
Testing Advanced Driver Assistance Systems using
Multi-objective Search and Neural Networks

Raja Ben Abdessalem, Shiva Nejati,
Lionel C. Briand

SnT / University of Luxembourg, Luxembourg

{raja.benabdessalem,shiva.nejati,lionel.briand}@uni.lu

Thomas Stifter
IEE S.A. Contern, Luxembourg

thomas.stifter@iee.lu

ABSTRACT

Recent years have seen a proliferation of complex Advanced
Driver Assistance Systems (ADAS), in particular, for use
in autonomous cars. These systems consist of sensors and
cameras as well as image processing and decision support
software components. They are meant to help drivers by
providing proper warnings or by preventing dangerous situ-
ations. In this paper, we focus on the problem of design
time testing of ADAS in a simulated environment. We
provide a testing approach for ADAS by combining multi-
objective search with surrogate models developed based on
neural networks. We use multi-objective search to guide
testing towards the most critical behaviors of ADAS. Sur-
rogate modeling enables our testing approach to explore a
larger part of the input search space within limited computa-
tional resources. We characterize the condition under which
the multi-objective search algorithm behaves the same with
and without surrogate modeling, thus showing the accuracy
of our approach. We evaluate our approach by applying it
to an industrial ADAS system. Our experiment shows that
our approach automatically identifies test cases indicating
critical ADAS behaviors. Further, we show that combining
our search algorithm with surrogate modeling improves the
quality of the generated test cases, especially under tight
and realistic computational resources.

CCS Concepts

•Software and its engineering ! Software testing
and debugging;

Keywords

Advanced Driver Assistance Systems, Multi-Objective Search
Optimization, Simulation, Surrogate Modeling, Neural Net-
works

1. INTRODUCTION
With the challenge of developing software for autonomous

vehicles comes the challenge of testing this software to en-
sure vehicles’ safety and reliability. Simulation, i.e., design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE’16, September 03-07, 2016, Singapore, Singapore

© 2016 ACM. ISBN 978-1-4503-3845-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970276.2970311

time testing of system models, is arguably the most prac-
tical and effective way of testing software systems used for
autonomous driving. Rich simulation environments are able
to replicate various real world traffic situations. They en-
able engineers to execute scenarios describing different ways
in which pedestrians interact with the road traffic or ve-
hicles interact with one another. Recent years have seen
major improvements in accuracy and usability of simula-
tion tools. Their full exploitation, however, is hampered
by two main factors: (1) Existing simulation tools lack the
intelligence and automation necessary to guide the simula-
tion scenarios in a direction that would be likely to uncover
faulty behaviors. Hence, engineers have to identify critical
system behaviors manually, with simulation being used only
to execute (re-play) these behaviors. (2) Executing simula-
tion scenarios is computationally expensive. Hence, given
a limited time budget for testing, only a small fraction of
system behaviors can be simulated and explored. In this
paper, we provide solutions to specifically address these two
limitations when testing is performed via simulation. We
show how our proposed solutions enable effective testing of
software systems used to assist drivers.
Motivation. We motivate our work using an advanced
driver assistance system (ADAS) case study. ADASs (e.g.,
collision avoidance systems) are developed to assist drivers
to properly react to risky situations [37]. These systems con-
stitute one of the fastest growing segments in the automotive
industry. ADASs are typically based on vision systems and
sensor technologies.

Our case study is a Pedestrian Detection Vision based
(PeVi) system. Its main function is to improve the driver’s
view by providing proper warnings to the driver when pedes-
trians (people or animals) appear to be located in front of
a vehicle in particular when the visibility is low due to poor
weather conditions or due to low ambient light. PeVi con-
sists of a CCD camera, and software components implement-
ing image processing and object recognition algorithms as
well as algorithms that determine when and which warning
message should be shown to the driver.

Testing PeVi with real hardware and in the real environ-
ment (e.g., by making a person or an animal cross a road
while a car is approaching) is obviously dangerous, time-
consuming, costly and to a great extent infeasible. Hence,
a large part of testing for ADAS has to be carried out us-
ing what is known as physics-based simulation platforms [1].
These simulation platforms are able to replicate a wide range
of virtual traffic and road environments. This includes simu-
lating various weather conditions, road types and topologies,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970311

63

intersections, infrastructures, vehicle types and pedestrians.
Further, such platforms are able to simulate sensor tech-
nologies such as radar, camera and GPS [1]. Figure 1 shows
a snapshot of a simulation environment called PreScan [1]
that is used to test PeVi. The physics-based simulation func-
tion of PreScan is enabled via a network of connected Mat-
lab/Simulink models [3] implementing dynamic behavior of
vehicles, pedestrians and sensors. The software under test
(PeVi in our work) is also developed in Simulink and is inte-
grated into PreScan using inter-block connections between
the Simulink models of the car and PeVi.

Figure 1: A snapshot of the simulation platform
used to test the Pedestrian Detection Vision based
(PeVi) system.

Challenges. Provided with a physics-based simulation plat-
form, test case execution is framed as executing models of
the system under test and its environment. Existing simu-
lation platforms are able to simulate ADAS behaviors with
reasonable accuracy when provided with a set of input test
data. However, they have two important limitations: The
first limitation is that simulation platforms provide no guid-
ance to engineers as to which test scenarios should be se-
lected for simulation. Since test inputs are specified man-
ually in current platforms, simulation is limited to a small
number of scenarios hand-picked by engineers. Manual test
generation is expensive and time-consuming, and further,
manually picked test cases are unlikely to uncover faults
that the engineers are not aware of a priori. Hence, it is
important to augment these simulation platforms with some
automated test strategy technique, i.e., a sampling strategy
in the space of all possible simulation scenarios [14], which
attempts to build a sufficient level of confidence about cor-
rectness of the system under analysis through exercising only
a small fraction of that space. The key question is how to
choose an effective test strategy for testing ADAS.

We note that the space of all possible test scenarios for
ADAS is very large. Traditional test coverage measures,
which are common for small-scale, white-box testing, are in-
feasible and impractical for testing applications with large
test spaces. Following the intuitive and common practice of
system test engineers, we develop a test strategy that focuses
on identifying high-risk test scenarios, that is scenarios that
are more likely to reveal critical failures [14]. In particu-
lar, we rely on search techniques to devise a test strategy
that focuses testing effort on an effective and minimal set
of scenarios. The search is guided by heuristics that charac-
terize high risk scenarios on which testing should focus. We
develop meta-heuristics based on system requirements and
critical environment conditions and system behaviors.

The second limitation is that physics-based simulations
are computationally expensive because they often involve ex-
ecuting high-fidelity mathematical models capturing contin-
uous dynamic behaviors of vehicles and their environment.
To address this limitation, we rely on surrogate models [34]
built based on machine learning techniques. Surrogate mod-
els are mathematical relations and aim to reduce computa-
tional cost by approximating high-fidelity but computation-
ally expensive models of physical phenomena [8, 11]. They
are able to predict simulation outputs within some confi-
dence interval allowing us, under certain conditions, to by-
pass the execution of expensive simulations.
Contributions. We propose an automated technique to
test complex ADASs based on physics-based executable mod-
els of these systems and their environments. Our technique
builds on the intuitions illustrated on the motivating ex-
ample described above, utilizing meta-heuristic search tech-
niques guided by quantitative fitness functions capturing rel-
evant and critical aspects of the system under test and its
environment. We make three contributions in this paper.
The first contribution is that we formulate our testing ap-
proach as a multi-objective search technique. We use multi-
objective search to obtain test scenarios that stress several
critical aspects of the system and the environment at the
same time. For example, PeVi test scenarios should exercise
behaviors during which a pedestrian appears in front of a car
in such a way that the possibility of a collision is high and the
chance of detecting the pedestrian is low because the pedes-
trian is very close to the car or because the camera’s field
of view is blocked. We compute such desired test scenarios
by minimizing the following three fitness functions: a func-
tion measuring the distance between the pedestrian and the
PeVi warning areas in front of a car, a function estimating
the time to collision, and a function measuring the distance
between the car and the pedestrian (see Section 2 for de-
tailed information about PeVi). Note that combining fitness
functions into one function and using single-objective search
is less desired in this situation because: First, our three fit-
ness functions are about different concepts (i.e., time and
distance). Second, engineers are typically interested in ex-
ploring interactions among critical factors of the system and
the environment. For example, they might be particularly
interested to inspect if PeVi is able to detect pedestrians
when they are located on the borders of the camera’s field
view. For this purpose, a multi-objective search algorithm
that produces several test cases that exercise different and
equally critical interactions of the system and the environ-
ment is preferred to a single-objective search algorithm that
generates a single test case.

