible existence of an unspecified linear

relation between true scores. (iii) A numerical example will be given by

way of illustration.

2. First Approach to Testing a Linear Relation Between True Scores

Let X,Y be observed scores, T,U true scores and E,F errors of

measurement on two psychological tests. Suppose that each test has been

divided into two parts with observed scores X2j.K2 arull Y1,Y2 and errors

E1,E2 and F1,F2 We will write E' = El - E2 and F' = F1 - F2 . Let

the division of the tests be such that true scores on the psrts of a given

test may differ only by a constant. We introduce the following four variables:

(1)

a. and b being constants.

X = X1 + X2 T + E

X' = X
1

- X
2

. a + E'

Y = Yl +Y
2
=U+ F

Y' = Y
1

- Y
2

b + F'

The following assumptions concerning second moments of the errors will be

made:

a2
u .
2 2

a
El E2 £1 F2

(ii) Variables E1,E
2'
F
1,
F
2

are pairwise independent with the

possible exception aE = uE / 0
11 22

(iii) Variables T,U are independent of variables E E
2' 1'

F
2

4
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(iii) are equivalent to the following assumptions.

2
E

=
'

and u
2

= a.
2

F F

(ii') Variables E,E',F,F' are pairwise independent with the possible

exception
F

g
E'F'

/ 0 .

(iii') Variables T,U are independent of variables E,E',F,F'

This set of assumptions is somewhat weaker than the usual set of assumptions

about error second moments in classical test theory when repeated measurements

have been obtained. For,
aE F a E2F2

and u
EF E'F'

need not be zero.
1 1

The linear hypothesis we wish to test on the basis of a sample of

observations is

(2) Ho : (31T + (32U y = 0

with specified coefficients P
1

and p2 The additive constant y remains

unspecified,

Let us introduce the following new variables:

z .= pax + p2y = p1T + (32TT + plE + p2F

z = pix' + 2Y = pia + p2b + plE' + p2F'

The variances become

(3)

(JO

2 2 2

aZ
=

p
1
T+p

2

Cf
(31E+(32F

2 2
a 1 =
z plE+p2F

In addition, Z and Z' are independent regardless of



Hence we have

(5)

a
2

a
2

p
1
T+0

2
U

2
= 1 +

a a
2

p
1
E+0

2
F

Precisely when H
0

is correct this reduces to

(6) 1

This result enables us at once to devise the desired statistical test.

The details of this test will depend on additional assumptions that we are

willing to make. We will consider two cases.

Case I: Suppose that each test has been split such that true scores on

the parts of a given test are equal. This implies a = b = 0 . Suppose fur-

ther that expected errors on the two parts of a given test are equal. This

implies expectations zero for E' and 11' . Hence Z' will have expectation

zero.

Case II: Suppose that a and/or b need not be zero. Suppose further

that expected errors on the two parts of a given test need not be equal. This

implies possibly nonzero expectations for E' and F' . Hence Z' need not

have expectation zero.

It will be assumed in each case that errors are multinormally distributed.

However, no distributional assumptions concerning T and U need be made

under Ho . Then) considering (6) and the independence of Z and Z' under

H
0

we obtain at once the following results when a random sample of size N

is given.
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Case I: Let s
2

be the observed sample variance of Z about the sample

mean with df = N - 1 . Let s*
2

be the observed sample variance of Ze
Ze

about zero with df = N . Then, under Ho , the ratio

(7 )
s
2

follows an F distribution with df
1

N - 1 and = N . This provides
2

the desired test.

It will be convenient to express (7) in terms of the original observed

socond moments. Let V be the observed sample variance-covariance matrix of
--s

total scores X = X
1
+ X

2
and Y = Y

1
+ Y

2
(taken about means with df = N - 1 ).

Let V*' be the observed sample variance-covariance matrix of difference scores
-d

X' = X
1

- X
2

and Y' = Y
1

- Y
2

(taken about zero with df = N ). Introduce

the row vector 01,p2) . Then (7) becomes

(8)
L'Irst

F= r--
rit

H
0

will be accepted if this ratio does not exceed the critical value Fa of

the F distribution with dfl = N - 1 , df2 = N when the chosen level of

significance is a . Otherwise H
0

will be rejected. We may also say that

acceptance of Ho is implied precisely when

(9) 2!(Ys - Fc4)2. < 0 .

