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Testing and controlling for horizontal pleiotropy
with probabilistic Mendelian randomization in
transcriptome-wide association studies
Zhongshang Yuan1,2, Huanhuan Zhu2, Ping Zeng 3, Sheng Yang2, Shiquan Sun 2, Can Yang4, Jin Liu 5 &

Xiang Zhou 2,6✉

Integrating results from genome-wide association studies (GWASs) and gene expression

studies through transcriptome-wide association study (TWAS) has the potential to shed light

on the causal molecular mechanisms underlying disease etiology. Here, we present a prob-

abilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-

Egger relies on a MR likelihood framework that unifies many existing TWAS and MR

methods, accommodates multiple correlated instruments, tests the causal effect of gene on

trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of

individuals. In simulations, PMR-Egger provides calibrated type I error control for causal

effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under

various types of model misspecifications, is more powerful than existing TWAS/MR

approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-

Egger in applications to 39 diseases and complex traits obtained from three GWASs including

the UK Biobank.
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G
enome-wide association studies (GWASs) have identified
many SNPs associated with common diseases and disease
related traits. Parallel expression quantitative trait loci

(eQTL) mapping studies have also identified many cis-acting
SNPs associated with gene expression level. Integrating the
existing association results from both GWASs and eQTL map-
ping studies has the potential to shed light on the molecular
mechanisms underlying disease etiology. Several statistical
methods have been recently proposed for such integrative ana-
lysis. For example, PrediXcan1 performs a weighted SNP set test
in GWAS using SNP weights inferred from eQTL studies. TWAS2

infers the association between gene expression and disease trait by
leveraging cis-SNP information. SMR3 or GSMR4 directly tests
the causal association between gene expression and disease trait
under a Mendelian randomization (MR) framework, using either
a single instrument or multiple independent instruments. While
each of these integrative methods was originally proposed to solve
a different problem, as we will show here, all of them can be
viewed as a two-sample MR method with different modeling
assumptions. Because of their relationship to MR, these methods
effectively attempt to identify genes causally associated with dis-
eases or complex traits in the context of transcriptome-wide
association studies (TWAS).

MR analysis is a form of instrumental variable analysis for
causal inference5. MR aims to determine the causal relationship
between an exposure variable (e.g., gene expression) and an
outcome variable (e.g., complex trait) in observational studies.
MR treats SNPs as instrumental variables for the exposure vari-
able and uses these SNP instruments to estimate and test the
causal effect of the exposure on the outcome. MR methods have
been widely applied to investigate the causal relationship among
various complex traits6, and, through a two-sample design, can be
easily adapted to settings where the exposure and outcome are
measured on two different sets of individuals. However, MR
analysis for TWAS applications is not straightforward and
requires the development of new methods that can accommodate
two important features of TWAS analysis.

First, both GWASs and eQTL mapping studies collect SNPs
that are in high linkage disequilibrium (LD) with each other.
Traditional MR methods, such as the random effects version or
the fixed effect version of the inverse variance weighted regres-
sion7, MR-Egger8, median-based regression9, SMR3, or GSMR4,
can only make use of a single SNP instrument or multiple
independent SNP instruments. Handling only independent SNPs
is restrictive, as most exposure variables/molecular traits are
polygenic/omnigenic in nature and are influenced by multiple
SNPs that are in potential LD with each other. Consequently,
incorporating multiple correlated SNPs can often help explain a
greater proportion of variance in the exposure than using inde-
pendent SNPs and improve MR power5,10–12. Due to the benefits
of using multiple correlated instruments, most TWAS methods
(e.g., PrediXcan1, TWAS2, CoMM13, DPR14, TIGAR15) rely on
polygenic modeling assumptions to incorporate all cis-SNPs that
are in high LD for TWAS applications. By incorporating all cis-
SNPs, as we will show below, these methods can lead to sub-
stantial power improvement over standard MR approaches that
use only a few independent SNPs. Unfortunately, many TWAS
methods rely on a two-stage MR inference procedure: they esti-
mate SNP effect sizes in the exposure study and plug in these
estimates to the outcome study for causal effect inference. The
two-stage inference procedure in MR fails to account for the
uncertainty in parameter estimates in the exposure study, which
can lead to biased causal effect estimates and power loss5,11,13.
Therefore, it is important to incorporate multiple correlated
instruments in a likelihood inference framework for MR analysis
in TWAS applications.

