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ABSTRACT

This paper describes a method for testing a parametric model of the mean
of a random variable Y conditional on a vector of explanatory variables X
against a semiparametric alternative. The test is motivated by a conditional
moment test against a parametric alternative and amounts to replacing the
parametric alternative model with a semiparametric estimator. The resulting
semiparametric test is consistent against a larger set of alternatives than are
parametric conditional moments tests based on finitely many moment conditions.
The results of Monte Carlo experiments and an application illustrate the
usefulness of the new test.
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TESTING A PARAMETRIC MODEL AGAINST A SEMIPARAMETRIC ALTERNATIVE

1. INTRODUCTION
Consider a parametric model for the mean of a scalar random variable Y

conditional on a random variable X € ®* (L = 1):
E(Y|X=x) = £(x,0), (1)

where f is a known function and § € ®° (K = 1) is a parameter whose value must
be estimated from data. For example, f might be the mean function in a linear
or nonlinear regression model, or it might be the probability that Y = 1
conditional on X = x in a parametric binary response model. The problem
addressed in this paper is to test the hypothesis that (1) is true for the
specified function f and some #.

One way of testing (1) is to specify a parametric alternative to it and
test f(x,f) against the alternative. Most familiar methods for testing (1)
against a parametric alternative belong to a large class called conditional
moments tests (Newey 1985). These tests can have high power against specific
alternatives, but a parametric conditional moments test based on finitely many
moment conditions is not consistent against all alternatives. In particular,
a test of f£(x,#) against a parametric alternative model may be inconsistent if
the alternative is misspecified.

A second possibility is to compare the parametric model with a
nonparametric estimate of E(Y|X=x). Let J, denote a n'/’-consistent estimator
of # in (1) based on a random sample of the distribution of (Y,X). If (1) is
true, the nonparametric estimate and f (x,8,) are equal up to random sampling
error. See Hdrdle and Mammen (1990), le Cessie and van Houwelingen (1991), and

Whang and Andrews (1991) for specification tests based on this idea. Bierens
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(1990) gives a conditional moments test of a parametric model against a
nonparametric alternative. These tests are consistent in all directions but
have characteristics that can cause them to have low power or other kinds of
poor behavior in finite samples. For example, the tests of Hirdle and Mammen
(1990) and le Cessie and van Houwelingen (1991) lose power through the so-called
curse of dimensionality (Huber 1985) if L > 1. The test of Whang and Andrews
(1991) requires splitting the sample into two equal parts, which reduces power
and can result in poor small-sample behavior.

This paper describes a test that aims at avolding these problems while
achieving consistency against a larger set of alternatives than is the case with
parametric conditional moments tests based on finitely many moment conditions.

The intuition behind the test is simple. If E(Y|X=x) = f(x,6), then
E[Y|£(x,8)=f] = £. (2)

Therefore, a nonparametric estimate of E[Y{f(x.ﬂ_)-f]. considered as a function
of f, differs from a 45° line only by random sampling error. One can test (1)
by determining whether the difference between the nonparametric estimate and
the 45° line is larger than can be explained by random sampling error.

More generally, consider the model
E(Y|X=x) = F[v(x,8)], (3)

where F and v are known functions. If (3) is correct, nonparametric estimation
of E[Yivtx.l_)—v} gives an estimate F(v). Thus, (3) can be tested by comparing
the nonparametric estimate of E[Y|v(X,,)=v] with F(v). One way of obtaining
(3) is to specify v(x,#) = f(x,#) and F(v) = v, but other specifications may

be useful in applications. For example, suppose the parametric model to be
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tested has the form (3) with F a nonmonotonic function. If the model is

misspecified, it is possible that

E(Y|F[v(X,0)]) = £} = f (4a)
whereas
E[Y|v(X,8)=v] = F(v). (4b)

In this case, comparison of a nonparametric estimate of E(Y|F[v(X,8)]=f) with
f ylelds an inconsistent test, whereas comparison of a nonparametric estimate
of E[Y|v(X,8)=v] with F(v) yields a consistent test.

A test of (1) obtained by comparing a nonparametric estimate of
E[Y|v(X,8,)=v] with F(v) avoids the curse of dimensionality by using the index
function v(x,#) to aggregate a multidimensional x. Because one can always set
v(x,0) = f(x,f) and F(v) = v, any model of the form (1) can be placed into the
single-index form of (3). Thus, the test is not restricted to models that can
be estimated in single-index form.

The remainder of this paper describes a formal test of (1) that consists
of comparing a nonparametric estimate of E[Y|v(X,8,)=v] with F(v). We call
this a test of the parametric model (1) against a semiparametric alternative
because the alternatives against which the parametric model is tested and
against which the test is consistent have the form E[Y|v(x.i)-v] = H(v), where
H is an unknown function but v(x,#) is known up to the finite-dimensional
parameter §. Because the semiparametric alternative may not include the true
mean of Y conditional on X, there are directions in which the semiparametric
test is inconsistent. However, in a sense that is defined in Section 2, the
test is consistent against a larger set of alternatives than are parametric

conditional moments tests based on finitely many moments. The results of Monte
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Carlo experiments and an application based on real data 1illustrate the
usefulness of the semiparametric test.

The paper is organized as follows. The test statistic is presented in
Section 2, and its asymptotic distributions under the null hypothesis and local
alternatives are derived. Section 3 presents the results of the Monte Carlo
experiments and the application. Concluding comments are presented in Section

4., The proofs of theorems are in the appendix.

2. THE TEST STATISTIC AND ITS ASYMPTOTIC DISTRIBUTION
a. The Null and Alternative Hypotheses

Formally the null hypothesis that we test is

ot ElY|v(X,0)=v] = F(v), (5)

where Y is a scalar random variable, X € %, F and v(+,-) are known, real
functions, and # € ®* is a parameter whose value is unknown and estimated from
data. For example, if Y follows a linear-index binary probit model under H,,
F and v(x,f), may be specified as the cumulative normal distribution function
and #'x, respectively. As was discussed in Section 1, (1) can always be put

into the form (5). The alternative hypothesis is

L ElYvx 0)=v] = Hv), (6)

where H is an unknown function.

E[Y|v(X,8)=v] = F(v) is a necessary but not sufficient condition for
E(Y|X=x) = F[v(x,8)]. It is possible that E[Y|v(x,f)=v] = F(v) but E(Y|X=x)
#» F[v(x,#)], in which case the test of (1) presented here is inconsistent. This

possibility is discussed further in Section 2d.



b. Motivation

Suppose for the moment that H and § were known. Consider a conditional
moment test of H, against H, based on the following moment condition, which is
assumed to hold under Hy:

Ep(X,8)(Y - F[v(X,8)]) = 0,

where p 1s a scalar function. Let (Y,,X;: 1 =1,...,n) be a random sample of
(Y.X). Following Newey (1985), the conditional moment test statistic is

proportional to
n

s = nV2F px .00y, - Flvx, 0.
i=1

Under Hy, E(S,) = 0. Under H,, E(S,) = n'2Ep(X,0)(H[v(X,8)] - F[v(X,8)]) = p.
The test can be expected to have power against H, only if u » 0. This happens

if
p(x,8) = wlv(x,8)](H[v(x,8)] - F[v(x,0)]),

where w(+) is a non-negative weight function that is chosen so that

Bw[v(X,0) ] (H[V(X,8)] - Flvat, O] > 0. %))

Thus, the conditional moment test in this simple case can be based on the

statistic
SAp%
s* = n iZ;lu[\ur(xi.m)]l‘f1 - Flv(X;, )] (H[v(X(,0)] - Flv(X;,0)]). (8)

Since H and # are unknown, one might consider forming a test of H, against
H; by replacing H and ¢ in (8) with consistent estimators. This is the approach

taken here. We replace § with the n!/?-consistent estimator b, and H[v(X,,8)]
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with a kernel nonparametric regression estimator of E[Y|v(X,8)=v(X.,2.)].

Denote this estimator by P, [v(X,,8.)]. The test statistic is

n
AR A SRR UL RUR R SRR

where h is the bandwidth used in the kernel nonparametric regression. The
normalization factor is h'/? rather than n''/? for technical reasons associated
with the rate of convergence in probability of the nonparametric regression
estimator. It is shown below that, like the test based on (8), T, is consistent
against H, 1f (7) holds. In contrast to (B), however, T, does not require a

priori knowledge of H and 4.

c. The Kernel Nonparametric Regression Estimator

Our methods for proving the theorems in Section 2d require F,,(+) to be
independent of Y, and asymptotically unbiased. Independence is achieved by
omitting the observation (Y,,X,) from the computation of f,,. Asymptotic
unbiasedness is achieved through the use of the jackknife-like method proposed
by Bierens (1987). The resulting estimator is as follows.