Our second contribution is concerned with the large exe-
cution time of our testing approach. The execution time of
our search-based testing technique is large because physics-
based simulations are computationally expensive. We re-
duce the execution time of our search algorithm by proposing
a new combination of multi-objective search with surrogate
models built based on supervised learning techniques [31].
Surrogate models are able to predict the fitness function val-
ues within some confidence intervals. The time required for
surrogate models to predict values is significantly less than
the time required to run simulations of physical models.

The combination of multi-objective search with surrogate
modeling proposed in this paper is not tied to our par-
ticular search-based testing algorithm and is applicable to

64

any multi-objective search algorithm that computes a set
of Pareto optimal solutions [38, 27]. A solution is called
Pareto optimal if none of the fitness functions used by the
search can be improved in value without degrading some of
the other fitness values [58]. In our work, we use optimistic
and pessimistic fitness function predictions computed based
on surrogate models and a given confidence level to rank
Pareto fronts during search. We identify and prune from
the search space the candidate solutions that have a low
probability to be selected in the best ranked Pareto front.
We show that when actual fitness values are not better than
their respective optimistic predictions, the search algorithm
with surrogate modeling behaves the same as the original
search algorithm without surrogate modeling. Specifically,
under this condition and provided with the same set of can-
didate solutions at each iteration, search with and with-
out surrogate modeling select the same solutions, but the
search with surrogate modeling is likely to call less simula-
tions per iteration than the search without surrogate model-
ing. Note that our proposed combination of multi-objective
search with surrogate modeling is more accurate than ex-
isting alternatives [40, 25] as it eventually uses the actual
simulations instead of the predictions to compute Pareto
optimal fronts.

Our third contribution is focused on demonstrating the ef-
fectiveness of our search-based testing technique by applying
it to an industrial cases study, i.e., the PeVi system. Our
results show that: (1) Our search-based testing technique
for ADAS outperforms a random test case generation strat-
egy (baseline). (2) Combining multi-objective search with
surrogate modeling improves the quality of the generated
test cases within a limited time budget for test generation.
(3) Our search-based testing technique is able to produce
several test scenarios indicating potential errors in the PeVi
system. These test scenarios had not been previously found
by manual testing based on domain expertise.
Structure. Section 2 describes the PeVi system. Section 3
outlines our approach to developing surrogate models. Sec-
tion 4 provides our multi-objective search algorithm that
uses surrogate modeling. Section 5 tailors our search algo-
rithm to the PeVi system. Section 6 presents our empirical
evaluation. Section 7 compares our work with the related
work. Section 8 concludes the paper.

2. THE PEVI SYSTEM
In this section, we provide some further background on

the PeVi system, its important inputs and outputs and the
fitness functions that we design to guide our test strategy to
exercise PeVi’s most critical behaviors.

PeVi Requirements. Based on the Pedestrian Detection
Vision based (PeVi) specification, the cone-shaped space in
front of a car that is scanned by the PeVi camera is divided
into three warning areas illustrated in Figure 2. The size of
the cone vertex, α, is a feature of the camera and is called
camera’s field of view. The warning areas are described as
follows. (1) The acute warning area (AWA) is the red rect-
angle in Figure 2. (2) The warning area (WA) is the orange
area in Figure 2. (3) The cross warning area (CWA) refers
to the two yellow right-angled rectangles on the two sides of
WA in Figure 2.

The size and the position of the above three areas depend
on the type of the car on which PeVi is deployed, the type

 WAAWA

 CWA

 CWA

α

lawa

Figure 2: PeVi’s warning areas.

of the camera used for PeVi, and the OEM (i.e., car maker)
preferences. For example, in our case study, the field of view
α is set to 40°, and the length of AWA (lawa) ranges between
60m to 168m depending on the car speed.

The main requirement of PeVi is stated as follows:
R = “The PeVi system shall generate a red, orange, or yel-
low alert when it detects an object in AWA, WA, and CWA
warning areas, respectively. Further, PeVi shall fulfill this
requirement under different weather conditions and while the
car runs on different types of roads with different speeds.”
The requirement R, although summing up the main func-
tion of PeVi, is still very broad. There are several scenarios
where a pedestrian may end up being in one of the dangerous
area in front of a car when crossing a road. To focus testing
on the most high risk test scenarios among the numerous
possibilities that requirement R characterizes, we identified
the following specific situations after discussions with engi-
neers at our partner company: “It is more critical for PeVi
to detect pedestrians in the warning areas when pedestrians
are closer to the car and when the chance of collision is
higher.”. We use these specific situations to define fitness
functions for our multi-objective search algorithm.

PeVi Input and Output. In general, PeVi’s function is
impacted by several physical phenomena and environment
factors. For example, road friction or wind may affect vehi-
cle speed, which in turn, influences PeVi’s behavior. How-
ever, given that the testing budget both in terms of manual
and computational effort is limited, we identified, through
our discussions with the domain expert, the most essential
elements impacting the PeVi system. We developed a do-
main model to precisely capture these elements. This do-
main model essentially specifies a restricted simulation en-
vironment that is sufficient for testing PeVi. Further, this
domain model characterizes the PeVi inputs and the outputs
generated after simulating PeVi.

The domain model is shown in Figure 3. Based on this
model a test scenario for PeVi contains the following input:
(1) the value of the scene light intensity; (2) the weather
condition that can be normal, foggy, rainy, or snowy; (3) The
road type that can be straight, curved, or ramped; (4) the
roadside objects, namely, trees and cars parked next to the
road; (5) the camera’s field of view; (6) the initial speed of
the vehicle; and (7) the initial position, the orientation (θ)
and the speed of the pedestrian. All these input elements
except for the vehicle and the pedestrian properties are static
(i.e., immobile) during the execution of a test scenario. The
vehicle and the pedestrian (human or animal) are dynamic
(i.e., mobile).

Our domain model makes some simplifying assumptions
about PeVi’s test scenarios. For example, we assume that
the test scenarios contain only one pedestrian and one vehi-
cle, and the vehicle and the pedestrian speeds are constant.
These assumptions are meant to reduce the complexity of

65

- intensity: Real

SceneLight

Dynamic

Object

1

- weatherType:
Condition

Weather

- fog
- rain
- snow
- normal

«enumeration»

Condition

Output

Trajectory

- field of view:
Real

Camera

Sensor

RoadSide

Object

- roadType: RT

Road

1 - curved
- straight
- ramped

«enumeration»

RT

- vc
: Real

Vehicle

- x0: Real

- y0: Real

- θ: Real

- vp
: Real

Pedestrian

- x: Real

- y: Real

Position

1

*

1

*

1

1

- state: Boolean

Collision

Parked

Cars

Trees

- simulationTime:
Real

- timeStep: Real

Test Scenario

PeVi

- state: Boolean

Detection

1

1

11

1

1

1

1

«positioned»

«uses»

1
1

Figure 3: A fragment of the PeVi domain model.

test scenarios and were suggested by the domain expert.
However, we note that our search-based test generation ap-
proach is general and is not restricted by these assumptions.

Each of the input elements in Figure 3 (i.e., the elements
related by a composition relation to the test scenario ele-
ment in Figure 3) impacts PeVi’s behavior. For example,
the weather condition and the scene light intensity impact
the quality of images and the accuracy of PeVi in detect-
ing pedestrians. The camera field of view (α) and the road
shape (e.g., straight, curved and ramped) impact the topo-
logical positions of the three warning areas, which in turn,
impact the pedestrian detection function of PeVi. Roadside
objects may block the camera’s field of view, hence leaving
PeVi with little time to detect a pedestrian and to react with
a proper warning message. Finally, PeVi’s function should
be tested for various scenarios by varying the speed of the
vehicle and the pedestrian, and the position and orientation
of the pedestrian.

Each test scenario is associated with a simulation time
denoted by T and a time step denoted by∆t. The simulation
time T indicates the time we let a test scenario run. The
simulation interval [0..T] is divided into small equal time
steps of size ∆t. In order to execute a test scenario, we
need to provide the simulator with the values of the input
elements described in Figure 3 as well as T and ∆t.