Second, perhaps more importantly, SNP instruments exhibit
pervasive horizontal pleiotropic effects16. Horizontal pleiotropy
occurs when a genetic variant affects the outcome variable
through pathways other than or in addition to the exposure
variable17. Horizontal pleiotropy is widely distributed across the
genome, affects a wide spectrum of complex traits, and can be
driven by LD and extreme polygenicity of traits16,18. Despite its
wide prevalence, however, only a limited number of MR methods
have been developed to test and control for horizontal pleiotropy;
even fewer are applicable for TWAS applications. For example,
some existing methods (e.g., MR-PRESSO16) test for horizontal
pleiotropic effects without directly controlling for them. Some
methods (e.g., CaMMEL19) control for horizontal pleiotropic
effects without directly testing them20,21. Some methods (e.g.,
Egger regression8,22, GLIDE23, GSMR4, MR-median method9,
profile score approach24, MRMix25, and Bayesian MR26,27) test
and control for horizontal pleiotropic effects, but can only
accommodate independent instruments. As far as we are aware,
there is only one two-sample MR method currently developed for
testing and controlling for pleiotropic effects in the presence of
correlated instruments: LDA MR-Egger28. Unfortunately, as we
will show below, LDA MR-Egger cannot handle realistic LD
pattern among cis-SNPs for TWAS applications.

Here, we develop a generative two-sample MR method in a
likelihood framework, which we refer to as the probabilistic two-
sample Mendelian randomization (PMR), to perform MR ana-
lysis using multiple correlated instruments for TWAS applica-
tions. Within the PMR framework, we focus on a particular
horizontal pleiotropy effect modeling assumption based on the
burden test assumption commonly used for rare variant test. This
particular horizontal pleiotropy effect effectively generalizes the
Egger-regression assumption commonly used for MR analysis to
correlated instruments. We refer to our method as PMR-Egger.
With simulations and real data applications, we show that PMR-
Egger provides calibrated type I error for causal effect testing in
the presence of horizontal pleiotropic effects, is more powerful
than existing MR approaches, can directly test for horizontal
pleiotropy, and is scalable to hundreds of thousands of
individuals.

Results
Method overview. PMR-Egger is described in the Methods, with
technical details provided in the Supplementary Notes. PMR-
Egger relies on a MR likelihood framework (Supplementary
Fig. 1) that unifies many existing TWAS and MR methods
(Table 1), facilitating the understanding of these existing TWAS/
MR approaches. For TWAS applications, PMR-Egger examines
one gene at a time and estimates and tests its causal effect on a
trait of interest. PMR-Egger models multiple correlated instru-
ments, performs MR inference in a maximum likelihood infer-
ence framework, is capable of testing and controlling for
horizontal pleiotropic effects commonly encountered in TWAS,
and is computationally efficient (Table 2).