Let K(+*) be the kernel function used in the nonparametric regression.
Assume that K is an order r kernel. That is, for each integer i between 0 and
re2

- 1ifi1i=0

J'uik.(u)du - 0iflsis<r-1
= 4 #0ifi-x

Let h = en M2 * 1) yhere ¢ > 0. Let s = en¥2** 1) yhere 0 < § < 1. Define



n n
£ (v -ZYKE;1§L54/ZKﬁ;lEu£ﬂ. 9
o j=1 1 h =1 h
=i jri
and
n n
£ (v -kaﬁ;lELSQ/Exﬁ;lEuﬂq. (10)
ot j=1 J s =1 s
Jmt i

The kernel nonparametric regression estimator used in T, is
B = (B ) - (/e /(L - (b/8)") (11)

Bierens (1987) derives the properties of this estimator and proves that it is

asymptotically unbiased and has the optimal rate of convergence.

d. The Asymptotic Distribution of T,

Define o?(v) = var(Y|v(X,8)=v]. The following theorem gives the asymptotic
distribution of T, under Hg,:

Theorem 1: Under H, and assumptions 1-8 of the appendix, T, Iis
asymptotically distributed as N(0,0,%), where

o - 2cxj wv) 2 o? ()1 av

-

and

2
CK - I K(u) du.

-@

The proof of Theorem 1 is lengthy, but the concepts on which it is based

are easily described. First, the rate of convergence in probability of the
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n'/2-consistent estimator #, 1is faster than the rate of convergence in
probability of F,,, which is (nh)™*/2. As a result, the asymptotic distribution

of T, is unaffected by replacing J, with §. Thus, T, = T,* + o,(1), where

122
TE = H 121"[""‘1-”]”1 - FIV(X, )] ME [v(X,,0)] - F[v(X;,0)])

and F,[v(X,,#)] is the nonparametric regression estimator obtained by replacing
v(xl.‘,) with v(X;,8) in (9)-(11). See Lemmas 1-6 of the appendix for the proof
of this result. Second, it can be shown that T * is asymptotically equivalent
to a certain degenerate U statistic. See Lemma 7 and the proof of Theorem 1
in the appendix. Although degenerate U statistics ordinarily are asymptotically
distributed as linear combinations of y* variates (see, for example, Serfling
1980), the one corresponding to T * has a special form that causes it to be
asymptotically normally distributed by a central limit theorem of Hall (1984).
Theorem 1 is a consequence of the asymptotic normality of this U statistiec.

Let o;* be a consistent estimator of ¢;%, and let g, = (5;%)1/2. It follows
from Theorem 1 that H, can be accepted or rejected at the { level according to
whether |[T,/d;| exceeds the 1 - (/2 quantile of the standard normal
distribution. Let &%(v) be a consistent estimator of o?(v). Then, under
assumptions 1-8 of the appendix o,® is estimated consistently by

~ 2
o

n
2 (zcxxn)izlw{vcxi.ennztaz[v(xi.anl12/ﬁnh1[v(xi.a,,1.

where P, is the following nonparametric estimator of the probability density

function of v(X,,8):



n
Bt ™ - (nhrljglx["_‘_":‘_"r_'nl] .
J=i

Methods for estimating o?(v) are discussed in Section 2e.

The next theorem establishes consistency of T, under H,.

Theorem 2: Let assumptions 1-8 of the appendix hold. Suppose that H, is
true and that Ew(V)([H(V) - F(V)]?) > 0, where V = v(X,#) and # is the
probability limit of §,. Then plim ., T, = =.

Suppose that H, is false and that E(le—x) = H*(x) for some function H¥*.
Let Ey|, denote expectation relative to the distribution of X conditional on
v(X,8) = v. It follows from Theorem 2 that the test based on T, is consistent
if Ey|, H*(X) » F(v) on a subset of the support of w[v(X,8)] that has positive
probability. The test is inconsistent 1if P(H*(x) = F[v(x,#)]) < 1 but
B,q, H*(X) = F(v) almost everywhere on the support of w(-:).

Although T, is not consistent against all alternatives, there is a sense
in which it 1is consistent against a larger set of alternatives than are
parametric conditional moments tests based on finitely many moment conditions.
Specifically, T, is consistent against all alternatives H[v(x,#)] such that
Ew[v(X,8) ] (H[v(X,8)] - F[v(X,8)])* >0, vhereas a parametric conditional moments

test 1s not. To see this, observe that if (3) is true, then
Ep(X,8)(Y - F[v(X,8)]) = 0 (12)

for any function p € %9 for some finite q > 0. Accordingly, consider using the
moment conditions (12) to test (1). Suppose that E[Y|v(X,8)=v] = H(v), where
H satisfies Ew[v(X,0)](H[v(X,8)] - F[v(X,8)])? > 0 and Ep(X,8)(H[v(X,6) -

F[v(X,8)]) = 0. Then T, and the conditional moments test based on (12) are both
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consistent against the alternative H. Now let A(v) be a scalar-valued function
such that Ep(X,#)A[v(X,8)] = 0. Assume that Ew[v(X,8)]A[v(X,6)]? > 0. Since
p 1s finite-dimensional, there are infinitely many such functions A. Set H¥(v)
= F(v) + A(v). Then T, is consistent against H* but the conditional moments
test based on (12) is not.
We now consider the distribution of T, under local alternative hypotheses.

Define the sequence of local alternatives H,[v(x,f)], by
H [vee, )] = Flvee,0)] + 0 /20 Y% (vx,0),

where {A;: n = 1,2,...) is a sequence of uniformly bounded functions that
converges uniformly to a limit function A(v). Note in this sequence |H,(v) -
F(v)| = 0(n"*/?h"*/*) uniformly over v, whereas in tests of parametric models
against local parametric alternatives the "distance" between the null and local
alternative hypotheses is O(n™'/?). Let J, be an estimator of § that is n'/2-
consistent under the sequence (H,).

Theorem 3: Let assumptions 1-5 and 8-12 of the appendix hold. Under the
sequence of local alternative models H,, T, is asymptotically distributed as
N(p,0.%), where p = E[w(V)A(V)?].

Theorem 3 implies that T, has power against alternatives whose distance
from H, is O(n'Y2h¥/*). If K is a second order kermel, this distance is
0(n"®2%) | which is close to the distance 0(n"'/?) that holds in tests against
parametric alternative hypotheses. Subject to the regularity conditions given
in the appendix, the distance O(n"/?h™'/*) can be made arbitrarily close to

0(n''/?) by using a kernel K of sufficiently high order.
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e. Choosing w(+) and a*(v)

The regularity conditions in the appendix require w(+) to be continuous
and independent of the sample (Y,,X,). They also require the support of w(:)
to be contained within that of v(X,#). The continuity requirement is not
important in applications; with a finite sample there is no difference between
the values of T, obtained with a w(+) that has jump discontinuities and a w(-)
in which the discontinuities have been "slightly" smoothed. The restriction
on the support of w(+) can be important. Depending on how o, is estimated, use
of a w(+) whose support exceeds that of wv(X,f) may cause substantial
overestimation of o, and a corresponding loss of power. In practice it can be
difficult to choose a w(+) that satisfies the condition on support without
looking at the data. We suggest using the observed values of v(xh3“) to choose
the support of w(+) but not otherwise adjusting w(+) to the data. In the Monte
Carlo experiments and application described in Section 3, we found that the T,
test works well if w is chosen to be 1 over an interval that contains 95-99%
of the observed values of v(X,#,) and 0 elsewhere.

Another possibility is to choose w to maximize power against a specified
sequence of local alternatives. There seems to be little advantage in doing
this, however. If high power against a specific alternative is desired, one
should use a parametric conditional moments test that has high power against
this alternative.

The main consideration involved in estimating o?(v) is that the estimator
must be consistent under H, and, to avoid loss of power, should not become
excessively large under H,. For example, suppose that Y is homoskedastic so
that var[Y|v(X,8) = v] = ¢?, where o® is a constant., Two possible estimators

of o are:
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a2 .

b' - L - Flvex,,0 )12 13)
and

2 n-lﬁw - P vex, 0?2 (14)

- 1=1 g ni okt

Both of these estimators are consistent under H,, but &, may be very large
under H;. Accordingly, the test based on T, is likely to have higher power if
5,’ is used.

If Y has heteroskedasticity of unknown form, o?(v) can be estimated by the
nonparametric regression of (Y, - F ,[v(X,,8,)])? on v(X,,0,). In some cases the
form of heteroskedasticity of Y may be known, and this information can be used
to estimate o?(v). For example, if Y is a binary wvariable, vnr[Y|v(X.?)-v] -
P[Y=1|v(X,8)=v]{1 - P[Y=l|v(X,8)=v])}. Therefore, o?(v) can be estimated by

Blv(X,, 00101 - B [v(X,0)]).

3. MONTE CARLO EXPERIMENTS AND AN APPLICATION
a. Monte Carlo Experiments
The purpose of the Monte Carlo experiments was to investigate the small-
sample size and power of the test based on T,. To provide a basis for judging
whether the performance of the test is good or bad, we also computed the size
and power of Bierens’ (1990) test against a nonparametric alternative and of
the most powerful test against the correct parametric alternative model.!

The hypothesis H, tested in the Monte Carlo experiments is
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EQY|X=x) = 8, + 0%, (15)

where X is a scalar random variable and the #’s are constant parameters. The

data were generated by random sampling from the model

Y = 8+ 0%+ 10bé (10X) + u (16)

where ¢ is the standard normal density function, #, = #; = 1, b is a parameter
whose value varies according to the experiment, X -~ N(0,1) and u - N(0,0.25).
If b = 0, Hy is true. Otherwise, H, is false and E(Y|X=x) has the shape of a
straight line with a bump centered at x = 0. The height of the bump is governed
by the value of b. Figure 1 illustrates the shape of E(Y|X-x) for b = 1 and
b = 2. The mean function E(Y|X=x) in (16) is poorly approximated by the
parametric models typically used in applications (e.g., low-order polynomials
in x), so it is unlikely that a most powerful or nearly most powerful parametric
test of (15) would be carried out in an application if (16) were the true data-
generation process. Hirdle (1990) gives several applications in which the shape
of E(Y|X=x) is similar to Figure 1.

In the computation of T, in the experiments, K is the standard normal
density, v(x,f) = 8'x, F(v) =v, h= 0.1, and s = 0.8, #, and §#, were computed
from (15) by ordinary least squares (OLS), w(*) = 1 on an interval containing
98% of observed values of J, + #,X and O elsewhere, and o?(v) is given by (14).%

Implementation of the test of Bierens (1990) requires choosing several
parameters of the test statistic and a function. We made choices similar to
those used in Blerens’ (1990) Monte Carlo experiments. In his notation, we set
y=p=0.5 T=[1,5], K, = 10, and ¢(x) = tan*(x/2). Note that Bierens’ ¢

is different from ¢ in (16).
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The most powerful parametric test of the null hypothesis (15) against the
alternative (16) is the t test of b = 0 based on OLS estimation of 8y, #,, and
b in (16).