Ideally, PeVi should be tested by varying properties of all
the input elements. However, due to technical limitations
of PreScan, the simulation platform used for testing PeVi,
only properties of the pedestrian and the vehicle can be di-
rectly manipulated by dynamically modifying the Simulink
models implementing the vehicle and the pedestrian. Other
elements have to be configured manually through the tool
user interface. Hence, in this paper, we limit the PeVi test
input to the properties of the vehicle and the pedestrian, and
leave the problem of testing PeVi for other input properties
to the future. Specifically, we define the PeVi’s test input as
a vector (vc, x0, y0, θ, v

p) where vc is the car speed, x0 and
y0 specify the position of the pedestrian, θ is the orientation
of the pedestrian, and vp is the speed of the pedestrian. We
assume that the initial position of the vehicle (xc

0, y
c
0) is fixed

in test scenarios (i.e., xc
0 = 0m and yc

0 = 50m). We denote
the value ranges for vc, x0, y0, θ and vp, respectively, by Rvc ,
Rx0

, Ry0 , R✓ and Rvp such that Rvc=[3.5km/h, 90km/h],
Rvp=[3.5km/h, 18km/h], R✓=[40°, 160°], Rx0

=[xc
0+20m,

xc
0+85m], and Ry0=[yc

0-15m,yc
0-2m]. Note that variables vc,

x0, y0, θ and vp are all of type float.
Having provided the input, PreScan simulates the behav-

ior of PeVi, the vehicle and the pedestrian, and generates
the following output elements: (1) output trajectory vectors:

each dynamic object (i.e., the vehicle and the pedestrian) is
associated with an output trajectory vector that stores the
position of that object at each individual time step. The size
of the trajectory vectors, denoted by k, is equal to the num-
ber of time steps within the simulation time, i.e., k ⇡ T

∆t
.

We denote the trajectory output of the pedestrian by the fol-
lowing two functions: Xp, Y p : {0,∆t, 2 ·∆t, . . . , k ·∆t} ! R.
We write Xp(t) and Y p(t) to denote the pedestrian posi-
tion on x- and y-axes at time t, respectively. Similarly, we
define functions Xc, Y c : {0,∆t, 2 ·∆t, . . . , k ·∆t} ! R for the
trajectory output of the car; (2) collision: this is a Boolean
property indicating whether there has been a collision be-
tween the vehicle and the pedestrian during the simulation;
and (3) detection: this is a Boolean property generated by
PeVi indicating whether PeVi has been able to detect the
pedestrian or not.

Fitness Functions. Our goal is to define fitness functions
that can guide the search into generating test scenarios that
break or are close to breaking the requirement R mentioned
earlier. Based on our discussions with the domain expert,
we identify the following three fitness functions.

1. Minimum distance between the car and the pedestrian.
The first function, denoted by Dmin(p/car), computes the
minimum distance between the car and the pedestrian dur-
ing the simulation time. We denote the Euclidean distance
between the pedestrian and the car at time t by D(p/car)(t).
The function Dmin(p/car) is then defined as follows:
Dmin(p/car) = Min{D(p/car)(t)}0tT .
The test scenarios during which the pedestrian gets closer

to the car are more critical. Hence, our search strategy
attempts to minimize the fitness function Dmin(p/car).

2. Minimum distance between the pedestrian and AWA.
The second function, denoted by Dmin(p/awa), computes
the minimum distance between the pedestrian and AWA
during the simulation time. We denote the distance be-
tween the pedestrian and AWA at time t by D(p/awa)(t).
This function depends on the shape of the road, the orienta-
tion of the pedestrian, and her position at time t. The value
of D(p/awa) for time steps in which the pedestrian is inside
AWA is zero. The function Dmin(p/awa) is then defined as
follows: Dmin(p/awa) = Min{D(p/awa)(t)}0tT

The goal of our search strategy is to minimize the sec-
ond fitness function as well. This is because in order to test
PeVi’s function for AWA, we need to generate scenarios dur-
ing which the pedestrian crosses AWA or gets close to it. To
test PeVi for the two other warning areas, WA and CWA,
we modify Dmin(p/awa) to compute the distances between
the pedestrian and WA and CWA, respectively.

3. Minimum time to collision. The third fitness function
is referred to as the minimum time to collision and is denoted
by TTCmin . The time to collision at time t, TTC (t), is
the time required for the car to hit the pedestrian if both
the car and the pedestrian continue at their speed at time
t and do not change their paths. The function TTCmin is
then defined as the minimum value of TTC (t) when t ranges
from 0 to T . TTCmin has proven to be an effective measure
to estimate the collision risk and to identify critical traffic
situations [51]. We are interested to generate scenarios that
yield a small TTCmin since these scenarios are more risky.

3. SURROGATE MODELS
We use surrogate models in our work to mitigate the com-

putation cost of executing physics-based ADAS simulations.

66

Specifically, in order to compute the three fitness functions
described in Section 2, we have to execute expensive physics-
based simulations. We create a surrogate model for each fit-
ness function to predict the fitness values without running
the actual simulations. Such surrogate models are often de-
veloped using machine learning techniques such as classi-
fication, regression or neural networks [5]. Given that we
are dealing with real-valued functions, regression or neural
network techniques are more suitable for our purpose be-
cause classification techniques are geared towards functions
with categorical outputs. Many studies have shown that
neural networks perform better than regression techniques
in particular when the input space under analysis is large
and when the relationship between inputs and outputs is
complex [44, 26]. Hence, we use neural networks to build
surrogate models. Neural networks can be used with super-
vised or unsupervised training algorithms [33]. In our work,
we are able to obtain output values for training input data
by running simulations. Hence, we use neural networks in a
supervised training mode.

Neural networks consist of a number of artificial nodes,
called neurons, connected via weighted links, forming a net-
work of neurons. The neurons are organized in several lay-
ers. The first layer is the input layer followed by one or more
hidden layers. The last layer is the output layer. Given a
network with a predefined number of neurons and layers,
the training process aims to synthesize a network by learn-
ing the weights on links connecting the neurons. Learning
is carried out in a number of iterations known as epochs.
In this paper, we consider the following well-known training
algorithms to develop our surrogate models: Bayesian regu-
larization backpropagation (BR) [39], Levenberg-Marquardt
(LM) [30], and Scaled conjugate gradient backpropagation
(SCG) [43].

Given a fitness function F , we build a surrogate model
of F by training a neural network. To do so, we use a set
of observations containing input values and known output
values [56]. We divide the observation set into a training set
and a test set. The training set is used to infer a predictive
function F̂ . This is done by training a neural network of F̂
such that F̂ fits the training data as well as possible, i.e.,
for the points in the training set, the differences between
the output of F and that of F̂ are minimized. The test set
is, then, used to evaluate the accuracy of the predictions
produced by F̂ when applied to points outside the training
set. Training neural networks requires tuning a number of
parameters, particularly the number of (hidden) layers, the
number of neurons in each hidden layer and the number of
epochs. Further, we need to choose among the three training
algorithms (i..e, BR, LM, and SCG). Finding the best values
for these parameters and selecting the best performing al-
gorithm in our case is addressed in our empirical evaluation
(Section 6).

In addition to building function F̂ to predict the values of
a fitness function F , we develop an error function F̂ cl

✏ that
estimates the prediction error based on a given confidence
level cl . The value of cl is a percentage value between 0 and
100. For example, let F̂ cl

✏ be the error function computed
for F̂ with respect to cl = 95. This implies that with a prob-
ability of 95%, the actual value of F (p) lies in the interval

of F̂ (p)± F̂ cl

✏ . We compute F̂ cl

✏ based on the distribution of
prediction errors obtained based on the test sets.

4. SEARCH WITH SURROGATE MODEL
We cast the problem of test case generation for ADAS as

a multi-objective search optimization problem [38]. Specif-
ically, we identified three fitness functions in Section 2 to
characterize critical behaviors of the PeVi system and its
environment. The solutions to our problem are obtained
by minimizing these three fitness functions using a multi-
objective Pareto optimal approach [38, 27] that states that
“A solution p is said to dominate another solution p0, if p is
not worse than p0 in all fitness values, and p is strictly bet-
ter than p0 in at least one fitness value”. The solutions on a
Pareto optimal front are non-dominating, representing best
found test scenarios that stress the system under analysis
with respect to the three identified fitness functions.