Simulations: testing and estimating the causal effect. We per-
formed simulations to examine the effectiveness of PMR-Egger,
and compared it with existing MR approaches. Simulation details
are provided in the Methods. Our first set of simulations is
focused on causal effect testing. We compared PMR-Egger with
five methods that include SMR, PrediXcan, TWAS, CoMM, and
LDA MR-Egger. We first examined type I error control of dif-
ferent methods under the null (α= 0). In the absence of hor-
izontal pleiotropic effects, PMR-Egger, together with PrediXcan,
TWAS, and CoMM, all provides calibrated type I error (Fig. 1a).
In contrast, SMR produces overly conservative/deflated p-values
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as previously observed29 while LDA MR-Egger produces inflated
p-values. The poor performance of LDA MR-Egger is presumably
due to its fixed effect assumption on β, which is not expected to
work well in TWAS setting, where the number of SNPs is on the
same order of the sample size in gene expression study and where
the cis-SNPs are all highly correlated with each other due to LD
(Supplementary Fig. 2). In the presence of horizontal pleiotropic
effects, PMR-Egger becomes the only method that produces
calibrated (or slightly conservative) p-values (Fig. 1b–d). In
contrast, the p-values from all other methods become inflated,
and more so with increasingly large horizontal pleiotropic effect.
For example, when γ is 5 × 10−4, the genomic control factors
from PMR-Egger, SMR, PrediXcan, TWAS, CoMM, and LDA
MR-Egger are 0.93, 1.30, 1.33, 1.33, 1.49, and 2.61, respectively.
When γ is increased to 1 × 10−3, the genomic control factors
from PMR-Egger, SMR, PrediXcan, TWAS, CoMM, and LDA
MR-Egger become 0.93, 2.39, 2.27, 2.46, 4.03, and 2.57 respec-
tively. The null p-value distributions from different methods
remain largely similar regardless whether the genetic architecture
underlying gene expression is sparse or polygenic (Supplementary
Fig. 3), regardless of the gene expression heritability (Supple-
mentary Fig. 4), and regardless whether the SNP effects on gene
expression are simulated to be correlated with respect to LD or
not (Supplementary Fig. 5a, b).

Like MR-Egger, PMR-Egger also makes a relatively strong
assumption on pleiotropy that all SNPs have the same horizontal
pleiotropic effect. To examine robustness of such assumption,
besides the above settings where either 0 or 100% SNPs have
horizontal pleiotropic effects, we varied the proportion of
horizontal pleiotropic SNPs to be either 10%, 30%, or 50%. We
found that PMR-Egger p-values remain calibrated regardless of
the sparsity of the horizontal pleiotropic SNPs (Supplementary
Fig. 6). In addition, besides the above directional pleiotropy
settings where the ratio of SNPs with negative vs positive effects is
set to be 0:10, we also examined two approximately directional
pleiotropy settings (1:9 or 3:7) and one balanced setting (5:5). We
found that PMR-Egger p-values remain calibrated in either the
approximately directional pleiotropy settings or the balanced
setting when the horizontal pleiotropic effect is small or moderate
(γ= 1 × 10−4, 5 × 10−4, or 1 × 10−3; Supplementary Fig. 7a–c).
However, when horizontal pleiotropic effect is large (γ= 2 ×

10−3), as one would expect, PMR-Egger p-values become inflated,
with genomic control factor being 1.08, 1.31, and 1.37, for settings
where the ratio is 1:9, 3:7, and 5:5, respectively (Supplementary
Fig. 7d). Cross-gene-based simulations also provide consistent
results (Supplementary Figs. 8–12). Although we code genotypes
based on allele frequency and kept such coding consistent
between simulation and analysis, we found that the results remain
consistent when we randomly flip the genotypes of a fraction of
SNPs before analysis so that genotype coding does not match
between simulation and analysis (Supplementary Fig. 13).
Orienting genotypes based on the sign of SNP effects on gene
expression22 in the analysis also yielded largely consistent results
with small deflation of p-values observable in the presence of
large horizontal pleiotropic effects (Supplementary Fig. 14a–c).

Next, we examined the power of different methods to detect
non-zero causal effect across various causal effect sizes α. Because
the same p-value from different methods may correspond to
different type I errors, we computed power based on false
discovery rate (FDR) of 0.1 instead of a nominal p-value
threshold to allow for fair comparison among methods. When
horizontal pleiotropic effects are absent or small, PMR-Egger,
TWAS and CoMM have similar power, all outperforming the
other three methods, highlighting the importance of making
polygenic assumptions on β and modeling all cis-SNPs together
(Fig. 2a, b). The power of PMR-Egger is slightly lower than the
other two, presumably because PMR-Egger uses extra parameters
to model horizontal pleiotropy, which leads to a loss of degrees of
freedom and subsequent loss of power in the absence of
horizontal pleiotropy. The power of all methods increases with
α, though their relative performance rank does not change. In the
presence of horizontal pleiotropy, the power of all methods
reduces (Fig. 2c, d). However, the power reduction from PMR-
Egger is substantially smaller than the other methods. In terms of
β (Supplementary Fig. 15), we found that the power of different
methods in the setting where 10% of SNPs have non-zero effects
on gene expression are similar to the baseline setting where all
SNPs have non-zero effects, either in the absence (Supplementary
Fig. 15e vs Fig. 2a) or presence of horizontal pleiotropic effects
(Supplementary Fig. 15f vs Fig. 2d). However, the relative
performance of different methods changes when only one SNP or
1% of SNPs have non-zero effect on gene expression. Specifically,