The experiments were carried out at the nominal 0.05 level using a sample
size of n = 50. There were 500 replications in each experiment. Random numbers
were generated with the pseudo-random number generators of GAUSS.

Table 1 shows the results of the experiments. The empirical sizes of the
tests are not statistically significantly different from the nominal size of
0.05 (p > 0.10). The test based on T, is considerably more powerful than
Bierens' test. Not surprisingly, T, has less power than the most powerful
parametric test. Of course, the power of the parametric test would be available
in an application only in the unlikely event that (16) were known to be the
correct alternative model, whereas T, does not require a priori knowledge of the

alternative.

b. An Application

Horowitz (1991) estimated a binary probit model of the choice between
automobile and transit for the trip to work. The estimation data set consisted
of 842 trip records drawn from the Washington, D.C., area transportation study.

The specification of the probit model is
P(Auto|X=x) = &(#'x), (17)

where @& 1is the cumulative normal distribution function, X is a wvector of
explanatory variables, and § is a conformable vector of estimated parameters.
The components of X are an intercept, the number of automobiles owned by the
traveler’'s household, the difference between automobile and transit out-of-

vehicle travel time, the difference between automobile and transit in-vehicle
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travel time, and the difference between automobile and transit travel cost.
Horowitz (1991) carried out parametric likelihood ratio, Wald and Lagrangian
multiplier tests of (17) against a random-coefficients probit model. This model
is obtained from (17) by replacing #(B'x) with ®[8'x/(x'Ex)*/?], where I is a
positive-definite matrix. All of the tests rejected (17) (p < 0.01).

To investigate the performance of T, in an application, we tested (17)
using both T, and Bierens' (1990) test. Bierens’ test was carried out using the
parameter and function choices described in Section 3a. The value of the test
statistic was 0.43. Under the hypothesis that (17) is correctly specified,
Bierens' test statistic is asymptotically distributed as x* with 1 degree of
freedom. Therefore, Bierens’' test does not reject (17) and, thus, does not
detect the misspecification of (17) found by the tests against the random-
coefficients probit model.

In computing the T, test statistic, b, was estimated by maximum likelihood
using (17), v(x,#) = 8'x, w(*) = 1 on an interval containing 98% of the observed
values of #.'X and 0 elsewhere, and 6*(v) = F,(v)[1 - £.,(v)]. As is explained
in footnote 2, there is no known systematic method for selecting bandwidth
values for F,,. We used several bandwidths that were found through graphical
examination of F,, to span the range of reasonable choices. Values outside of
this range caused the graph of F,, to be either excessively wiggly or
excessively flat. The value of the T, test statistic was in the range 2.45-
3.26, depending on the bandwidth. Thus T, rejects (17) (p = 0.001 to 0.015,
depending on the bandwidth). This is consistent with the results of the tests

against the random-coefficients probit model.
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4. CONCLUSIONS

This paper has described a method for testing a parametric model of the
conditional mean against a semiparametric alternative. The test is motivated
by a parametric conditional moments test and amounts to replacing the parametric
alternative model in the conditional moments test with a semiparametric
estimator. The resulting semiparametric test is not consistent against all
alternatives, but in a sense that has been explained it is consistent against
a larger set of alternatives than are parametric conditional moments tests based
on finitely many moment conditions. The results of Monte Carle experiments and
an application using real data illustrate the usefulness of the semiparametric

test.



17

FOOTNOTES

We originally intended to include the test of Whang and Andrews (1991) in
the comparison. This test is based on comparing the mean square residual
from parametric and nonparametric estimates of the conditional mean of Y.
We dropped the test from consideration after finding that, in our Monte
Carlo experiments, its empirical size at the nominal 0.05 level was between
0.24 and 0.50 for a wide range of bandwidths In the nonparametric

regression.

A systematic procedure for choosing h and s for F,, with finite samples
has not been developed. Because the estimator is asymptotically unbiased,
the tradeoff between asymptotic blas and variance that underlies bandwidth
selection methods such as cross validation does not exist. We selected
h and s graphically. With the values we used, the graph of P“ is neither
excessively wiggly, as happens when h and s are too small, nor excessively
flat, as happens when they are too large. The regularity conditions in
the appendix require K to have bounded support, but this is not essential,
as is noted there.
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TABLE 1: RESULTS OF THE MONTE CARLO EXPERIMENTS

Pr(Reject H, at Nominal 0.05 Level)
Most Powerful

b Parametric Test ¢ i Bierens' Test
0 0.05 0.04 0.05
0.25 0.90 0.37 0.18
0.50 0.99 0.90 0.42
0.75 1.00 0.96 0.56
1.00 1.00 0.98 0.73
1.25 1.00 1.00 0.78
1.50 1.00 0.99 0.78
1.75 1.00 1.00 0.81
2.00 1.00 1.00 0.87
2.25 1.00 0.99 0.89
2.50 1.00 1.00 0.89

The fluctuations in the rejection probability when b = 1.25 are not
statistically significant at the 0.10 level.
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MATHEMATICAL APPENDIX

Al. NOTATION
In addition to the notation defined in the text:
Ng = A neigborhood of 4.
Sx = The support of X.
8, = An open subset of the support of v(X,d).
S, = A compact subset of §,
éx - (x: v(x,8) € §,).
h=ecnl/@*1) yhere ¢ >0 and r 2 2 is an integer.
s = cn¥2r* 1) yhere 0 < § < 1.
K(*) = an r'th order kernel function.

For £ = h or s:

18 v - w(x,, 8
Pagt(M) = (nO) jglx[____e_i_]
i
19 v - v(X, .0
P (v) = (n§) " % K[..__.....J_]
“5 J-l E
n n
FLv) = 3 Y K[\f - v(X .l)] /3K [v - v(X .l)]
net =14 ; 31 €
Jui j=i
F ) = [Fa (v - (0/8)F  ()]/(1 - (h/8)")

snu(v) - pnﬂ(\r)!‘nﬁ(»')
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ASSUMPTIONS

Sy is compact. At least one component of X has a probability distribution

that is absolutely continuous with respect to Lebesgue measure.

For every r € Ny and x € 5y, v satisfies:

a. |v(x,r)| < M for some M < = that does not depend on r or x.

b. The probability distribution of v(X,r) is absolutely continuous with
respect to Lebesgue measure,

e. v(x,r) 1is continuously differentiable with respect to r, and
|avix,r)/ar,| <M (k = 1,...,K) for some M < = that does not depend
on r or X.

Let py denote the probability density function of v(X,r). For each r € Iy

a. n,sp.-(v)sH,forsomn,)@and!(,<0tlmtdonotdependonr.

b. pr has r continuous, derivatives that are uniformly bounded over r €
N and v € S,

w(+) has compact support S, C int(S;) and satisfies:
0 < w(v) < M, for some M, < « and all v € §,.

b. |wevy) - wivy)| = M*|v, - v;| for some M* < » and all v,, v,.

a. IF[V(:.r)]l and [H[v(x.r)]l are uniformly bounded over x € S; and r
€ Ng.

b. F(v) and H(v) have r continuous derivatives that are uniformly bounded

over v € S,.
Let Ey denote the expectation over the distribution of X. Define

T(x,v,r) = E (F[v(X,0)][dv(x,r)/dr - av(X,r)/ar]|v(X,r) = v).

Let Iy (k = 1,...,K) denote the k'th component of I'. There is a finite
number My, not depending on r or x, such that for all r € Ny, x € 8¢, v,
v, € §,,, and k = 1,...,K

|l"k(x.v2,r) = I‘k(x,vl.r)l < Hr|v2 - vll

o2(v) = Var(Y|v(X,8) = v] is a uniformly bounded, continuous function of
v € S,. EY - E[Y|v(x.l)}l‘ is uniformly bounded over v € S,.

K is an r'th order kernel with bounded support. Also, K is uniformly
bounded, continuous, and symmetrical about 0. The derivative of K, K',
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is uniformly bounded, has an absolutely integrable Fourier transform, ¥(+),
and satisfies

-
I Juk!(u) [du < =,
-

Comments:

Although theses assumptions are notationally complex, they are mainly
boundedness and smoothness conditions. The requirement that K has bounded
support can be removed at the cost of additional technical complexity in the
proofs.

Several factors make it necessary for the assumptions to involve the nested
sets 5§, C §, C §,, in addition to Sy and §x First, the model being tested is
formulated in terms of v(X,#), not X directly. Second, it is necessary to
estimate #. Third, the derivation of the asymptotic distribution of T, involves
showing that this distribution remains unchanged if # replaces !n. To do this,
it is necessary to have a way of insuring that for all r sufficiently close to
#, v(X,r) stays away from points on the boundary of its support at which its
probability density is discontinuous. The nested sets enable this to be done,

A3, THE ASYMPTOTIC DISTRIBUTION OF T, UNDER H,

Preliminary lLemmas:

Lemmas 1-6 show that asymptotically #, can be replaced by # in T,. Lemma
7 gives a result that is used in deriving the U-statistic form of T,.

Lemma 1: Define
6y = By () - FOIP L, (M)1/py(v) (A1)

and
I - (A2)
(B gy (V) - Py ] [By V) = EWIBG(M] = FW By (V) = B9/ 12y (1.