In our work, we rely on population-based and
multi-objective search optimization algorithms [17, 19]. In
this class of algorithms, the dominance relation over chromo-
some populations is used to guide the search towards Pareto-
optimal fronts. In our work, we choose the Non-dominated
Sorting Genetic Algorithm version 2 (NSGAII) [22, 38] algo-
rithm which has been applied to several application domains
and has shown to be effective in particular when the number
of objectives is small [47].

Figure 4 illustrates the NSGAII algorithm. The algorithm
works as follows: Initially, a random population P is gener-
ated (Line 2). After computing fitness functions F1, . . . , Fk

for each individual in P (Line 4), the individuals in P as
well as those in the archive A from the previous iteration
are sorted based on the non-domination relation (Line 6).
In particular, a partial order relation rank is computed to
sort elements in Q = P [A based on the fitness functions
F1, . . . , Fk. Assuming that the goal of optimization is to
minimize the fitness functions F1 to Fk, the partial order
rank ✓ Q⇥Q is defined as follows:

8p, p0 2 Q · rank(p, p0) , 8i 2 {1, . . . , k} · Fi(p) Fi(p
0)
V

9i 2 {1, . . . , k} · Fi(p) < Fi(p
0)

Specifically, rank(p, p0) if and only if p dominates p0 at
least in one fitness value, i.e., p is not worse (higher) than p0

in all the fitness values and p is strictly better (less) than p0

in at least one fitness value. Note that it might happen for a
given pair of individuals that neither of them dominates the
other. For these individuals, we use the notion of crowding
distance [22], denoted by cd , to be able to partially rank
them. We write non-dominating(p, p0) when p and p0 are
non-dominating, and say that non-dominating(p, p0) holds
iff:

8i 2 {1, . . . , k} · Fi(p) = Fi(p
0)
W

9i, i0 2 {1, . . . , k} · Fi(p) < Fi(p
0) ^ Fi0(p) > Fi0(p

0)

Let R ✓ Q be such that for all p, p0 2 R, we have
non-dominating(p, p0). For the elements in R, a crowding
distance function cd is defined that assigns a value to p 2 R
based on the distance between p and other p0 2 R. The
definition of the relation rank ✓ Q⇥Q is then extended as
follows: For every p, p0 2 Q, we have rank(p, p0) iff

(8i 2 {1, . . . , k} · Fi(p) Fi(p
0) ^ 9i 2 {1, . . . , k} · Fi(p) < Fi(p

0))
W

(non-dominating(p, p0) ^ cd(p0) < cd(p))

Having computed the rank partial order, the NSGAII al-
gorithm then creates a new archive A of the best solutions
found so far by selecting the best individuals from Q based
on rank (Lines 9-10). Note that BestRanked(Q, rank) re-
turns an element p 2 Q such that no other p0 2 Q dominates
p, i.e., ¬rank(p0, p) for every p0 2 Q \ {p}. When there are

67

Algorithm. NSGAII
Input: - m: Population and archive size /*|A| = |P| = m*/

- g: Maximum number of search iterations
Output: - BestSolution: The best solutions found in g iterations.

1. A = ; /* Empty archive*/

2. P = {p1, . . . , pm} /*Initial population (randomly selected)*/

3. for g iterations do
4. ComputeFitness(P) /* For all p ∈ P , fitness values

F1(p), . . . Fk(p) are computed*/

5. Q = P [A /* |Q| = 2m*/

6. rank = ComputeRanks(Q)
7. A = ;
9. while |A| < m do
8. p = BestRanked(Q, rank)
10. A = A [{p}
11. BestSolution = A
12. P = Breed(A) /*breeding a new population P from the

parent archive A*/

13. return BestSolutionFound

Figure 4: NSGAII Algorithm

more than one individual that are not dominated by any
element in Q, BestRanked(Q, rank) returns the one that
appears first in the lexicographic ordering.

After computing the archive A, the algorithm breeds a
new children population P from the parent archive A by call-
ing the Breed procedure (Line 12). This is done by selecting
m/2 individuals as parents from A using the tournament se-
lection technique [38], and then creating m offsprings from
the m/2 selected parents using the crossover and mutation
genetic operators. The details of the Breed procedure can
be found in [22]. We will describe the genetic operators used
in our approach in Section 5. The algorithm terminates by
returning the best solutions found within g generations.

In this paper, we change the NSGAII algorithm in Figure 4
to use, instead of the actual fitness values, the predicted
fitness values obtained from surrogate models to compute
the partial order rank and to select the best individuals A.
We refer to our algorithm as NSGAII-SM. The main goal of
NSGAII-SM is to speed up the search by selecting an archive
of best individuals A from the set Q without the need to
run costly simulations for every element in the newly bred
children population P . Specifically, we bypass execution of
the simulation for any individual p 2 P , if we can conclude
using predicted fitness values that p has a low probability to
be included in A.

Recall that the surrogate model for any fitness function
F comprises a prediction function F̂ and an error function
F̂ cl

✏ that estimates the prediction errors of F̂ within the
confidence level cl . Since our optimization problem aims
to minimize fitness values, for any individual p, we have a
most optimistic fitness value F̂ (p)� F̂ cl

✏ (p) and a most pes-

simistic fitness value F̂ (p) + F̂ cl

✏ (p). The gap between these
two values widens by increasing the confidence level cl , and
decreases by lowering cl .

Our NSGAII-SM algorithm is shown in Figure 5. The
algorithm computes predicted fitness values for every indi-
vidual p 2 P (Line 4). The algorithm, further, uses a set
Predicted to keep track of elements for which only predicted
fitness values are known, i.e., the elements for which the ac-
tual simulation has not yet been executed. The set Predicted
is initially set to P since for the elements in P , actual fitness
values have not yet been computed. Then, the algorithm
computes two partial order relations rank� and rank+. The
relation rank� is computed based on optimistic fitness val-
ues (F̂ (p) � F̂ cl

✏ (p)) for individuals in Predicted and actual

Algorithm. NSGAII-SM
Input: - m: Population and archive size /*|A| = |P| = m*/

- g: Maximum number of search iterations
Output: - BestSolution: The best solutions found in g iterations.

1. A = ; /*archive*/

2. P = {p1, . . . , pm} /*initial population (randomly selected)*/

3. for g iterations do
4. PredictFitness(P) /*For every p ∈ P and every fitness function Fi s.t.

i ∈ {1, . . . , k}, compute F̂i(p) − F̂ cl

i,✏(p) and F̂i(p) + F̂ cl

✏,i(p)*/

5. Predicted = P
6. Q = P [A /* |Q| = 2m*/

7. rank�, rank+ = ComputeRanks(Q)
8. A = ;
9. while |A| < m do
10. p = BestRanked(Q, rank�)
11. while p 62 Predicted ^ |A| < m do
12. A = A [{p}
13. Q = Q \ {p}
14. p = BestRanked(Q, rank�)
15. if |A| = m then break
16. p = BestRanked(Predicted , rank+)
17. ComputeFitness({p}) /*Run simulation and compute

actual fitness values F1, . . . , Fk for p*/

18. Predicted = Predicted \ {p}
19. rank�, rank+ = ComputeRanks(Q) /*re-rank the remaining

elements in Q after computing the actual fitness values for p.*/

20. BestSolution = A
21. P = Breed(A) /*breeding a new population from the parent archive*/

22. return BestSolutionFound

Figure 5: NSGAII-SM Algorithm

fitness values (F) for other individuals. Dually, the rela-
tion rank+ is computed based on pessimistic fitness values
(F̂ (p)+F̂ cl

✏ (p)) for individuals in Predicted and actual fitness
values (F) for other individuals.
Let rank be the partial order over Q computed based on

the actual fitness values for every element in Q (assuming
that the actual fitness values are known for elements in Q).
Then, we show the follow lemma.

Lemma. Let BestRanked(Q , rank�) 62 Predicted . Sup-
pose for every p 2 Predicted and every fitness function
Fi 2 {F1, . . . , Fk}, we have F̂i(p) � F̂ cl

i,✏(p) Fi(p). Then,
BestRanked(Q , rank�) = BestRanked(Q , rank).
Proof. By our assumption, the actual fitness value for any
element p 2 Predicted is higher than their optimistic fitness
value F̂i(p)�F̂ cl

i,✏(p), which is the value used to create rank�.
Hence, none of the elements in Predicted could be ranked
higher than BestRanked(Q , rank�) when we use the partial
order rank .⌅
The above lemma states that assuming that actual fitness

values are not better than the optimistic predictions and if
BestRanked(Q , rank�) 62 Predicted , then BestRanked(Q , rank�)

is equal to the best ranked element computed in NSGAII
where we do not use predictions.