Table 1 Summary of some existing MR methods.

Design Instrumental variable β-effect assumption γ-effect assumption Estimation procedure

PrediXcan1 Two-sample Correlated Elastic net N/A Two-stage

TWAS2 Two-sample Correlated BSLMM N/A Two-stage

SMR3 Two-sample Univariate Fixed effect N/A Two-stage

GSMR4 Two-sample Independent Fixed effect N/A Two-stage

MR-Egger8 Two-sample Independent Fixed effect Equal effect size Two-stage

CoMM13 Two-sample Correlated Normal N/A MLE

CaMMEL19 Two-sample Correlated Fixed effect Normal Variational Bayes

Kang et al.20 One-sample Correlated Fixed effect Lasso Two-stage

MRMix25 Two-sample Independent Normal mixture Normal mixture Estimating equation

Berzuini et al.26 One-sample Correlated Fixed effect Horseshoe MCMC

LDA MR-Egger28 Two-sample Correlated Fixed effect Equal effect size Two-stage

DPR14 Two-sample Correlated Latent Dirichlet process N/A Two-stage

TIGAR15 Two-sample Correlated Latent Dirichlet process N/A Two-stage

PMR-Egger Two-sample Correlated Normal Equal effect size MLE

Methods are categorized based on the experimental design (two-sample vs one-sample), the characterizes of selected instrumental variables (univariate vs multiple independent vs multiple correlated),

β-effect size assumption, γ-effect size assumption, estimation/inference procedure (ratio-based vs two-stage estimation vs maximum likelihood vs Bayesian), and input data type (individual-level vs

summary; which is now removed per reviewer’s request). The categorization of inference procedure generally follows ref. 5. In the inference procedure, the two-stage estimation procedure comprises two

regression stages: the first-stage regression of the exposure on the instrumental variables, and the second-stage regression of the outcome on the fitted values of the exposure from the first stage. Some

inference procedures, such as the inverse variance weighted (IVW) procedure (e.g., MR-Egger8) or the ratio method (e.g., for SMR3) are categorized as two-stage procedure here, as both are

asymptotically equivalent to a two-stage estimation procedure in the case of independent instruments. We only list MR methods that directly take input instruments into the model; many MR methods

that performs various selection procedures on the instruments (e.g., Guo et al.21) are not included. Some recently developed methods that only test for horizontal pleiotropy, such as GLIDE23 and MR-

PRESSO16 are not included.
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in the absence of horizontal pleiotropic effects, the power of both
PrediXcan and SMR become slightly higher than PMR-Egger,
TWAS and CoMM, all of which have substantially higher power
than LDA MR-Egger (Supplementary Fig. 15a, c). The higher
power of PrediXcan and SMR in the sparse setting is presumably
because the ElasticNet estimation procedure in PrediXcan favors
a sparse set of eQTLs while SMR explicitly makes a single eQTL
assumption. In the presence of horizontal pleiotropic effects,
however, PMR-Egger remains the most powerful, even in the
setting where only one SNP has non-zero effect on gene
expression (Supplementary Fig. 15b, d). Cross-gene-based
simulations also provide consistent results (Supplementary
Figs. 16-17). Orienting genotypes based on the sign of SNP
effects on gene expression22 yielded close to zero power,
presumably because such approach violates the normality
assumption on β (Supplementary Fig. 14d).