As n =+ =,



2%

sup sup [y () - By = otl(log my/(mm) M), (a3)
l1sisn ve sv

almost surely,

2.-1/2
sup sup | V) - p,(MF(V)| = 0o [(oh®)""/7], (A4)
1sisn ves, S ’ P
and
sup sup |[F_, . (v) - F(v) - G, . (v) +J_. . (v)].
l1=1sn ve sv nhi nhi nhi I
= 0 [(log m/(n*/?n%)). (AS)

These relations also hold if h is replaced by s.
Proof: Only (A3)-(A5) are proved. The proofs for the relations with h
replaced by s are identical.
(A3) follows from

sup sup |p..(v) -p.(v)| = M/nh,
l=i=n ve Sv thi th

for some M < = (by assumption 8) and

sup [py (™) - By | = ollClog n)/ ()1 M%)
v E
v

almost surely (Silverman 1978).
To prove (A4), define

= v - v(X, ,0)
g,V = (mh) jELij[ . i ]

Observe that

sup sup | (v) - p,(WF(W)| =
l=i1i<n ve Sv Eahi ’

sup g, () - p,(MEW | + M)t swp  [y,|  a6)
ves, l1si=n
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for some M < = because K is bounded uniformly. The first term on the right-
hand side of (A6) is Ol,[(nh’)'”’] (Bierens 1985). Now consider the second term.
Let P, denote the marginal CDF of Y. Given any ¢ > 0,

log P[ sup n'1/2EY1| < e] = n log(l - [1 - PY(nl/ze)]} (A7)
l1<i=sn

A Taylor series expansion of the right-hand side of (A7) ylelds

log r[ sup n'l"zlyli < ¢] - -n;n'lu - PY(nl,zt)]

l1<=1i=n

- 20% - pet 201/ ()

where {, is between Py(n'/?¢) and 1. By assumption 7, E(Y?) < =, so lim, ..
u?[1l - Py(u)] = 0. Therefore, the right-hand side of (A8) converges to 0 as n

+ = and

sp Y| - op(nm). (A9)
L Ltn

Equation (A4) now follows from (A6) and (A9).
To prove (AS5), expand F; = Buny/Pany in @ Taylor series about g, = Fpy and
Pobt = P¢, thereby obtaining

Fnhi(v) - F(v) = Gnhi(v) - Jnhi(v)
b By ) - FOIBy 1y (@) - py(01%/p, )’
* (vIO([p 4. (V) - P (V)]33
Bnhi nhi ¢ :

The result now follows from (A3) and (A4). Q.E.D.
Lemma 2: Let (#,: n = 1,2,...) be a nonstochastic sequence In ®* such

that n'/2(#, - §) = O(1). For each £ = 1,...,n
sup_ (am) 2|8 (e8] - By lvix,0]] = o /%) (A10)
X €S

X
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as n + =, The same relation holds when h is replaced by s.

Broof: Only (AlO) is proved. The proof with s in place of h is identical.
Define gu4(+) and Pye(+), respectively, by replacing # with 4, in the
definitions of g, () and p,9(-). It suffices to prove that

sup_ (o) M2 |G (vix,0 )] - gy, v, 0] = o b1/ (A11)
xesx
and
sup @215 v 0 - by lve01] = 0 ') (A12)
X €
X

We prove only (All). The proof of (Al2) is similar.

Define
n
D (x) = (nh)"1/2 ZYJ{K["(""n) - vy . x["(“") : "‘“i'”]}. (A13)
j=1 h 1 h
=t

anltx) - Dn(x) - EDn(z).

Anz(X) - EDn(x) .

Then

@) Y2 (E L, 0 - gy, 0] = 80 + 8,00

Consider A,,. By a Taylor series expansion

K v(x,§ ) - v(xi.in) SK vix,8) - v(xi,') =
[t -+ J

- * -
h l(i“ . n'znj(v)x'["(""n ) - "(xr'n*)]. (AL4)

where # . * is between # and §,, and
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znj - ZnJ(v) - [Bv(x,r)/8r - Bv(xj.r)/ar]f 5 '“*.

n
- n'l""2 Y Y.z K'[v(x"n*) - v(xi"n*)].
2

Then
1/2 Z 3.-172
D (x) = m’7(8 - 8)'(nh7) B ()
By assumption 8,

-itu

K'(u/h) = (h/2:)-lj e ¥(ht)dt

for any u. Therefore

L n
B_,(0) = (hxzs)J'_:xp[-m(x.anﬂlv(h:)n‘lﬂjglvjznjtexp[iw(xj.an*mdc
j=2

Let B, (x) and Z,,, respectively, denote the k’'th components of B (x) and Z,,.
Then for each k,

@ -1 n
[B g (X) - EB p ()] = (h/Zt)I_ﬂ"(ht)|n ,2|J§11sznjkexp[1tv(xj,l“*)]
jne
EYJZ“Jkexp[itv(x ,On*)llldt.

By assumptions 2 and 7

n
E]nginankaxp{itv(xj,ﬁn*)] - EYJankexp[itv(Kj.Fn*}lll

Im2
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1
< (n-1) ﬂ(?arleankcos[tv(xj,i“*)]l

+ ‘J’nr[‘Ijzl..'msiﬂ[t:\r(xj ,!n*) ] })1/2

< M*(n - ”1/2(“2)112

< I'l:nl"z

for some finite M* and M. Therefore,

E"njk(“) - EB“jk(x)] < (Hh/Zw)I‘u|¢(ht)|dt

I UGIEE

and, because |$| is integrable and n/3(8, - 6) = 0(1),

-1/2]

3
E[a )| s o[(ah™)
uniformly over x € g:. It follows from equation (3.2.5) of Amemiya (1985) that
3.-1/2
A0 = Op[(nh ) ] (a15)

uniformly over x € §x-
Now consider A ;. By (Al3) and (Al4)

8 = (- DL - 0y iz e [L*00 ;""‘"n*’]}

- - v/1a Mo - 0 e{Fven iz, ke [Xh Y& 4N
h

- - v/t 2o, - 0| r(x.u.an*w'[%:’_'“]p, L(wau
- n

Let £ = (u - v)/h. Then since K is symmetrical about 0
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8,00 = ~(n - D/IE 0, - 0

'I_:[x.vtx.in*) + ht.!n*]K’(f)p,n,[\r(x.in*) + h{]dé  (Al6)

By assumption 2, v(x,0,*) € §, and v(x,8.*%) + hé € 5, for any £, any x € §‘ and
all sufficiently large n. Therefore, by assumptions 2, 3, and 6

ITlx,v(x,0,0) + b0, 21py G[v(x, %) + bt

- T[x,v(x,0 *),0 *]p, L] s Mgl (A17)
n

for each £, all sufficiently large n, and some M < o, where |+| denotes the

Euclidean norm. Moreover,

J K'(€)ds = 0

by symmetry of K. Therefore, it follows from (Al6), (Al7), and Lebesgue's

dominated convergence theorem that
1/2
Anz(v) = 0O(h™ ™) (A18)

as n - = uniformly over x € S,. Equation (All) follows by combining (Al5) and
(Al8). Q.E.D.

Lemma 3: Let (,: n=1,2,...) be a nonstochastic sequence in ®* such that
n*/2(g, - §) = 0(1). Asn =+ =,

sup sup_ () 2|8 (v, 0 )] - By Iveen]] = o /)

l1=1i=n xesx

The same relation holds with h replaced by s.
Proof: It suffices to prove that
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1/2- 1/2
sup sup_ (nh) |g] [v(x,8 )] - [v(x,8)]] = 0. (h”’%), (A19)
lsisn x€S§, 5 n Enht P
sup sup )25 (v, 0] - py v = 0 MP), (a20)

l1si=n xesx

and that (Al19) and (A20) hold with h replaced by s, where g and p are defined
as in Lemma 2. The proof is given only for (A19). The proofs of (A20) and the
relations for s are identical.

Define

4, ) = (nh)-l/zyi{x[v(x,:n) - v(xi,an)] i K[v(x,ﬂ) - v(xi.a)]}
h h

Because of (All) and (Al2), to prove (Al9) it suffices to show that

sup sup_ Idnhl(x” - Op(hljz) (A21)

lsi=sn xesx

By a Taylor series expansion

-1/2

(x,8 %) - v(xi.an*)] :

r ' v
(ln - 8) Yiznix [ =

3

d pi(X) .= (nh7)

where Z,, is defined as in Lemma 2 and #,* is between §, and #. Therefore, by
assumptions 2 and 8

sup swp. 0%, 0| s M@dH T oawp |y (A22)

|
lsis<n xesx lsisni

for some M < ®. But sup y ¢, ¢, |Y,| = o,(n?'?) by (A9). Therefore the right-
hand side of (A22) is o,(l), and (A21) holds. Q.E.D.

Lemma 4: Let {#,: n=1,2,...) be a nonstochastic sequence in ®* such that
n/2(g, - §) = 0(1). Define G,, and J,, by replacing h with s in the
definitions of G, and J,,. Define

€M) = (6, - (h/8)6  (M]/(L - (h/s))

and
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I = ) - /eI /ML - /)T
As n + =,

1/2
sup sup (nh) "/ C|F_ (V) - F(v) - G_ (v) +J_ (V)]
lsisn ves, ni ol ni

- 0,[(log n)/(/ ).
and

1/2 1/2
sup sup_ (nh) "/ °|F [v(x,8 )] - F_ [v(x,0)]] = 0 (h'").
lsisn x€S8, ni - ni P

Proof: These results follow by combining the definitions of f,, and F,
with the results of Lemmas 1 and 3. Q.E.D.

Lemma 5: Let (#,: n=1,2,...) be a sequence in ®* that converges to 4.
For all sufficiently large n and x € Sx, v(x,8,) € S, implies that v(x,d) € S,.

Proof: By assumption 2, |v(x,8,) - v(x,8)| < M|é, - 8] for some M < = that
does not depend on x. The result now follows from the fact that S, C int(S,).
Q.E.D.