Given the above lemma, in NSGAII-SM, we first add the
elements of Q that are ranked best by rank� and are not in
Predicted to the archive of best elements A (Lines 10-14).
After that, if A is still short of elements (i.e., |A| < m),
we compute actual fitness values for the predicted element
that is ranked highest by rank+, i.e., the partial order based
on pessimistic fitness values of predicted elements (Lines 16-
18). We then recompute rank� and rank+ (Line 19), and
continue until we select m best elements from Q into A. For
all the elements in A, the actual fitness values are already
computed (i.e., A \ Predicted = ;).
Upon termination of the while loop (Lines 9-19) in Fig-

ure 5, the set Predicted ✓ Q contains those elements that
NSGAII-SM was able to discard without the need to com-

68

pute the actual fitness values for them. Hence, at each itera-
tion, the size of Predicted indicates the number of simulation
calls that our algorithm has been able to save. This is in con-
trast to the original NSGAII algorithm (Figure 4) where at
each iteration, simulation is called for m times. According
to the above Lemma, if actual fitness values are not better
than the optimistic predictions, then NSGAII and NSGAII-
SM behave the same. That is, assuming that NSGAII and
NSGAII-SM are provided with the same set P at each iter-
ation, they select the same candidate solutions (set A), but
NSGAII-SM is likely to perform less simulations per itera-
tion than NSGAII. The probability of actual fitness values
being better than the optimistic predictions depends on the
confidence level cl . For example, for cl = 95%, with a prob-
ability of 2.5%, the actual fitness values are better than their
optimistic predictions, and hence, NSGAII-SM might select
less optimal solutions compared to NSGAII given the same
set P . In Section 6, we empirically compare the quality of
the solutions generated by NSGAII-SM and NSGAII in par-
ticular by accounting for the randomness factor in generat-
ing P and by executing the two algorithms within a limited
and realistic time budget.

5. TAILORING SEARCH TO PEVI
The algorithms NSGAII and NSGAII-SM described in

Section 4 are generic. We tailor them to our search-based
test generation problem by specifying the search input rep-
resentation, the fitness functions, and the genetic operators.

Input representation. The input space of our search
problem consists of vectors (vc, x0, y0, θ, v

p). The variables
vc, x0, y0, θ and vp and their ranges are defined in Sec-
tion 2. Each value assignment to the vector (vc, x0, y0, θ, v

p)
represents a chromosome, and each value assignment to the
variables of this vector represents a gene.

Fitness functions. We use the three fitness functions,
Dmin(p/car), Dmin(p/awa) and TTCmin , defined in Sec-
tion 2 for our search algorithm. A desired solution is ex-
pected to minimize these three fitness functions.

Genetic operators. The Breed() procedure in the NSGAII
and NSGAII-SM algorithms is implemented based on the
following operators:

- Selection. We use a binary tournament selection with re-
placement that has been used in the original implementation
of NSGAII algorithm [22].

- Crossover. We use the Simulated Binary Crossover oper-
ator (SBX) [10, 20]. SBX creates two offsprings from two se-
lected parent individuals. The difference between offsprings
and parents is controlled by a distribution index (η): The
offsprings are closer to the parents when η is large, while
with a small η, the difference between offsprings and par-
ents will be larger [21]. In this paper, we chose a high value
for η (i.e., η = 20) based on the guidelines given in [20].

- Mutation. Mutation is applied after crossover to the
genes of the children chromosomes with a certain probability
(mutation rate). Given a gene x (i.e., any of the variables vc,
x0, y0, θ and vp), our mutation operator shifts x by a value
x0 selected from a normal distribution with mean µ = 0 and
variance σ2. To avoid invalid offsprings, if the result of a
crossover or a mutation is greater than the maximum, it is
set to the maximum. If the result is below the minimum, it
is clamped to the minimum.

6. EVALUATION
In this section, we investigate the following Research Ques-

tions (RQs) through our empirical evaluation applied to the
PeVi case study.

RQ1. (Comparing Random Search, NSGAII and
NSGAII-SM) How do NSGAII, NSGAII-SM and random
search perform compared to one another? We start by com-
paring the time performance and the quality of solutions
obtained by our test generation strategy when we use NS-
GAII and NSGAII-SM. Our goal is to determine whether
NSGAII-SM is able to generate results with higher qual-
ity than those obtained by NSGAII within the same time
period. We then compare the algorithm that performs bet-
ter, between NSGAII and NSGAII-SM, with a random test
generation algorithm (the baseline of comparison typically
adopted in SBSE research [32]).

RQ2. (Usefulness) Does our approach help identify test
scenarios that are useful in practice? This question investi-
gates whether the test scenarios generated by our approach
were useful for the domain experts and how they compared
with the test scenarios that have been previously devised by
manual testing based on domain expertise.

Metrics. We evaluate the prediction accuracy of surrogate
models using the coefficient of determination (R2) [56] that
measures the predictive power of a surrogate model by iden-
tifying how well a test set fits the model. Specifically, R2

measures the proportion of the total variance of F explained
by F̂ for the observations in the test set where F is a fitness
function and F̂ is its corresponding predictive function. The
value of R2 ranges between 0 and 1. The higher the value
of R2, the more accurate the surrogate model is.

To assess and compare the quality of Pareto fronts ob-
tained by our alternative search algorithms, we use two well-
known quality indicators [36], hypervolume (HV) and gen-
erational distance (GD). HV [59] measures the volume in
the solution space that is covered by members of a non-
dominated set of solutions. The larger the volume (i.e., the
higher the value of HV), the better the results of the algo-
rithm. GD [52] compares the pareto front solutions com-
puted by an algorithm with an optimal pareto front (or true
pareto front), i.e., the best non-dominated solutions that ex-
ist in a given space of solutions for a given problem. In par-
ticular, GD [52] is the average distance between each point
in a computed Pareto front and the closest optimal pareto
front solution to that point. A value of 0 for GD indicates
that all the obtained solutions by a search algorithm are op-
timal. The lower GD, the better the results of the algorithm.
Computing an optimal pareto front is usually not feasible.
As suggested in the literature [53], instead, we use a refer-
ence pareto front that is a union of all the non-dominated
solutions computed by our search algorithms (i.e., NSGAII,
NSGAII-SM and random search). The HV and GD are se-
lected from the combination and convergence quality indi-
cator categories, respectively. As discussed in [53], to assess
the quality of computed pareto fronts with respect to combi-
nation and convergence indicators, it is sufficient to choose
only one indicator from each of these two categories.

Experiment Design. We implemented the NSGAII and
NSGAII-SM algorithms and the neural network surrogate
models in Matlab. In addition, we implemented a test gener-
ation strategy based on random search. Random search [38]
and our NSGAII-based search algorithms require to interact

69

with PreScan to execute simulations of the Simulink models
of the pedestrian, the car and the PeVi system embedded
into the car (see Section 2). The NSGAII-SM algorithm,
in addition to calling the PreScan simulator, calls neural
networks that are developed to serve as surrogate models.
We ran all the experiments on a laptop with a 2.5 GHz CPU
and 16GB of memory. Based on our experiments, each PeVi
simulation (i.e., each call to PreScan), on average, takes 2
min with a min value of 1.2 min and a max value of 3.4 min.
The simulation time variations are due to the variations in
the car and the pedestrian speeds and positions. Further,
we may stop simulations before completion at a point where
we can conclusively determine the fitness function values.

To answer our research questions, we designed and per-
formed the following experiment. First, we identified the
training algorithm and the configuration values that lead to
the most accurate neural network-based surrogate models
for the PeVi case study. To do so, for each of our three
PeVi fitness functions, we compared 18 different neural net-
work configurations. The comparison is based on a k-fold
cross validation with k = 5 [4, 24]. Specifically, we first
selected (using adaptive random search [38]) 1000 observa-
tion points from the input search space of the PeVi system.
Adaptive random search was used to maximize diversity in
our training and test sets. It is an extension of the naive
random search that attempts to maximize the Euclidean
distance between the points selected in the input space. Re-
call from Section 2 that each PeVi input point is a vector
(vc, x0, y0, θ, v

p) selected from a five dimensional space. We
simulated each point to obtain the actual values for each fit-
ness function. In the experiment, we refer to fitness function
Dmin(p/car) by F1, to Dmin(p/awa) by F2, and to TTCmin

by F3. The 1000 observation points are randomly parti-
tioned into five disjoint subsets with 200 points in each. We
then randomly selected four subsets to create a training set
with 800 points, and the remaining subset is used as the test
set. This process is repeated for five times so that for each
5-fold cross validation, the R2 values are computed on a test
set containing the entire 1000 points. To account for ran-
domness, we repeated the 5-fold cross validation ten times.