Finally, PMR-Egger produces accurate estimate of the causal
effect α, both under the null and under various alternatives, in the
presence or absence of horizontal pleiotropic effects (Supple-
mentary Fig. 18), and regardless of the directionality of horizontal
pleiotropy (Supplementary Fig. 19a, c, e).

Simulations: testing and estimating pleiotropic effect. Our
second set of simulations focus on horizontal pleiotropic effect
testing. We compared PMR-Egger with LDA MR-Egger and MR-
PRESSO. All three methods examine one gene at a time and test
whether cis-SNPs within the gene exhibit non-zero horizontal
pleiotropic effects.

We first examined type I error control of different methods
under the null. We found that PMR-Egger provide calibrated type
I error control under a range of causal effect sizes α (Fig. 3).
However, p-values from both LDA MR-Egger and MR-PRESSO
are inflated, and more so with increasingly large α. The overly
inflated p-values from LDA MR-Egger is presumably due to its
fixed effect modeling assumption on β and the subsequent failure
to control for realistic LD patterns. The inflation of MR-PRESSO
p-values is presumably because MR-PRESSO can only handle
independent instruments and thus does not fare well in TWAS
settings. Importantly, PMR-Egger p-values remain calibrated
regardless of the genetic architecture underlying gene expression
(Supplementary Fig. 20) and regardless whether the SNP effects
on the gene expression are correlated with respect to LD or not
(Supplementary Fig. 5c, d). Cross-gene-based simulations also
provide consistent results (Supplementary Figs. 21 and 22).

Next, we examined the power of different methods in detecting
non-zero horizontal pleiotropic effect based on an FDR of 0.1. We
dropped MR-PRESSO due to its heavy computational burden.
We found that the power of PMR-Egger and LDA MR-Egger
increases with increasing horizontal pleiotropy, with PMR-Egger
outperforming LDA MR-Egger across a range of settings (Fig. 2e,
f). The power of both methods is not influenced by the sparsity
level of β (Supplementary Fig. 23) but depends on the sparsity
level of γ (Supplementary Fig. 24a). Specifically, power of both
methods reduces with increasing sparsity of γ, though PMR-
Egger remains more powerful than LDA MR-Egger across a range
of sparsity values. Similarly, the power of both methods to detect
pleiotropic effects also suffers in the absence of directional
pleiotropic effect (Supplementary Fig. 24b). Cross-gene-based
simulations provide consistent results (Supplementary Figs. 25
and 26).

PMR-Egger can estimate the horizontal pleiotropic effect
accurately in the presence of directional pleiotropic effect
(Supplementary Fig. 27). However, in the absence of directional
pleiotropic effect, as expected, the estimates of pleiotropic effects
become downward biased, more so in the balanced setting than inT
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the approximately directional pleiotropy settings (Supplementary
Fig. 19b, d, f).

Real data applications. We performed TWAS to detect genes
causally associated with each of the 39 phenotypes from three
GWASs (details in Methods). The gene expression data are
obtained from the GEUVADIS study and contains 15,810 genes.
The phenotypes include seven common diseases from Wellcome
Trust Case Control study (WTCCC), 22 diseases from Kaiser
Permanente/UCSF Genetic Epidemiology Research Study on
Adult Health and Aging (GERA), and ten quantitative traits from
UK Biobank. The GWAS sample size ranges from 4,686 (for
Crohn’s disease (CD) in WTCCC) to 337,198 (for UK Biobank).
The p-values for testing the causal effect of each gene on the
phenotype from different methods are shown for WTCCC traits
(Fig. 4a, b; Supplementary Fig. 28), GERA traits (Fig. 5a, b;
Supplementary Fig. 29), and UK Biobank traits (Fig. 6a, b; Sup-
plementary Fig. 30); with genomic control factors listed in Sup-
plementary Table 1 and visualized in (Figs. 4c, 5c and 6c). Note
that the higher genomic control factor in UK Biobank as com-
pared to WTCCC and GERA is expected under polygenic
architecture30 and reflects at least in part the higher power in the
UK Biobank as compared to GERA and WTCCC. While these
main analyses use phenotypic residuals after regressing out the
effects of top 10 genotype PCs, parallel analysis where the original
phenotype was used as the outcome and the top 10 genotype PCs
was used as covariates yielded consistent results (Supplementary