Lemma 6: Define

n
T* - hwiglw[v(xi.nm1 - FIvX )1 (F [V(X,0)] - Flv(X;,0)])

Then as n + =,

Tn - Tn* + op(l)_

Proof: Some algebra shows that

6
T, = TEE jglanj.
where
R hszv[v(x )1y, - Flv(X,,)1MF  [v(X,,8 )] - F_ [v(X,,0)])
nl 1''n i 1! ni 1''n ni i’

i=1
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llnz-

n
hl’zi):l:u[vcxi.ln)l - wlv(X, O IY, - V(X 0]IE, [v(X 0] - Flv(X ,6)])

n
= B2 T wlv R D1MY, - PV O D Pl - Flvx.0])

i=1

Ra3

IM-

n
-hl’zgl'lv(&-’n’l“’["f":-'n” = FIvX O 1NE  [v(X )] - F_ [v(X,,0)])

RnS ol

n
-h"ztglv{v(xl.anntrtvcxi.inn - FIv(X,,0)]IF_ [v(X,,0)] - F[v(X,0)])

n
R il wiv(X, 2 DIUFIv(X .0 )] - F[v(xi.ﬂ)l}z.

né

We now show that R,, = o,(1) for each j. In what follows, (#,: n=1,2,...})
denotes an arbitrary nonstochastic sequence in %* satisfying n/2(é, - §) = 0(1)
as n + o,

a. Define

1/2 ¢
g™ B El"[""‘i"n””t - FlvX, O1NE (VX 0)] - F (VX ,0)])

Since (#,) is arbitrary, it suffices to show that i‘, = o0,(1) . Given any ¢ >
0, let A, denote the intersection of the events P, [v(x,f,)] > ¢ uniformly over

x € é,. Paas[V(x,0.)] > ¢ uniformly over x € ':i,. and

sup_ (m)1’z|£‘m{v(x.an)1 - Fvx,0)] s e,
X € sx
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where p,, 1s as defined in Lemma 2. Define

n

A -ua,‘.
ne gy Nie

Let 1(+) = 1 {f the event in parentheses occurs and 0 otherwise. By (A3),
(A12), and Lemma 4, P(A,) = o(1). By Lemma 5, x € S¢ if w[v(x,8,)] > O and n
is sufficiently large. Therefore,

Rn!. - Rnl‘ + Optl). (A23)
where

* -
Rnl.

172 2
W% B LA VIV DI - FLYR DD VR 0] - Fyy[v(Ky,001)

E(R,;*) = O because the event A, does not depend on Y, or X,. Define U=1Y -
F(v(X,8)]. Then

Var(R_,*) =

n
“'15511‘*‘“1(’"["“‘1-’“’12"2“("1"“1 (ah) (B [v(X,,0 )] - F_ [v(X;,0)])?

o1 n n
+nE 1§1 jgll(“nu”“‘njc""f""‘r’n’1"[""‘_1-'n”“inj
j=1
-(nh}anl[v(xl.!n)] - rnilv(xi.s}]litnj[v(xj.an)] - Fnjtv(xj.ﬂ)lll
It is shown below that for any x
(nh)l/zﬁl(nn

3

uniformly over x. Therefore, since U, is independent of U,, f,,, and F,,

VIV DU (R [v(x,0)] - F,lvix,0)]) = o(1/(mh/?)].

Var(kﬂlﬁ) -
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= - 22 2
n 31211(“n1e)"[v(xi"n)] a [ﬂxi.l“](nh)l?“i[\'(lll.ln)} = Fnllvtxl,nll
+ o(1)
4. 2.9
< n Me 1Elm(nnh) + o(l)
= Hez

for some M < =, Since ¢ is arbitrary, it follows from Chebyshev's inequality
that R,;* = o,(1) and from (A23) that R, = o,(1).

To show that (nhY2)EL(A,)w[v(x,0,)]U(F,[v(x,6,) - Flv(x,0)]) -
0[1/(nh*/?)], observe that conditional on X,

|20, (o208 Ivex,0 0] - B v, 010 1Ay IWIvee,6 )]

2 1

(om0 (v exy 01 KUV, 0) - VO 01 /MB (v(x,0 )1

CRUVE,0) - VO 1 /MIpy (v, 01 LA wivex, o).
By a Taylor series expansion

|20y oy V(810 )] - By VOGO DA Julvex,8)])

-1/2,2 1/2

(nh) (Ve O] [K ([vix,0,%) - v(X,, 8 %)]1/m0[1/(n'/h))

+ KUV, 0) = VOO 1/ By v(x, 0017 - py [vex,0] ™|

*1(A

nj‘JUIV(x.!n)]

conditional on X, where 6, * is between § and 4. Integration over the
distribution of X ylelds E|K'([v(x,8.*) - v(X.,6.%)]/h}| = O(h) uniformly over
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x. Similarly, Ellt[[v(x,l) - v(xl,l)]/h}[ = 0(h). In addition, a Taylor series
expansion of ﬁm[v(x.i,)] - Pany[v(x,0)] followed by taking the expectation with
respect to X ylelds E|py,[V(X,0,)] - puyylv(x,8)]| = o(le, - ¢]/m) = o[1/(n'/?h)
uniformly over x. Therefore, it follows from the Cauchy-Schwartz inequality
that

E[K([v(x,8) - \ur(:r;i.«r)]/mn?“hJ[w(::.'“)]'1 . pnhj[v(x.!)l'lll

Ay v, ID] = 0w D),
uniformly over x. Combining results yields
1/2
(nh) El(Anj

uniformly over x. A similar argument applies when h is replaced by s, so

VIO, 01U (£ [v(x,0)] - Fyp [voe0)] = ol1/@n'/%))

) 2EL(A | v, 81U, (8 [v(x,0)] - F i [vix,0)] = 0[1/(h/%))

uniformly over x.
b. R,;: Define

Rn? =

n

o L (v(veXy 8)] = WV DI - PV 1)y (v 0] = Flv@X )
{=

It suffices to show that !-lu - %(1). It follows from Lemma &4 that

Fa[v(x,0) - F[v(x,0)] = Gy [v(x,0)] - Joy[v(x,08) + 0,[(log n)/(n*'*h?)] uniformly

over 1 and x € §x By Lemma 5, x € §; if wlv(x,0,)] > 0 and n is sufficiently

large. Therefore,

R

n2 = Rn2* a op(l)' (A24)

where

R+ = B2 T (wiv(x, 0] - wlv(X,,0)])
n2 -1 i''n i’
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Yy = FIV(Ii.n]ltcm[v(xi.c)] - I VLD

E(R,,;*) = 0 because G, and J,, do not depend on Y,. It is not difficult to show
that EU,G,,[v(X,.8)] = O(n™?) and EUJ,[v(x,8)] = o(n?) uniformly over x.
Therefore, since U, is independent of U,, G, and J,,,

n
Var(R ,%) = hxigltv[v(xi.:“)] - w[v(xi.'illz
2 2
0" [V(Xy, )]G [V(X;,0)] - I VX, 0] + o(1)

n
= (h/n)l‘liglzlcni[v(xl,!)] - .J“l'[\lr(xl_.ii)]i2 + o(1) (A25)

for some M < =, where (A25) follows from assumptions 2, 4 and 7. Arguments
similar to those of Bierens (1987) yield the result that the expectation in
(A25) 1s o(l), so Var(R,*) = o(l). R,* = o’(l) now follows from Chebyshev's
inequality. This result and (A24) imply that ﬁ,z = o,(1). Therefore, R,, =
0,(1).

c. R,y: Define

i3
R * = -h 1§1w[v(xi.wn)](‘fi - F[v(X,,0)](Fv(X;,0 )] - F[v(X;,0)])

It suffices to show that R % = op(l}. To do this, observe that E(R,*) = 0.
In addition,

n
Var(y®) = BB T wivCky, 010" (vOX, 0 (FIVCR 0] - FLvC )

n
< hﬂizlEﬁ'[v(xi,!n)lzll‘[v(xi.ln)] - l"[\lr()li,!)]}2

for some M < = by assumptions 4 and 7. By assumptions 2 and 5,

(FIv(X,0)] - Fivx, 0% = oo, - of®)
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- O(n-lJ.

uniformly over X. Therefore, Var(R,*) = o(l), and Ry* = a.(l.) follows from
Chebyshev's inequality.
d. Ry: Define

RM*-

n
-nl/2 L wivex,, 0 )JIF[v(X,,6)] - FIvX O F  (v(X,0)] - F [v(X,0])
i=1

It suffices to show that R ,* = o,(1). To do this, observe that by assumptions

2, 4, and 5 and a Taylor series expansion
1/2 s
IR *| < /o - ‘I"gl"l"(xx-'n”|’nﬂ""‘p'n” - F vx 01| (a26)

for some M < =, By Lemmas 4 and 5, the summand in (A26) is O,(n"*/?) uniformly
over i and X, for which w[v(X,,6,)] > 0. Therefore, since |8, - ¢] = 0(n™¥/?),
R, = O,(h1/2).

e. R,: Define

nl'l'||5 =

n
172
-h El"["(xr‘n)“F["‘Xr‘n” - FIv(X,, 0 1) [v(X,0)] - F[v(X;,0)])
It suffices to show that R, = 0,(1). Since F[v(x,8,)] - F[v(x,0)] = 0(n"*/?)
uniformly over x € S.‘.‘. it follows from Lemmas 1 and 4 that

Rn5 - RnS (A27)

* + 1),
op( )
where

n
¥ - BTEY WK 8 ) TEIV(X 0 )] - FIV(X 116, V(X 0)].

R
ns {-1

Let F' denote the derivative of F. By a Taylor series expansion
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n
R - -2 - 07 T VIV 0D TP (V000 1y Xy 000G, [VCRy )]

where #,* is between # and #,. By arguments identical to those of Bierens
(1987), EG,[v(x,8)] = o[(nh)™*/?] uniformly over x. Therefore, E(R,*) = o(l)
by assumptions 2, 4, and 5. In addition

n n
(nns.)z s Mo - ;|21r,1§1 j§l‘“m“"‘:"”"‘nﬂ"“ 1),

By the arguments of Bierens (1987), the expectation is O(h™) uniformly over
X. Therefore E(R,s*)? = o(1). It follows from Chebyshev's inequality that R, *
= 0,(1) and from this result and (A27) that R,; = o,(1).

f. Ry: By assumptions 2 and 5, (F[v(X,8,] - F[v(X,8)])? = 0,(n)
uniformly over (X: v € §;). Since, in addition, w is bounded uniformly, R, =
0,(h*/?). Q.E.D.