Case II: The previous definitions of s
2

and V
s

are retained. However, 1
Z -

q

let s
2

'

be the observed sample variance of Z' about the sample mean with
Z 1

df . N - 1 . Then, under Ho , the ratio

7



(10)

s
2

2
s

follows an F distribution with df
1
= df

2
= N - 1 . This provides the

desired test.

Let V be the observed sample variance-covariance matrix of differenced
scores X' = X

1
- X

2
and = Y

1
- Y

2
(taken about means with df = N - 1 ).

Then (10) becomes

F =
L'Y.s2
E. Yd2.

vector as defined before. H
0

will be accepted if this ratio does not exceed

the critical value of the F distribution with dfl = df2 = N - 1 when the

chosen level of significance is a . Otherwise Ho will be rejected. We may

also say that acceptance of H is implied precisely when
0

(12) - Flagdft <

Case II is obviously more general than case I. Any set of data satisfying

the assumptions of case I may be subjected to the test developed for case II.

The corresponding loss of power will be quite negligible unless N is very

small.

Remarks: It has been assumed that each of two psychological tests can be

split into two parts. It will be recognized that the statistical developments

apply as well if two forms of each test are available. The assumptions of case

I are met if two corresponding forms are parallel. We are dealing with case II

if the equality of means requirement is dropped. Equality of variances of two

corresponding.forms is still postulated, however.

8



It is seen that the previous (and following) developments can be general-

ized. Tests of one linear relation between true scores of more than two

psychological tests are obtained if the pattern of the previous derivations

is followed. However, the existence of one linear relation alone would then

not imply that each two tests have a perfect disattenuated correlation. In

fact, true scores of p tests must obey p 1 independent linear relations

in order that this property may hold.

The testing procedure suggested by Lord (1971) and adapted from a result

by Villegas (1964) presupposes that true scores on the two parts of a given

test are equal and that errors on the two parts have equal variances and,

expressly, expectations zero. These assumptions are stronger than those of

our case I. We might speak of a case 0 if we were to include the Lord/Villegas

approach into our classification of cases.

3. Second Approach to Testing a Linear Relation Between True Scores

The approach presented in this section is a correlational one. It may be

somewhat less direct but it will allow us to dispense in a very natural way

with the previous equality of variances requirement of errors on the two parts

of a psychological test (or the two equivalent forms). We will again limit

ourselves to two psychological tests; the extension to p > 2 such tests is

straightforward.

Observed scores on the two parts of a psychological test will again be

signified by X1,X2 and Y1,Y2 and the associated errors of measurement by

El,E2 and Fl,F2 . True scores on the parts will be written as T1,T2 and

1.11,U2 with sums T = T1 + T2 and U = U1 + U2 . Differences T1 - T2 and

U
1
- U

2
are supposed to be constants. The previous assumptions concerning
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second moments of errors along with their normal distribution are retained.

The hypothesis Ho to be tested is again (2).

Let us now introduce the following new variables:

W = (31X1 + (32Y1 = (3171 + (32U1 + fyi + (32Fa.

/AP (32C2 P2Y2 P1T2 P2U2 P12 P2F2

Under H
0

the sums p
1T1

+ p2U1 and p
2
T
2
+ p u2 are constants. Variables

W and W' are independent precisely when Ho is true. However, if Ho is

false, then W and W' will be positively correlated since

1 2

crl4W' crf3

1
T
1
+(3

2
U
1

,f3
1
T
2
+(3

2
U2 V al

1
T+S

2U

Testing Ho will amount to testing whether a population correlation coeffi-

cient maybe assumed to be zero. This is the basic result of the present

approach.

We are in a position to rederiva the previous testing techniques. This

is not surprising at all because the previous variables (3) and the present

variables (13) are linear transforms of each other: W = (z + z')/2 and

14' = (z - z')/2 .

Case I: Under H
0

variables W and 14' have equal expectations and

equal variances. Hence the statistical problem consists in testing whether

the intraclass correlation between W and 14' may be assumed to be zero.

A test of this hypothesis can be written down at once when ma follow

Scheffei (1959, pp. 223-227). His SSA is (N - 1)/2 times the observed

sample variance of W + 14' taken about the sample mean with df = N 1.

Taking (13) into account ma deriva SSA =f1lIfeE(N - 1)/2 . Similarly, Scheffe's

SSe becomes 2.'41EN/2 . This yields exactly the F test as given in (8).