Figs. 31–33). For illustration purpose, we display qq-plots for two
selected traits in each data, one with a relatively low number of
gene associations and the other with a relatively high number of
gene associations. Among the selected six traits, the one with zero
number of associated genes (bipolar disorder (BD) in WTCCC)
and the one with one associated gene (irritable bowel syndrome
in GERA), represent approximately null traits with no apparently
associated genes. For the six selected traits, consistent with
simulations, we found that PMR-Egger p-values are well cali-
brated, at least more so than the other methods. p-values from
CoMM, TWAS, PrediXcan and especially LDA MR-Egger are
inflated, while p-values from SMR are overly conservative. The
results observed in these exemplary traits generalize to all other
examined traits.

We examined the number of associated genes detected by
different methods based on a Bonferroni corrected
transcriptome-wide threshold (Figs. 4d, 5d and 6d; Supplemen-
tary Table 2). The number of detected genes based on this p-value
threshold may artificially favor those methods that have inflated
type I error control. For this analysis, we excluded LDA MR-
Egger for comparison, as its p-values are overly inflated.
Consistent with simulations, we found that SMR can barely
detect any genes significantly associated with traits across all three
data, much less so than that detected by the other four methods.
We found that the number of gene-trait pairs detected by CoMM
and PMR-Egger is higher than that detected by TWAS and
PrediXcan in all three GWASs, again consistent with simulations
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as well as previous observations that likelihood-based inference
often achieves higher power than two-stage inference. However,
we do notice that PMR-Egger detects slightly lower number of
gene-trait pairs than CoMM based on the same genome-wide p-
value threshold, consistent with the inflated genomic inflation
factors observed for CoMM. Indeed, we found that the estimated
j α
γ
j for the common set of genes detected by both CoMM and

PMR-Egger is higher than the set of genes only detected by
CoMM across traits (Supplementary Fig. 34). Therefore, the genes
detected by CoMM but not PMR-Egger tend to have large γj j and
small jαj, likely reflecting false associations due to horizontal
pleiotropic confounding.

Overall, by controlling for horizontal pleiotropic effects, PMR-
Egger detected many likely causal genes that other methods failed
to detect. For example, the LNK/SH2B3 gene is only identified by

PMR-Egger to be associated with platelet count in the UK
Biobank (PMR-Egger p= 1.17 × 10−221; CoMM p= 0.98; TWAS
p= 8.6 × 10−5; PrediXcan p= 0.68; SMR p= 0.024). The associa-
tion between LNK and plate count is consistent with results from
recent large-scale GWASs31. LNK/SH2B3 encodes the lymphocyte
adaptor protein (LNK) that is primarily expressed in hemato-
poietic and endothelial cells32. In hematopoietic cells, LNK
functions as a negative regulator of cell proliferation and the
thrombopoietin-mediated cytokine signaling pathway, which is a
key signaling pathway that promotes megakaryocytes to form
platelets32. Indeed, platelets are overproduced and accumulated in
Lnk knockdown cells as well as Lnkknockout mouse33, supporting
a causal role of LNK in platelets production. As the second
example, the NOD2 gene is identified by PMR-Egger to be
associated with Crohn’s disease (CD; p= 6.1 × 10−19), and, with a
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slightly less significance, also by CoMM (p= 7.8 × 10−15). The
association between NOD2 and CD was not identified by the
other methods (TWAS p= 0.005; PrediXcan p= 0.92; SMR p=
0.15). NOD2 encodes a cytosolic pattern recognition receptor that
acts both as a cytoplasmic sensor of microbial products and as an
important mediator of innate immunity and inflammatory
response34. The NOD2 gene is a well-known susceptible gene
for CD and is perhaps one of the first genes ever implied for CD.
Multiple SNPs in NOD2 have been found to be associated with
CD in both early linkage studies35 and many recent GWASs36.
NOD2 variants associated with CD often reside in the ligand
recognition domain of NOD2 and can lead to aberrant bacterial
handling and antigen presentation37. Indeed, Nod2-deficient mice
displays dysregulated bacterial community in the ileum and
Nod2-deficient ileal epithelia exhibit impaired ability of inducing
immune responses for bacteria elimination38. It is thus
hypothesized that mis-regulation of NOD2 can causally lead to
altered interactions between ileal microbiota and mucosal
immunity, resulting in increased disease susceptibility to CD38.
As a third example, the TFRC gene is identified by PMR-Egger to
be associated with red blood cell distribution width (RDW) in the
UK Biobank (p= 3.3 × 10−17). Such association is not identified
by the other methods (CoMM p= 0.95; TWAS p= 0.76;
PrediXcan p= 0.97; SMR p= 0.38). TFRC encodes the classical
transferrin receptor that is involved in cellular iron uptake39.