Lemma 7: Define V, = v(X,,0). Then

T = hl’zgu(\r)[y - F(V,)]6_.(V,) + o_(1) (A28)
M 1711 Yy prre

Proof: By Lemmas 4 and 6
T = h1/2§w(\?){‘f - F(V,)IG_ . (V,) -T . + 0 (1)
n {=1 > bl ¢ : A B ¢ nl P e

vhere

T

B2 § w1y, - FOOIT (V)
nl -1 i i i nd* L

To prove the lemma it suffices to show that T, = o,(1). E(T,) = 0 because
Jo(V,) does not depend on Y,. In addition, since EUJ, (v) = o(n™') uniformly

over v,

BT %) = b Ewv)22W)0 (V)2 + o(l) (A28)
ni 1=1 i b ksl s TR |

But for any v € S,
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[1- /8 1) S |8 () - pyMFM ||y, () - (M |/py(v) 2

s FO oy ) - 2y |2 /py0)?

b /D (g W - ByWEM | |p g ) - 2y /0y (v

s EW ey ) - 2, |2 /p,0 %)

By (A3) and the fact that h/s <1
(L /o 1 ) 5 (8™ - pyWIFM|/p,07

T + 172

+ (b/s) 18,0y ¥ - P,FW /0, 71011 (Log m)/ ()12

+ 0[(log n)/(nh)] (A30)

almost surely. By arguments similar to those of Bierens (1987), E[gu (V) -
pe(v)F(v)]? = 0[1/(nh)] uniformly over v € S,. Therefore, by the Cauchy-
Schwartz inequality, E|[gumi(v) - pe(v)F(v)| = 0[1/(nh)*/?] uniformly over v € S,.
Therefore, squaring (A30) and taking expected values on both sides of the result
yields

(1 - /e 1% 7] = o([(log m/(ah))?) @31)

uniformly over v € §,. Substituting (A31) into (A28) and making use of
assumption 4 yields E[T,?] = o(1). T, = o,(1) now follows from Chebyshev's
inequality. Q.E.D.

Proof of Theorem 1
For { = 1,...,n, define U, = Y, - F(V,) and Z, = (U,,V,). Also, for v € §,

and 1,j = 1,...,n define

K = (1= /9" ke - et t kw1,
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172 3
A(2,.2,) = [1/(h /5w )U [p, (v )17

S Uy + (V) - FODIK (V) - V),

pz) = BIA(20.2) + A (2,20 2,)

Hy(Z.2)) = AL(Z,.20) + A (20.2)) - w(Z)),

v - 3 L B (2%
B jastcysad ¥

It follows from (A28) that

T - ¥ + T I ow(z) + o (D). (A32)
B B 122 5an * P

Observe that
z,) = (1/hH 1w v, (9, v, 17 E(FOV,) - FOV)IR (V. - V) |V,)
#zZy Uy [Py (Vy 3 1%V - VIV

Since E(U;) = 0 for all { = 1,...,n and the U, are independent, E[u(Z;)] = O,
and E(p(Z,)u(Z;)] =0 if i » j. Moreover, arguments similar to those of Bierens
(1987) yield

r+1l

iz = (/e e u e, 01 o™ * Y. 433)

uniformly over Z,. Therefore, E[u(Z;)?] = o(h®* * !/n?), so the second term on
the right-hand side of (A32) has mean 0 and variance o(h***!). It follows from
Chebyshev's inequality that the second term on the right-hand side of (A32) is
0,(1) so that T, = ¥, + o,(1). Therefore, to prove the theorem it suffices to
show that ¥, + 4 N(0,0.2). Define

qn(zl,zj) - z[un(zl.zi)un(zl.zj)|zi.zjl.
By Theorem 1 of Hall (1984), ¥, - ¢ N(0,0,?) if

B1Q,(2,.2)) 1/EMH 2, 2p" 1?0, (A34)

n'lz[u“(zi.zj )z']/tl![H“(zi.2_1)2]i2 - 0, (A35)
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and

2
(/DRI (2,.2)%] + o A36)

as n + =,

Analysis of E[Q(Z,,Z,)?): By (A33) and the definition of H,

1/2,
HA(Zg,2)) = (/G 5) 100, (W) /Ry (V) + (V) /Ry (V)]

+ [FQV)) = FOV)TIW(V)U, /0y (V) = wCV))U;/p,y (V)]

i

£+ 1/2

-km(vj - \'1)] - w(vi)ul[p(vi)l'lo(h /m) (A37)

uniformly over (Z,,Z,). Some algebra yields the result that

r+ 1,2

2
Qn(z ) in(z Z )+ U o(h /n Y+ Ujo(h /m”)

3 o(th + 1/n2) (A38)

uniformly over (2,,Z,), where
Quy (%4 z )y = Elii jla (v )Uiuj[u(v!),’v,(\") +w(V)/py (V)]
SO /Ry (V) + WOV /p, (U] + [FCY)) - F(V 1% (YU,
S (W (Y )/ (V1 [WCY ) /By (V) + WV /By (V)] + [F(VY) - F(Vp)]

< (VU (WY ) /2y (VD 1190V ) /R4 (V) + (V4D /Ry (V)]

+ [Fp) - FUPIIFW,) - FO /o, (V) 2 (V)



42

K v - V‘)Kh'(\fj -V, (A39)

and Eg|, , denotes the expectation over Vy conditional on V, and V,. Equation
(A39) has the form

-1
{'nzh) I [Uivjll(\l h' o P Ui‘z("r"p" )

Qi (24-2y) 8 G 1

+

r+1l

- (h/s) K[(V, - vl)/sllll([(\fJ - V) /h]

UM (VAR AVEIERUALS

where R,, R;, and R, are bounded, continuous functions. Let ¢ = (Vp - V,)/h.
Then

-2
in(zl,zj) = n I [U’_UJRl(h; + vi.vi,vj) + Uikz(hq + vi,vi,vj)

+ UR)(BE + V),V + Ry(he + V),V V) TIRG)
- )"t IRIM/eED KIS + (V) - /M)

- /o)™ * IRiy/g + ) - V) /81, (e + Va8

- o[ (wR s+ VYLV 4 UR O YYLV)

+ UR, (B + V.,V

R2 .Vi) + Ra(h; + vi,vi.vj)]x(;)

b

=2
KI§ + (V) - V))/hlpy(h§ + V)& + U Uo(n™)

+ Ulo(n'z) + U o(u'z) + o(n'z). (A4O)

J
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It follows from (A38) that Q,(Z,,Z,) has the form (A40). Therefore,
E[Q.(Z,,2,)?] has the form

BQ,(2,,2)%] =

n'ZJ' R(hg, + Vi b, + "1-"'1-"5)"('1”(“2”‘“'1 F - Vj)/h]

"KIg, + (V) = V)/hIpy(hey + VIR, (hE, + VyIpy(Vy )P, (Vy)ds de pdv,av,

+ o(n-“)

- o(n"').

Therefore

BIQ, (2,271 = o(1/n?). (As1)

Analysis of nE[H,(Z,,Z,)"]: By (A37) H,(Z,,Z;)* has the form

4 -4, -2
nn(zl.zj) = n h Rnlo(zi'zj)'

where R, has the property that E(R,,) is bounded uniformly over n. Therefore,

2% = ot/ @) (a2)

Analysis of E[H,(Z,,Z,)?]: By the definition of H,

n'ln[nn(z

2 2 2 2
nn(zi.zj} - An(zl.zj) + An(zj,zi) +w(z)" + 2[.\“(21,2_1)3“(23,21)
+ n(zi)an(zi_.zj) . y(zi)an(zj.z ). (AL3)

But

20 = (/@ wu e, 21w+ 20 () - F)

B\ (Zg02y



a4
+ [F(V) - FOVOI1DR (v, - v,)2
4 1 1Yy = V)

Therefore,

oBiA(2,,207) = 11 - (v I v ?ie, v 216 o))

‘(o2 V) + (FOV)) - FODIPNRIEY, - Vo)/m)

- (/) KI(Yy - V))/s]) ENA IPy(Vy)av av
Define ¢ = (V; - V,)/h. Then

nBiA(Z 20 = 11 - (vl v 2in, v Piehcr)
“te?(hg + V) + [Fehe +V,) - FV)120K()
- b/ RI/8)611 2, (V,)p, (B + V,)dcav,

- QJ w(v)2(2(v)12av + o(1). (AL4)
By the Cauchy-Schwartz inequality
BIA (20, 2)m(Z)] s (EIA(2,.2)) Blu(z) ") 2,
It now follows from (A43) and E[p(Z,)?] = o(1l/n?) that
BIAL(Z,.Z)n(Z)] = o(1/n?). (A45)
In addition, it is easily seen that
E[A,(Z,.2)8(Z,)] = 0. (A46)

Finally,

nB(A (2, 2OA 2201 = (1 - v I wevpeepe? v petavy)
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2
-xh‘(vj - Vi) ""3‘"1'
By arguments similar to those used to obtain (A43)

n7E(A (2,2 (2,,2)] = c,J v (a2 1%av + o). (A4T)

Combining (A43)-(A47) yields

nzz[nn(zi.zj)zl - aclJ win) (el (v))2av + o(1) (A48)

Conditions (A34)-(A36) now follow by combining (A41l), (A42), and (A48). Q.E.D.
A4. PROPERTIES OF T, UNDER H,

Proof of Theorem 2

Let (#,) be a nonstochastic sequence such that n}/2(4, - 8) - O(1). Let T
be defined as T, with 8, replaced by #,. It suffices to show that plim, ..
T,/(nh*?) > 0. To do this, let U = Y - H[v(X,0)] and vy = 3v/36. Let 6%
denote a point between #, and # (not necessarily the same point in each usage).
Some algebra and Taylor series expansions yield

11
L 1/2
Byt - TR,

wvhere

oy B
By = ™ iElu[w(xl,urn)]1.11¢$°1_d[1|r(xi.an:;] - Fog v, 000,

=
]

g1 B
k. {EIHIV(KPG“)]Ulani[v(Ki.ﬂ)] - Hlv(X . 0],

n
R, - n'liglw[v(xi.fn)]uilll[v{ﬁid)] - Flv(X,, 01,

n
R, = -l - n'/nli}_jlw[v(xi,an)luir'[v(xi.cn*nv,(xi.!nﬂ.