To develop neural networks with high prediction accuracy,
we considered three training algorithms, BR, LM and SCG,
and we set different values to the following parameters: the
number of hidden layers (nl), the number of neurons in each
hidden layer (nn) and the number of epochs (ne). Specifi-
cally, we set nl = 2 as is common in the literature [28, 35].
There are various recommendations for setting nn. In par-
ticular, nn is recommended to be less than twice or equal to
2

3
of the size of the input vector [9, 35], or to be a number

between the input and the output size [9, 35]. We considered
the values 3 and 4 for nn. In addition, we considered the
value 100 for nn because in some cases the accuracy may
improve when nn is set to values considerably larger than
the input size [49]. Finally, we set ne to 10 and 100.

In total, we developed and trained 18 different neural net-
work configurations. We computed R2 for 10 different rep-
etitions of 5-fold cross validations of the 18 neural network
configurations related to our three fitness functions. We
selected the following neural network configurations with
highest predictive accuracy (highest R2) for our three fit-
ness functions: For F1, we selected the configuration that
was developed by the BR algorithm with nn = 100 and ne
= 100 (R2 = 0.99). For F2, we selected the configuration

that was developed by the BR algorithm with nn = 100 and
ne = 100 (R2 = 0.84), and for F3, we selected the config-
uration that was developed by the LM algorithm with nn
= 3 and ne = 100 (R2 = 0.89). Note that R2 = 0.84 indi-
cates that 84% of the variance in the test set is explained
by the predictive model. The high R2 values of the selected
configurations indicate their high predictive accuracy.

Having obtained the most accurate surrogate models to be
used by the NSGAII-SM algorithm, we now discuss value
selection for the search algorithms’ parameters. Since our
experiments, which involve running physics-based simula-
tions, are very time-intensive, we were not able to systemat-
ically tune the search parameters (e.g., based on the guide-
lines provided in [6]). Instead, we selected the parameters
based on some small-scale preliminary experimentations as
well as existing experiences with multi-objective search al-
gorithms. Specifically, we set the crossover rate to 0.9,
the mutation rate to 0.5 and the population size to 10.
Our choice for the crossover rate is within the suggested
range of [0.45, .., 0.95] [12]. Our preliminary experimenta-
tions showed that more explorative search may lead to bet-
ter results. Hence, we set the mutation rate to 0.5 which is
higher than the suggest value of 1/l where l is the length of
chromosome [6]. Finally, we chose a relatively small popu-
lation size to allow for more search iterations (generations)
within a fixed amount of time.

Results. Next, we discuss our RQs:

RQ1 (Comparing Random Search, NSGAII and
NSGAII-SM). To answer RQ1, we ran Random search,
NSGAII and NSGAII-SM (with cl =.95) 40 times for 150 min.
We computed the HV and the GD values for the pareto front
solutions obtained by these alternative search algorithms at
every 10 min interval from 0 to 150 min. We used the result-
ing HV and GD values and the changes in these values over
time to first compare NSGAII and NSGAII-SM by focus-
ing on their performance when the algorithms are executed
within a practical execution time budget (i.e., 150 min). Sec-
ond, we compare the better algorithm between NSGAII and
NSGAII-SM with Random search. To statistically compare
the HV values, we performed the non-parametric pairwise
Wilcoxon Paired Signed Ranks test [16], and calculated the
effect size using Cohen’s d [18]. The level of significance (α)
was set to 0.05, and, following standard practice, d was la-
beled “small” for 0.2 d < 0.5, “medium” for 0.5 d < 0.8,
and “high” for d � 0.8 [18].

Comparing NSGAII and NSGAII-SM. Figure 6(a) shows
the HV values obtained by 40 runs of NSGAII and NSGAII-
SM up to 150 min. As shown in the figure, at the beginning
both NSGAII and NSGAII-SM are highly random. After ex-
ecuting these two algorithms for 50 min, the degree of vari-
ance in HV values across NSGAII-SM runs reduces faster
than the degree of variance in HV values across NSGAII
runs. Further, the average HV values obtained by NSGAII-
SM grows faster than the average HV values obtained by
NSGAII. After executing the algorithms for 120 min, both
search algorithms converge towards their pareto optimal so-
lutions and the difference in average HV values between the
two algorithms tends to narrow.

We note that the differences between the HV distributions
of NSGAII and NSGAII-SM are not statistically significant.
This is likely because the number of runs is rather small (40),
thus yielding low statistical power. However, as shown in
Figure 6(a), the medians and averages of the HV values ob-

70

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(a) Comparing HV values obtained

by NSGAII and NSGAII-SM

NSGAII (mean)

NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)
50 100 15010

(b) Comparing HV values obtained

by RS and NSGAII-SM

HV

RS (mean)

NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(c) HV values for worst runs of NSGAII,

NSGAII-SM and RS

RS

NSGAII-SM

NSGAII

Figure 6: Comparing HV values obtained by (a) 40
runs of NSGAII and NSGAII-SM (cl=.95); (b) 40
runs of random search and NSGAII-SM (cl=.95);
and (c) the worst runs of NSGAII, NSGAII-SM
(cl=.95) and random search.

tained by NSGAII-SM are higher than the medians and aver-
ages of the HV values obtained by NSGAII. Given the large
execution time of our test generation algorithm, in practice,
testers will likely have the time to run the algorithm only
once. With NSGAII, certain runs really fare poorly, even
after the initial 50 min of execution. Figure 6(c) shows the

HV results over time for the worst run of NSGAII, NSGAII-
SM and Random search among our 40 runs. As shown in
the figure, the worst run of NSGAII yields remarkably lower
HV values compared to the worst run of NSGAII-SM. With
NSGAII, the tester might be unlucky, and by running the
algorithm once, obtain a run similar to the worst NSGAII
run in Figure 6(c). Since the worst run of NSGAII-SM fares
much better than the worst run of NSGAII, we can consider
NSGAII-SM to be a safer algorithm to use, especially under
tight time budget constraints. We note that as shown in
Figure 6(c) the HV values do not necessarily increase mono-
tonically over time. This is because HV may decrease when,
due to the crowding distance factor, solutions in sparse areas
but slightly away from the reference pareto front are favored
over other solutions in the same pareto front rank [46]. We
further compared the GD values obtained by NSGAII and
NSGAII-SM for 40 runs of these algorithms up to 150 min.
Similar to the HV results, after 50 min executing these al-
gorithms, the average GD values obtained by NSGAII-SM
is better than the average GD values obtained by NSGAII.

In addition, we compared the average number of simula-
tions per generation performed by NSGAII and NSGAII-
SM. As expected the average number of simulations per
generation for NSGAII is equal to the population size (i.e.,
ten). For NSGAII-SM, this average is equal to 7.9. Hence,
NSGAII-SM is able to perform more generations (iterations)
than NSGAII within the same execution time. As discussed
in Section 4, for cl = 95%, at a given iteration and provided
with the same set P , NSGAII-SM behaves the same as NS-
GAII with a probability of 97.5%, and with a probability
of 2.5%, NSGAII-SM produces less accurate results com-
pared to NSGAII. Therefore, given a fixed execution time,
NSGAII-SM is able to perform more iterations than NS-
GAII, and with a high probability (⇡ 97.5%), the solutions
generated by NSGAII-SM at each iteration are likely to be
as accurate as those would have been generated by NSGAII.
As a result and as shown in Figure 6(a), given the same
time budget, NSGAII-SM is able to produce more optimal
solutions compared to NSGAII.

Finally, we compared NSGAII-SM with three different
confidence levels, i.e., cl = 0.95, 0.9 and 0.8. The HV and
GD results indicated that NSGAII-SM performs best, and
better than NSGAII, when cl is set to 0.95.