Multiple SNPs in TFRC have been established to be associated
with various erythrocyte phenotypes in GWASs40. These
associated erythrocyte phenotypes include the mean corpuscular
hemoglobin (MCH) and mean corpuscular volume (MCV, the
average volume of red blood cells) which is directly related to
RDW39,40. The variants in TFRC likely lead to decreased iron
availability for red cell precursors, as has been observed in mice
deficient in Tfrc, thus resulting in a compensatory increase of red
blood cell size as measured by RDW41. The regional association
plots for these three genes are presented in Supplementary
Figs. 35–37.

We also compared the results from different MR methods with
a recently published TWAS fine-mapping method, FOCUS42

(analysis details in “Methods” section). Briefly, we follow42 and
focused on independent and non-overlapping genomic regions
that harbor at least one genome-wide significant SNP and at least
one significant TWAS gene (Supplementary Table 3). Due to the
small number of associated genes detected in WTCCC, we focus
mainly in GERA and UK Biobank. There, we found that the
results from PMR-Egger is largely consistent with that of FOCUS,
more so than the other methods (Supplementary Fig. 38).

Next, we shift our focus to testing horizontal pleiotropic effects.
The p-values for testing the horizontal pleiotropy effect of each
gene on phenotype are shown for WTCCC traits (Fig. 4e, f;
Supplementary Fig. 28), GERA traits (Fig. 5e, f; Supplementary
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Fig. 39), and UK Biobank traits (Fig. 6e, f; Supplementary Fig. 40);
with genomic control factors visualized in (Figs. 4g, 5g, and 6g).
We also display qq-plots for the previously selected exemplary
traits in (Figs. 4e, f, 5e, f, and 6e, f). Consistent with simulations,
p-values from PMR-Egger are well behaved while p-values from
LDA MR-Egger display substantial inflation. For example, the
genomic control factor from PMR-Egger ranges from 0.93 to 1.01
in WTCCC, from 0.92 to 1.09 in GERA, and from 1.13 to 1.71 in
UK Biobank. In contrast, the genomic control factor from LDA
MR-Egger ranges from 34.00 to 36.00 in WTCCC, from 69.82 to
72.19 in GERA and from 17.75 to 29.85 in UK Biobank
(Supplementary Table 1). With the same Bonferroni adjusted
transcriptome-wide p-value threshold, PMR-Egger detected 33
gene-trait pairs in WTCCC in which the cis-SNPs exhibit
significant horizontal pleiotropy, 37 gene-trait pairs in GERA,
and 626 gene-trait pairs in the UK Biobank. The detected
horizontal pleiotropic effect tests can help us explain some of the
discrepancy in terms of the causal associations detected by PMR-
Egger and the other methods (Supplementary Notes).