46

R, -

n
oL L wiv(X,,0 )] H[v(X,,0) - r[v(xi.i)]Hrni[v(xi.an)] - Fylvx 00,
=1

R

n
6" “'lgl"“’“p'n’““["“‘:-'” - FIV(X ,O))F  [v(X,0)] - HIV(X ,0]),

n
Ry = 7 L wIVOL 01 (FIvERL 0] - HIvE O],
n
Rg = 208, - F)'/n]igl\t[vtxi.in)l?'IV(xi.ﬁn*)]vacxi.!“*)

*(H[v(X;,8)] - F[v(X,6)]),

n
Ro = =[G, - i)'/n]lglw[v(xi,!“)]l’"[v(xi,in*)]va(xi.ln*:l
SR VX0 ] - B V(XL 0],

R

n
A B | n'/nllglv[v(xi.an)lr'lv(xi.a“*)lv,(xi.en*)

(F [v(X,0)] - HIV(X;,0)]),
and

e

n
2
(6, - 8)'/n] lglwlv(xi.ia)31"'[?(11.!“*] V(X 8 *)v, (X .8 %)(0 - 0).
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R, is n’! times the analogous quantity in lemma 6. Therefore, R, = o,(1).
By lemmas 4 and 6
n

-1
= n 121“["“‘1-':,’1"1*%1“*"‘1”1 - 3 [V ]) + 0 (1)

R2

R, = 0,(1) now follows from a proof similar to that of lemma 7.
Because w[v(x,8,)] - w[v(x,8)] = 0(n"'?) uniformly over x,

n
R, = n' I wiv(xy, 0310, (B (X;,0)] - Flv@ky, 1) + oy (D).

{m
R,y = 0,(1) now follows from the strong law of large numbers.
By assumptions 2, 4, and 5 as well as 6, - # = O(n/%)

n
R, = (umu)o(m'l""‘)1}jl|'r1 - Hvex,,01].

n4
The summand has a finite mean by assumptions 5 and 7, so R, = n,(l) follows
from the strong law of large numbers.

By lemma 5,

-1 1/%: &
|Rn5| < n Op(a 1/ )1§1|H[v(xl.ﬂ) - F[v(Xi.O)ll.

so R,y = o,(1) follows from the strong law of large numbers.
By lemma 1 and assumption 5

a8
sl S op(m igliu[v(xi.aﬁn - Flv(x;. 011,

so Ryg = o,(1) follows from the strong law of large numbers.

R, = P E(w(V)[H(V) - F(V)]?) by the strong law of large numbers and the
fact that w[v(x,8,)] - w[v(x,8)] = 0(n"*'?) uniformly over x.

By assumptions 2, 4, and 5 and #, - § = O(n™}/?),

n
Ry & o<n"’2)n‘11§1|n[vcxl.n1 - Flvaxg,01],

so R, = 0,(1) follows from the strong law of large numbers.
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Ry = 0,(1) by lemma 4 , assumptions 2,4, and 5, and @, - § = O(n"*/?).

R,,10 and R, ,, are o,(1) by lemma 1, assumptions 2, 4,, and 5, and 4, - #
- 0(n"1/2),

Collecting results yields T,/(nh!/?) = P Ew(V)([H(V) - F(V)]?) > 0. Q.E.D.

Additional Assumptions and a Lemma Used in Proving Theorem 3
9. H, has r continuous derivatives that are uniformly bounded over v € S,.

10. Define

l"n(x.v.r) - Ex{Hn[v(x.l)][Bv(x,r)ar - av(x.r)/GrHv(x.r) =-v].

Let I, (k = 1,...,K) denote the k'th component of I,. There is a finite
number My, not depending on r or x, such that for all r € Ny, x € S, vy,
v€S8,, and k = 1,...,K

|‘I‘nk(x.v2.r) - I'rlk(x,vl,r)l = "I‘Ivl - vzl.

11. o*(v) is a continuous function of v € §, and is bounded uniformly over v
€ S, and all sufficiently large n. E(Y - E[Y|v(x,0)])* is bounded
uniformly over v € S, and all sufficiently large n.

12. Define

Q (v.6) = (d"/dE")([H (v + hé) - H (M)]p,(V))

a. For some a > 1/(46) and finite constant C > 0
lQ, (v.he) - @ (v,s6)| = c|n¢ - s¢]%.

b. The kernel function K satisfies

©
I ||.zr * t"'mfu)|d\.l < w,
=

Assumptions 9-11 extend assumptions 5-7 to the local alternative mean
functions H,. Assumption 12 insures that the bias of (nh)2[F,(v) - H,(v)]
relative to its asymptotic distribution is o(h'/*). This bias must be o(h!/%)
to make the result given in Theorem 3 hold,

Lemma 8: Let assumptions 1-5 and B-12 hold. Under the sequence of models
H,, the conclusions of Lemmas 1-3 and 7 hold when F is replaced by H,.
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Proof: It may be verified that the proofs of Lemmas 1-3 and 7 hold line
by line. Q.E.D.

Proof of Theorem 3

Let (#,) be a nonstochastic sequence such that n'/2(4, - 0) = 0(1). Let T
be defined as T, with 8, replaced by 4. It suffices to show that the
conclusion of this theorem holds for T,. To do this, let U = Y - H,[v(x,6)],
V = v(X,#), vg = dv/38, and w,, = w[v(X,,8,)]. Let 4 * denote a point btween ¢,

and # (not necessarily the same point in each usage). Some algebra and Taylor

series expansions yield

11
= 1/2
T = (/IR
n 1= nt
where Rg (£ = 1,...,11) is obtained by replacing H with H, in the corresponding

terms in the proof of Theorem 2.

1. (oh?)R,: (nh'?)R,, = o,(1) follows by a proof identical to that given
for R,; in Theorem 1.

2. (nh'?)R,: By Lemma 8,

1/2 _ 2y
(nh™ )R _, h 1glwniuicnltvi) + op(l).

where H, is used in G, instead of F. Convergence in distribution of (nh**)R,
now follows by arguments identical to those used in proving Theorem 1.
3. (nh*?)R,,: E(nh'/?R,,) = 0 because E(U) = 0.

n

var(nh'/?R ;) - hEJ wnizoz(vtjn'lfzh'lf“an(vi)z - omM?.
1=1

4. (oh'?)R,: E(nh'?R,) = 0 because E(U) = 0. In addition,

Var(nh]'/zk

n
i 29 i 2
) = -0 hsiglwni o (VOF [V(X 0 )] v, (X0 %)

< vy V(X8 0O, - 0) = OCh).

5. (nh!2)R.:  (nh*?)R,, = 0,(h'/*) because H, - F = 0(n"?h"/*) and, by

Lemma 8, f,,(v) - Fo(v) = 0y(n"*/?) uniformly over i and v.
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6. (nh'?)R,: By Lemma 8

on'/%p o - hl/ziglumn'I’Zh'l"‘an(vt)cniwl) + o ().
where H, replaces F in the definition of G,;. Under assumption 12, E[G (V)] =
o[h!/*/(nh*/?)], Var[G,(v)] = O[(nh)™], and Cov[G, (V),Gy(v')] = o(h/n),
uniformly over v € §,, by arguments similar to those of Bierens (1987).
Therefore, nh'/?R,, = o,(1).

7. (nh*?)Ry,:

1/2

-1 3 2
nh Rn? - n 151"1116:1(“1) - y+op(1)

by uniform convergence of A, to A and the strong law of large numbers.

8. (nhY)R,:

(nhl/Z)Rns 5

-1/2, -1/4

1/2 ¢
-2(Un - 8)'h ’El\fnlf’[v{xi,ﬂn*)]v‘(xi.in*)‘n ﬁn(Vi)
= 1/4
Op(h Y
9. (nh'l.!l)p":

n

1/2 ’
glwnir (VX6 *)v (X, 60 %)

1/2 )
(mh /R g = (6 - 0)'h

1/2
F (VX ,0)] - F[v(Xg,0)]) = o (A7)

by Lemma 8.
10. (nh'®)R, 4

172 _
(=b™" IRy 10

w172 % , )
(ln - @)'h 1§1w“1F [v(xi.ln*)]v‘(xi.an*)[rm(vij H“(Vi)].
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=R 0% + 0, (1),

n,10
by Lemma 8, where

* -
R.,10

w172 § ;
(6, - O'h iglwmr [V(X, 0 *)]vy (X0, #)[C (V) - I (V)]

Also by Lemma B8, E(R, %) = o(l). Arguments similar to those made for

Var(n!/?h'/*R_,) yield the result that Var(R, ,,*) = o(l), so R, ;o = o,(1) by

Chebyshev's inequality.
11. (nh'%)R, ;,:

1/2
L T
n ¥ 2
(0 = 'R T vy VR0 (009, (000, = O = 0.

Q.E.D.



Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No.