Comparing with Random Search. Figure 6(b) shows the
HV values obtained by Random search and NSGAII-SM.
As shown in the figure, after 30 min execution, NSGAII-
SM yields better HV results compared to Random search.
The HV distributions obtained by running NSGAII-SM after
30 min and until 150 min are significantly better (with a
large effect size) than those obtained by Random search.
Similarly, we compared the GD values obtained by NSGAII-
SM and Random search. The GD distributions obtained by
NSGAII-SM after 30 min and until 150 min are significantly
better than those obtained by Random search with a large
effect size at 100 min and 110 min and otherwise a medium
effect size at other times.

To summarize, when the search execution time is larger
than 50 min, NSGAII-SM outperforms NSGAII. With less
than 50 min execution time, both algorithms show a high
degree of randomness. When engineers cannot afford to run
the test generation algorithm for a long time, for example
because they make a change to the PeVi system and need to
rerun the test execution procedure frequently, NSGAII-SM

71

is more likely to provide close to optimal solutions compared
to NSGAII. Further, as shown in Figure 6(c), the worst run
of NSGAII-SM performs considerably better than the worst
run of NSGAII. Finally, NSGAII-SM is able to find signifi-
cantly better solutions compared to Random search.

RQ2 (Usefulness). To demonstrate practical usefulness of
our approach, we have made available at [2] some test sce-
nario examples obtained by our NSGAII-based test genera-
tion algorithms. We presented these test scenarios as well as
other scenarios to domain experts at our partner company.
The scenarios were generated for various stressful weather
conditions (e.g., fog, snow and rain) and for situations where
roadside objects block the camera’s field of view or when
ramped and curved roads may interfere with the pedestrian
detection function of PeVi. In all the example scenarios
at [2] either PeVi fails to detect a pedestrian that appears
in the red warning area (AWA) in front of a car, or the
detection happens very late and very close to the collision
time. As confirmed by our domain expert, such scenarios
had not been previously developed by manual testing based
on domain expertise. These scenarios particularly helped
engineers identify particular car speed and pedestrian speed
ranges and pedestrian orientations for which the PeVi’s de-
tection function is more likely to fail. In addition, the light
scene intensity, the light orientation and reflection may im-
pact the detection capabilities of pedestrian detection algo-
rithms. However, due to the current imitations of PreScan
(the PeVi simulation tool) discussed earlier, we were not able
to define fitness functions related to the scene light intensity.

To summarize, our NSGAII-based test generation algo-
rithms are able to identify several critical behaviors of the
PeVi systems that have not been previously identified based
on manual and expertise-based simulations.

7. RELATED WORK
Search-based testing has largely focused on unit testing

and has rarely been used for system testing. Exceptions in-
clude GUI testing [29, 41] and the generation of system test
cases to exercise non-functional behaviors such as quality-of-
service constraints [48], computational resources consump-
tion and deadline misses [13]. Embedded software systems
and their environments are prevalently captured and sim-
ulated using physics-based models such as those captured
by MATLAB/Simulink. Some of the test automation tech-
niques for MATLAB/Simulink use metaheuristic search to
guide testing towards the maximisation of coverage crite-
ria [55, 57], for example path coverage [57], or towards the
generation of input signals that satisfy certain signal shape
patterns [7] or temporal constraints [54]. These testing strate-
gies have mostly focused on unit/function-level testing, aim-
ing to maximize coverage or diversity of test inputs. These
strategies, however, are inadequate for testing complex
physics-based dynamic models such as those used in our
case study. Our testing approach, in contrast, is driven by
system-level requirements as well as critical and stressful
situations of the system and its environment.

Similar to our work, surrogate modeling has been previ-
ously used to approximate expensive fitness computations
and simulations in the context of evolutionary and meta-
heuristic search algorithms. Surrogate modeling has been
applied to scale up search-based solutions to optimization
problems in avionics [45], chemical systems [15], and the

medical domain [23]. In particular, combination of surro-
gate modeling and multi-objective population-based search
algorithms has been applied to optimization problems in mo-
bile ad hoc networks [25], manufacturing [50], and optimiz-
ing energy consumption in buildings [40]. These techniques,
however, solely rely on surrogate model predictions to select
best candidate solutions without using the prediction errors
and confidence levels. This may lead to a significant devia-
tion between the best solutions selected based on surrogate
model predictions and those solutions that would have been
selected based on actual fitness computations. In contrast,
in our work, we use the prediction errors to decide whether
we should compute actual fitness values for candidate so-
lutions or not. Further, we show that when actual fitness
values are not better than their respective optimistic pre-
dictions, NSGAII and NSGAII-SM behave the same, but
NSGAII-SM is likely to call less simulations per iteration
than NSGAII. In [42], surrogate modeling has been used in
conjunction with single-objective local search such that pre-
diction errors and actual fitness values are used to ensure
the search algorithm accuracy. Our work differs from the
work of [42] as we combine surrogate modeling with multi-
objective population search algorithms.

8. CONCLUSION
Physics-based simulation tools provide feasible and practi-

cal test platforms for control and perception software com-
ponents developed for self-driving cars. We identified the
following two key challenges that hinder systematic test-
ing based on these simulation tools: (1) These tools lack
the guidance and automation required to generate test cases
that would be likely to uncover faulty behaviors, and (2) exe-
cuting individual test cases is very time-consuming. We pro-
posed an approach based on combination of multi-objective
search and neural networks. We developed meta-heuristics
capturing critical aspects of the system and its environment
to guide the search towards exercising behaviors that are
likely to reveal faults. Our proposed search algorithm re-
lies on neural network predictions to bypass actual costly
simulations when predictions are sufficient to conclusively
prune certain solutions from the search space. Our evalua-
tion performed on an industrial system shows that (1) our
search-based algorithm outperforms random test generation,
(2) combining our search algorithm with neural networks im-
proves the quality of the generated test cases under a limited
and realistic time budget, and (3) our approach is able to
identify critical system and environment behaviors.

Due to the current technical limitations of the simulation
tool that we used in our study, we had to rely on a subset of
the PeVi input elements, i.e., the properties of the vehicle
and the pedestrian, to generate test cases. Our approach,
however, is general and can account for various critical prop-
erties of the environment once the technical limitations of
our current simulation tool are resolved. In future, we plan
to perform more experiments and to further improve our
search algorithm by dynamically refining the neural network
models using simulations performed during the search.

9. ACKNOWLEDGEMENT
We gratefully acknowledge funding from IEE S.A. Lux-

embourg and from Fonds National de la Recherche, Luxem-
bourg under grant FNR/P10/03 - Verification and Valida-
tion Lab.

72

10. REFERENCES

[1] TASS International. PreScan simulation of ADAS and
active safety. https://www.tassinternational.com/prescan.
Last accessed: March 2016.

[2] Test scenarios. https://sites.google.com/site/testingpevi.

[3] The MathWorks Inc. Simulink.
http://www.mathworks.nl/products/simulink. Last accessed:
April 2016.

[4] C. Alippi and M. Roveri. Virtual k-fold cross validation:
An effective method for accuracy assessment. In
Proceedings of the International Joint Conference on
Neural Networks (IJCNN’10), pages 1–6, 2010.

[5] E. Alpaydin. Introduction to Machine Learning. The
MIT Press, 2nd edition, 2010.

[6] A. Arcuri and G. Fraser. On parameter tuning in
search based software engineering. In Proceedings of the
International Symposium on Search Based Software
Engineering (SSBSE’11), pages 33–47, 2011.

[7] A. Baresel, H. Pohlheim, and S. Sadeghipour.
Structural and functional sequence test of dynamic and
state-based software with evolutionary algorithms. In
Proceedings of the Annual Conference on Genetic and
Evolutionary Computation (GECCO’03), pages
2428–2441, 2003.

[8] R. Barton. Metamodeling: a state of the art review. In
Proceedings of the conference on Winter simulation
(WSC’94), pages 237–244, 1994.

[9] R. N. Behera. Artificial neural network: A soft
computing application in biological sequence analysis.
International Journal of Computational Engineering
Research, 4(4):1–13, 2014.

[10] H.-G. Beyer and K. Deb. On self-adaptive features in
real-parameter evolutionary algorithms. Transactions
on Evolutionary Computation, 5(3):250–270, 2001.

[11] A. J. Booker, J. Dennis Jr, P. D. Frank, D. B. Serafini,
V. Torczon, and M. W. Trosset. A rigorous framework
for optimization of expensive functions by surrogates.
Structural Optimization, 17(1):1–13, 1999.