1 0
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Case II: Under H
0

variables W and W' have equal variances but not

necessarily equal expectations. Hence we have to test whether W and W' may

be =correlated. when we know that u
2

= u
2

.

W'

(15)

To this end we introduce the quantity

2s,
u -

sww + sw,w ,

where s s
'

and s denote the usual observed sample second moments
WW TN W'W'

of W and W' taken about sample means ( N - 1 in denominators). Quantity

u is the maximum-likelihood estimator of the correlation between W and W'

when these variables are binormally distributed and u
2
= u

2
. Under H

0
the

W'

ratio

(16) 1 + u
F =

1 - u

follows an F distribution with df
1

= df
2

= N - 1 (Kristof, in press).

Taking (13) into account it is seen that (16) is identical to the F test (11).

One-sidedness of this F test reflects the fact that covariance (14) is non-

negative when Ho is false.

The present correlational approach enables us at once to drop the earlier

2 2 2
assumptions us

1

= a2 1 u
F1

= u
F2

and u
E Fl

= a E2F2 . This new situation

will be named

Case III: Under H
0

variables W and W' need not have equal expecta-

tions nor equal variances. The problem reduces to a very familiar one: We

have to test whether W and W' may be uncorrelated when no restrictions

are imposed on means and variances.

CtIviously Ho will be retained if the sample correlation coefficient

dces not exceed a certain upper limit. Sudh limits corresponding to
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various levels of significance are easily calculated from the t distribution

with df = N - 2 . It should be borne in mind that (14) requires us to employ

a one-sided statistical test.

Let the sample variance-covariance matrix V of the partitioned vector

(X1, X2 . Y2 ) be partitioned accordingly:

(17) V -111/ 1112

/112 Y22

V
11 -and V

22
positive definite. We nay now write-

( 18 )

211/.12t

Knowledge of this quantity enables us to carry out the test of Ho .

V cannot be expected to be symmetric. However, in (18) we may replace
-12

y.:22 by the symmetric matrix (V12 + Vi2)/2 without altering the numerical

value of rww, . In fact, 2t11/12ft E t1(1/12 vidL

4. Testing an Unspecified Linear Relation Between True Scores

The previous results enable us to test hypotheses about vector ft when

the existence of a linear relation between true scores of two psychological

tests is assumed. Depending upon additional assumptions, formulas (8), (11)

or (18) may be used. Conversely, these formulas can be utilized in constructing

nconfidence intervaJs" for 0 . It is obvious that p can be replaced by any

nonzero multiple of it.

However, a linear relation between true scores may not exist at all. This

is equivalent to saying that the disattenuated correlation between two

2



psychological tests is less than perfect. In fact, we may be primarily

interested in testing whether there is aa linear relation between true scores.

The assumption of such an unspecified linear relation will be denoted by No .

It is our aim now to give statistical tests of

Cases I and II: If 171

0
is correct, then there is (up to multiplication)

precisely one nontrivial linear relation between true scores, (31T 4. (32u 4. y = 0

say, with unknown values (31,p2 and y . There cannot be another independent

linear relation if T. and U are to be variables and not constants. Hence,

in order to test R
'

we would use (B) or (11), depending on the case, if

were knomn. Now, since is unknown, let us find the quantity

(19)

in case I and

(20)

2:3Est.
F min ,

L/0 E Y-cit

f3"Vp
= min ,--

in case II when the minimum is taken over all vectors p / o . Let us agree

to retain H exactly when F does not exceed the upper critical value F

of the F distribution with dfl = N - 1 1 df2 = N in case I and dfl = df2 =

N - 1 in case II. This will produce a conservative test of rio If rejection

of 171 occurs, then the true corresponding level 5 will not exceed a ,

< a .

Calculation of F is not difficult. 17 is the smallest eigenvalue of

-1
V V*

-1
in case I and of V V, in case II.

s-41

Case III: Considerations similar to those in cases I and II lead us to

seek the minimum of r
,

when E varies aver all nonzero vectors. This
WW

13
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minimann may be compared with the critical value (level a , df = N - 2 ) of a

product-moment correlation under normality assumlptions when the population cor-

relation is zero. We have to use a one-sided test; only a sufficiently large

positive value of the minimal rww, will lead to rejection of 170 . Again,

the resulting test will be conservative.