9071

9072

9073

9101

9102

9103

9104

9105

9106

9107
9108

9109

9110

9111

9112

9113

9114

9115

Author(s)

J. Eichberger,

H. Haller and F. Milne

G. Alogoskoufis and
F. van der Ploeg

K.C. Fung

A. van Soest

A. Barten and
M. McAleer

A. Weber

G. Alogoskoufis and
F. van der Ploeg

R.M.W.J. Beetsma

C.N. Teulings

E. van Damme
E. van Damme

G. Alogoskoufis and
F. van der Ploeg

L. Samuelson

F. van der Ploeg and
Th. van de Klundert

Th. Nijman, F. Palm
and C. Wolff

H. Bester

R.P. Gilles, G. Owen
and R. van den Brink

F. van der Ploeg

Title

Naive Bayesian Learning in 2 x 2 Matrix Games

Endogenous Growth and Overlapping Generations

Strategic Industrial Policy for Cournot and Bertrand
Oligopoly: Management-Labor Cooperation as a Possible
Solution to the Market Structure Dilemma

Minimum Wages, Earnings and Employment

Comparing the Empirical Performance of Alternative Demand
Systems

EMS Credibility
Debts, Deficits and Growth in Interdependent Economies

Bands and Statistical Properties of EMS Exchange Rates

The Diverging Effects of the Business Cycle on the Expected
Duration of Job Search

Refinements of Nash Equilibrium
Equilibrium Selection in 2 x 2 Games

Money and Growth Revisited

Dominated Strategies and Commom Knowledge

Political Trade-off between Growth and Government
Consumption

Premia in Forward Foreign Exchange as Unobserved
Components

Bargaining vs. Price Competition in a Market with Quality
Uncertainty

Games with Permission Structures: The Conjunctive Approach

Unanticipated Inflation and Government Finance: The Case
for an Independent Common Central Bank



No.

9116

9117

9118

9119

9120

9121

9122

9123

9124
9125

92126

9127

9128

9129

9130

9131

9132

9133

Author(s)

N. Rankin

E. Bomhoff

E. Bomhoff

J. Osiewalski and
M. Steel

S. Bhattacharya,
J. Glazer and

D. Sappington

J.W. Friedman and
L. Samuelson

S. Chib, J. Osiewalski
and M. Steel

Th. van de Klundert
and L. Meijdam

S. Bhattacharya
J. Thomas

J. Thomas
and T. Worrall

T. Gao, AJ.J. Talman
and Z. Wang

S. Altug and
R.A. Miller

H. Keuzenkamp and
A.P. Barten

G. Mailath, L. Samuelson
and J. Swinkels

K. Binmore and
L. Samuelson

L. Samuelson and
J. Zhang

J. Greenberg and
S. Weber

Title

Exchange Rate Risk and Imperfect Capital Mobility in an
Optimising Model

Currency Convertibility: When and How? A Contribution to
the Bulgarian Debate!

Stability of Velocity in the G-7 Countries: A Kalman Filter
Approach

Bayesian Marginal Equivalence of Elliptical Regression
Models

Licensing and the Sharing of Knowledge in Joint Ventures

An Extension of the "Folk Theorem" with Continuous
Reaction Functions

A Bayesian Note on Competing Correlation Structures in the
Dynamic Linear Regression Model

Endogenous Growth and Income Distribution

Banking Theory: The Main Ideas

Non-Computable Rational Expectations Equilibria

Foreign Direct Investment and the Risk of Expropriation
Modification of the Kojima-Nishino-Arima Algorithm and its
Computational Complexity

Human Capital, Aggregate Shocks and Panel Data Estimation
Rejection without Falsification - On the History of Testing the
Homogeneity Condition in the Theory of Consumer Demand
Extensive Form Reasoning in Normal Form Games
Evolutionary Stability in Repeated Games Played by Finite
Automata

Evolutionary Stability in Asymmetric Games

Stable Coalition Structures with Uni-dimensional Set of
Alternatives



No.

9134

9135

9136

9137

9138

92139

9140

9141

9142

9143

9144

9145

9146

9147

9148

9149

9150

9151

Author(s)

F. de Jong and
F. van der Ploeg

E. Bomhoff

H. Bester and E. Petrakis

L. Mirman,
L. Samuelson and
E. Schlee

C. Dang

A. de Zeeuw

B. Lockwood

C. Fershtman and
A. de Zeeuw

J.D. Angrist and
G.W. Imbens

AK. Bera and
A. Ullah

B. Melenberg and
A. van Soest

G. Imbens and
T. Lancaster

Th. van de Klundert
and S. Smulders

J. Greenberg
S. van Wijnbergen
S. van Wijnbergen
G. Koop and

M.FJ. Steel

A.P. Barten

Title

Seigniorage, Taxes, Government Debt and the EMS
Between Price Reform and Privatization - Eastern Europe in
Transition

The Incentives for Cost Reduction in a Differentiated Industry

Strategic Information Manipulation in Duopolies

The D'y Triangulation for Continuous Deformation Algorithms
to Compute Solutions of Nonlinear Equations

Comment on "Nash and Stackelberg Solutions in a Differential
Game Model of Capitalism"

Border Controls and Tax Competition in a Customs Union

Capital Accumulation and Entry Deterrence: A Clarifying
Note

Sources of Identifying Information in Evaluation Models
Rao’s Score Test in Econometrics
Parametric and Semi-Parametric Modelling of Vacation

Expenditures

Efficient Estimation and Stratified Sampling

Reconstructing Growth Theory: A Survey

On the Sensitivity of Von Neuman and Morgenstern Abstract
Stable Sets: The Stable and the Individual Stable Bargaining
Set

Trade Reform, Policy Uncertainty and the Current Account:
A Non-Expected Utility Approach

Intertemporal Speculation, Shortages and the Political
Economy of Price Reform

A Decision Theoretic Analysis of the Unit Root Hypothesis
Using Mixtures of Elliptical Models

Consumer Allocation Models: Choice of Functional Form



No.

9152

9153

9154

9155

9156

9157

9158

9159

9160

9161

9162

9163

9164
9165
9166
9167
9168
9169

9170

9201

Author(s)

R.T. Baillie,

T. Bollerslev and
M.R. Redfearn
M.F.J. Steel

AK. Bera and
S. Lee

F. de Jong

B. le Blanc

A.J. Talman

H. Bester

A. Ozcam, G. Judge,
A. Bera and T. Yancey

R.M.W.J. Beetsma
AM. Lejour and
H.A.A. Verbon

S. Bhattacharya

H. Bester, A. de Palma,
W. Leininger, E.-L. von
Thadden and J. Thomas

J. Greenberg

Q.H. Vuong and W. Wang

D.O. Stahl I1

D.O. Stahl II

T.E. Nijman and F.C. Palm

G. Asheim

H. Carlsson and
E. van Damme

M. Verbeek and
Th. Nijman

Title

Bear Squeezes, Volatility Spillovers and Speculative Attacks
in the Hyperinflation 1920s Foreign Exchange

Bayesian Inference in Time Series

Information Matrix Test, Parameter Heterogeneity and
ARCH: A Synthesis

A Univariate Analysis of EMS Exchange Rates Using a Target
Zone Model

Economies in Transition

Intersection Theorems on the Unit Simplex and the
Simplotope

A Model of Price Advertising and Sales

The Risk Properties of a Pre-Test Estimator for Zellner's
Seemingly Unrelated Regression Model

Bands and Statistical Properties of EMS Exchange Rates: A
Monte Carlo Investigation of Three Target Zone Models

Centralized and Decentralized Decision Making on Social
Insurance in an Integrated Market
Multilateral Institutions

Sovereign Debt, Creditor-Country Governments, and

The Missing Equilibria in Hotelling’s Location Game

The Stable Value

Selecting Estimated Models Using Chi-Square Statistics
Evolution of Smart, Players

Strategic Advertising and Pricing with Sequential Buyer Search
Recent Developments in Modeling Volatility in Financial Data
Individual and Collective Time Consistency

Equilibrium Selection in Stag Hunt Games

Minimum MSE Estimation of a Regression Model with Fixed
Effects from a Series of Cross Sections



No.

9203

9205

9206

9207

9208

9209

9210

9211

9212

9213

0214

9215

9216

9217

9218

9219

Author(s)

E. Bomhoff

J. Quiggin and P. Wakker

Th. van de Klundert
and S. Smulders

E. Siandra
W. Hirdle

M. Verbeek and
Th. Nijman

W. Hirdle and
A.B. Tsybakov

S. Albzk and
P.B. Overgaard

M. Cripps and
J. Thomas

S. Albak

T.J.A. Storcken and
P.H.M. Ruys

R.M.W.J. Beetsma and
F. van der Ploeg

AL van Soest

W. Giith and
K. Ritzberger

A. Simonovits

J.-L. Ferreira, 1. Gilboa
and M. Maschler

P. Borm, H. Keiding,
R. Mclean, S. Oortwijn
and S. Tijs

J.L. Horowitz and
W. Hiirdle

Title
Monetary Policy and Inflation
The Axiomatic Basis of Anticipated Utility; A Clarification

Strategies for Growth in a Macroeconomic Setting

Money and Specialization in Production
Applied Nonparametric Models

Incomplete Panels and Selection Bias: A Survey
How Sensitive Are Average Derivatives?
Upstream Pricing and Advertising Signal Downstream

Demand

Reputation and Commitment in Two-Person Repeated Games

Endogenous Timing in a Game with Incomplete Information
Extensions of Choice Behaviour

Exchange Rate Bands and Optimal Monetary Accommodation
under a Dirty Float

Discrete Choice Maodels of Family Labour Supply

On Durable Goods Monopolies and the (Anti-) Coase-
Conjecture

Indexation of Pensions in Hungary: A Simple Cohort Model

Credible Equilibria in Games with Utilities Changing during
the Play

The Compromise Value for NTU-Games

Testing a Parametric Model against a Semiparametric
Alternative



e e L N N N I e S T e B e T e I | I\IETLJERLAND*

Bibliotheek K. U. Brabant

0 R

17 000 01117459 7



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60