[12] M. Bowman, L. C. Briand, and Y. Labiche. Solving
the class responsibility assignment problem in
object-oriented analysis with multi-objective genetic
algorithms. IEEE Transactions on Software
Engineering, 36(6):817–837, 2010.

[13] L. C. Briand, Y. Labiche, and M. Shousha. Using
genetic algorithms for early schedulability analysis and
stress testing in real-time systems. Genetic
Programming and Evolvable Machines, 7(2):145–170,
2006.

[14] L. C. Briand, S. Nejati, M. Sabetzadeh, and
D. Bianculli. Testing the untestable: model testing of
complex software-intensive systems. In Proceedings of
the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016 - Companion Volume, pages 789–792, 2016.

[15] J. A. Caballero and I. E. Grossmann. An algorithm
for the use of surrogate models in modular flowsheet
optimization. AIChE journal, 54(10):2633–2650, 2008.

[16] J. A. Capon. Elementary Statistics for the Social
Sciences: Study Guide. Wadsworth Publishing
Company, 1991.

[17] C. A. C. Coello, G. B. Lamont, and D. A. V.

Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic and Evolutionary
Computation. Kluwer Academic, 2007.

[18] J. Cohen. Statistical power analysis for the behavioral
sciences (rev). Lawrence Erlbaum Associates, Inc, 1977.

[19] K. Deb. Multi-objective optimization using
evolutionary algorithms. John Wiley & Sons,
Chichester, New York, 2001.

[20] K. Deb and R. B. Agrawal. Simulated binary crossover
for continuous search space. Complex systems,
9(2):115–148, 1995.

[21] K. Deb and H.-g. Beyer. Self-adaptive genetic
algorithms with simulated binary crossover.
Evolutionary Computation, 9(2):197–221, 2001.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[23] D. Douguet. e-LEA3D: a computational-aided drug
design web server. Nucleic Acids Research, 38:615–621,
2010.

[24] B. Efron. Estimating the error rate of a prediction
rule: Improvement on cross-validation. Journal of the
American Statistical Association, 78(382):316–331,
1983.

[25] D. Efstathiou, P. McBurney, S. Zschaler, and
J. Bourcier. Efficient multi-objective optimisation of
service compositions in mobile ad hoc networks using
lightweight surrogate models. Journal of Universal
Computer Science, 20(8):1089–1108, 2014.

[26] D. Emadi and M. Mahfoud. Comparison of artificial
neural network and multiple regression analysis
techniques in predicting the mechanical properties of
{A3} 56 alloy. Procedia Engineering, 10:589–594, 2011.

[27] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not
going to take this anymore: multi-objective overtime
planning for software engineering projects. In
Proceedings of the International Conference on
Software Engineering (ICSE’13), pages 462–471, 2013.

[28] S. Goyal and G. K. Goyal. Article: Study on single
and double hidden layers of cascade artificial neural
intelligence neurocomputing models for predicting
sensory quality of roasted coffee flavoured sterilized
drink. International Journal of Applied Information
Systems, 1(3):1–4, 2012.

[29] F. Gross, G. Fraser, and A. Zeller. Search-based
system testing: High coverage, no false alarms. In
Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’12), pages 67–77, 2012.

[30] M. T. Hagan and M. B. Menhaj. Training feedforward
networks with the marquardt algorithm. Neural
Networks, IEEE Transactions on, 5(6):989–993, 1994.

[31] M. Hall, I. Witten, and E. Frank. Data mining:
Practical machine learning tools and techniques (3rd
edition). Morgan Kaufmann, 2011.

[32] M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys, 45(1):11,
2012.

[33] S. Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall PTR, 2nd edition, 1998.

73

[34] Y. Jin. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and
Evolutionary Computation, 1(2):61–70, 2011.

[35] S. Karsoliya. Approximating number of hidden layer
neurons in multiple hidden layer BPNN architecture.
International Journal of Engineering Trends and
Technology, 3(6):713–717, 2012.

[36] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on
the Performance Assessment of Stochastic
Multiobjective Optimizers. Technical report, Computer
Engineering and Networks Laboratory of Zurich, 2006.

[37] A. Lindgren and F. Chen. State of the art analysis: An
overview of advanced driver assistance systems (adas)
and possible human factors issues. Human factors and
economics aspects on safety, pages 38–50, 2006.

[38] S. Luke. Essentials of Metaheuristics. Lulu, second
edition, 2013. Available for free at
http://cs.gmu.edu/⇠sean/book/metaheuristics/.

[39] D. J. C. MacKay. Bayesian interpolation. Neural
Computation, 4(3):415–447, 1992.

[40] L. Magnier and F. Haghighat. Multiobjective
optimization of building design using TRNSYS
simulations, genetic algorithm, and artificial neural
network. Building and Environment, 45(3):739–746,
2010.

[41] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro.
Automatic testing of gui-based applications. Software
Testing Verification and Reliability, 24(5):341–366,
2014.

[42] R. Matinnejad, S. Nejati, L. Briand, and
T. Brcukmann. MiL testing of highly configurable
continuous controllers: scalable search using surrogate
models. In Proceedings of the International Conference
on Automated Software Engineering (ASE’14), pages
163–174, 2014.

[43] M. F. Møller. A scaled conjugate gradient algorithm
for fast supervised learning. Neural networks,
6(4):525–533, 1993.

[44] N. Nguyen and A. Cripps. Predicting housing value: A
comparison of multiple regression analysis and artificial
neural networks. Journal of Real Estate Research,
22(3):313–336, 2001.

[45] Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary
optimization of computationally expensive problems via
surrogate modeling. AIAA journal, 41(4):687–696, 2003.

[46] F. Peng and K. Tang. Alleviate the hypervolume
degeneration problem of NSGA-II. In Proceedings of the
International Conference on Neural Information
Processing (ICONIP’11), pages 425–434, 2011.

[47] A. S. Sayyad and H. Ammar. Pareto-optimal
search-based software engineering (POSBSE): A
literature survey. In Proceedings of the International
Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE’13), pages 21–27,

2013.

[48] M. Shams, D. Krishnamurthy, and B. Far. A
model-based approach for testing the performance of
web applications. In Proceedings of the International
Workshop on Software Quality Assurance (SOQUA’06),
pages 54–61, 2006.

[49] K. G. Sheela and S. N. Deepa. Review on methods to
fix number of hidden neurons in neural networks.
Mathematical Problems in Engineering, 2013:1–11,
2013.

[50] A. Syberfeldt, H. Grimm, A. Ng, and R. I. John. A
parallel surrogate-assisted multi-objective evolutionary
algorithm for computationally expensive optimization
problems. In Proceedings of the Congress on
Evolutionary Computation (CEC’08), pages 3177–3184,
2008.

[51] R. van der Horst and J. Hogema. Time-to-collision
and collision avoidance systems. In Proceedings of the
workshop of the International Cooperation on Theories
and Concepts in Traffic Safety (ICTCT’93), pages
109–121, 1993.

[52] D. A. Van Veldhuizen and G. B. Lamont.
Multiobjective evolutionary algorithm research: A
history and analysis. Technical report, Air Force
Institute of Technology, 1998.

[53] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen. A
practical guide to select quality indicators for assessing
pareto-based search algorithms in search-based software
engineering. In Proceedings of the International
Conference on Software Engineering (ICSE’16), 2016.

[54] B. Wilmes and A. Windisch. Considering signal
constraints in search-based testing of continuous
systems. In Proceedings of the International Conference
on Software Testing, Verification, and Validation
Workshops (ICSTW’10), pages 202–211, 2010.

[55] A. Windisch. Search-based test data generation from
stateflow statecharts. In Proceedings of the Annual
Conference on Genetic and Evolutionary Computation
(GECCO’10), pages 1349–1356, 2010.

[56] I. H. Witten, E. Frank, and M. A. Hall. Data Mining:
Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Publishers Inc., 3rd edition, 2011.

[57] Y. Zhan and J. A. Clark. The state problem for test
generation in simulink. In Proceedings of the Annual
Conference on Genetic and Evolutionary Computation
(GECCO’06), pages 1941–1948, 2006.

[58] E. Zitzler, K. Deb, and L. Thiele. Comparison of
multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8(2):173–195, 2000.

[59] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
pareto approach. Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

74