According to (18) the minimum of rww, may be written as

(21) r = min
Y.22E

LILI2E

We will think of V as a symmetric matrix; it has already been remarked that
-12

substitution of (V + V' )/2 for V is allowable. We will further suppose
-12 -a2 -12

that V12 is positive definite. Otherwise r would not be a positive quantity
-

and rejection of 11
.101

would not be possible at any level a .

In order to determine r we may proceed as follows.
2

Let V12 = PAP'

with P orthogonal and A positive diagonal and define

16.2ptti .atir = 1

(22) A = A-2P11,/ P672 = .0- -al J.J

B A-2P'Lr22PA-2 = °bull

We derive that

: (23) (r)
2

= max t'Att'Bt .

,: .

1;.

V
il

2
T is procedure was developed in cooperation with Bary G. WingerSky of

j

N ETS. kprogram is available from him.
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Writing E' = (cos , sin 0 ) we seek maximization of the function 71(0) .

E'AEE'BE under variation of 0 . The condition dn/d0 . 0 becomes

(24) g cos
4
0+ g

3
c s 30 sin 0 + g

2
cos

2
0 sin

2
0 + g

1
cos 0 sin

3
0 + g sin

4
0 = 0

with coefficients

g4 = alibi2 +

g3 all(b22 bll) b11(a22 all) 4. 4a12b12

(25)
bll) b12(a22 all)]g2 3Eal2(b22

gl a22(b22 b11) + b22(a22 all)
4a12b12

g0 wal2b22 a22b12

In (24) 0 is no longer a variable; however, it is convenient to retain the

sane symbol.

We see that sin 0 = 0 is a solution of (24) precisely when g4 = 0 .

It suffices to solve the quartic

(26) g(0) E g4ctn40 + g3ctn30 + g2ctn20 + glctn 0 + go = 0

which reduces to a cubic precisely when g4 = 0 Hence there will always be

four solutions of which at least two must be real because n(0) certainly

assumes a nmximva and a minimum.

5. Application

Lord (1957) reported the following observed variance-covariance matrix

for N = 649



86.3979 57.7751 56.8651 58.8986\

57.7751 86.2632 59.3177 59.6683

56.8651

(
59.3177 97.2850 73.8201

58.8986 59.6683 73.8201 97.8192/

The first two variables represent parallel halves of a vocabulary test

administered under very liberal time limits. The last two variables represent

parallel halves of a vocabulary test constructed so as to be as nearly equiva-

lent as possible to the halves of the first test except that the time of

administration was so short that only two per cent of the examinees completed

each half.

We wish to test the hypothesis that the two tests measure the same trait

except for errors of measurement regardless of speed conditions.

It appears that the data should satisfy the assumptions of case I. How-

ever, matrix yl cannot be reconstructed from the available data. We will

therefore proceed according to case II and, for reasons of comparison, also

according to case III. We expect that the two methods should yield nearly

identical results because of the parallelism of corresponding test halves.

Case II: From the given data we find Vs and y.d. to be

v
(288.2113 234.7497\ -1.6829)
234.7497 342.7444)

d -1.6829 47.4640

Equation (21) requires us to determine F , the mallest eigenvalue of 17.sfc-11 .

It is found that r, . 1.45017. With dfl df2 = 648 this value is signifi-

cant at a level a < .01 . We conclude that the trait captured by vocabulary

tests depends on speed conditions.

The significance level can also be determined by means of a t table if

we use a result obtained by Cacoullos (1965) and later independently by Kristof

1 6



(in press). This result states that t = /17 (VT" - 1/(17)/2 follows a t

distribution with df = v when F follows an F distribution with df
1

=

df
2

= v . Abave F corresponds to E . 4.76 with df = 648. Considering

that a one-sided t test is required we determine that a < .0005 .

Case III: We find from the initibL data that

=
59.6683)

V22
56.851 97.2850 59.6683 97.8192

and, after symmetrization,

65.7976 \
-12 65.7976 73.8201

Quartic.(26) was found to have two real and two complex roots. The minimal

correlation ; as required by (21) becann .1839. We convert this into

T 1-1A7/ Ji - ;2 and obtain 7E = 4-76 . This value is to be interpreted

as a one-sided t with df = 647 . We see that it is identical to the value

_
of t in case II. The difference in degrees of freedam is inunaterial. Hence

the two methods gave the same result as expected for the present example.

37
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