We note that an important feature of PMR-Egger is its ability
to test both causal effect and horizontal pleiotropy effect. We
contrast the p-values obtained from these two different tests
across genes (Supplementary Figs. 41–43). We found that
different traits exhibit different gene association patterns. For
example, some traits may only contain genes with a significant
causal effect but without a significant horizontal pleiotropic effect
(e.g., CD and coronary artery disease (CAD) in WTCCC; allergic
rhinitis, irritable bowel syndrome and psychiatric disorders in
GERA). Some traits may only contain genes with a significant
horizontal pleiotropic effect but without a significant causal effect
(e.g., dermatophytosis in GERA). Some traits may contain genes
with a significant causal effect as well as genes with a significant

horizontal pleiotropic effect, but with the two sets of genes being
non-overlapped (e.g., asthma, dyslipidemia, hypertension (HT),
abdominal hernia and macular degeneration in GERA; fored
vitral capacity in UK Biobank). While the majority of traits
contain genes with both a significant causal effect and a
significant horizontal pleiotropic effect. Being capable of testing
both causal effect and horizontal pleiotropy effect facilitates our
understanding of the gene association pattern with various
complex traits.

Discussion
We have presented a data generative model and a likelihood
framework for MR analysis that unifies many existing TWAS/MR
methods. Under the framework, we have presented PMR-Egger, a
new method that conducts MR analysis using multiple correlated
instruments while controlling for horizontal pleiotropic effects.
By controlling for horizontal pleiotropic effects and making
inference under a likelihood framework, PMR-Egger yields cali-
brated p-values across a wide range of scenarios and improves
power of MR analysis over existing approaches. Improving the
power of TWAS can increase the number of true positives and
reduce the number of false positives in the top gene list, poten-
tially leading to better replication and experimental validation on
the top identified genes. We have illustrated the benefits of PMR-
Egger through extensive simulations and multiple real data
applications of TWAS.

One important modeling assumption in PMR-Egger is that the
horizontal pleiotropic effects of all SNPs equal. The equal effect
assumption directly follows the commonly used Egger assump-
tion for MR analysis and is analogous to the burden assumption
commonly used for rare variant tests. Consistent with existing
literature on applications of Egger regression and burden test, we
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Fig. 6 TWAS analysis results by different methods for UK Biobank traits. Compared methods include CoMM (turquoise), PMR-Egger (magenta), TWAS

(blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). a Quantile–quantile plot of −log10 p-values from different methods for testing the

causal effect for an exemplary trait BMI. b Quantile–quantile plot of −log10 p-values from different methods for testing the causal effect for another

exemplary trait platelet count. c Genomic inflation factor for testing the causal effect for each of the 10 traits by different methods. d Number of causal

genes identified for each of the 10 traits by different methods. e Quantile–quantile plot of −log10 p-values from different methods for testing the horizontal

pleiotropic effect for an exemplary trait BMI. f Quantile–quantile plot of −log10 p-values from different methods for testing the horizontal pleiotropic effect

for another exemplary trait platelet count. g Genomic inflation factor for testing the horizontal pleiotropic effect for each of the 10 traits by different

methods. h Number of genes identified to have significant horizontal pleiotropic effect for each of the 10 traits by different methods. For c, d, g, h, the

number on the x axis represents 10 traits in order: Height, platelet count, bone mineral density, red blood cell count, FEV1–FVC ratio, BMI, RDW,

eosinophils count, forced vital capacity, white blood cell count.
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also found that equal effect size assumption employed in PMR-
Egger works reasonably robust for causal effect estimation and
testing with respect to a range of model mis-specifications and
appears to be effective in several real data applications examined
here. However, we acknowledge that the equal effect assumption
in PMR-Egger can be overly restrictive in many settings. For
example, as described in the Results, in the absence of direction
pleiotropy, the pleiotropic effect estimate becomes downward
biased and the pleiotropic effect test loses power. We have
attempted to alleviate this restrictive Egger modeling assumption
by imposing an alternative modeling assumption on the hor-
izontal effect sizes based on variance component assumption.
Specifically, we have attempted to assume that the horizontal
pleiotropic effect of each SNP follows a normal distribution with
mean zero and a certain variance component parameter, i.e.,
analogous to the SKAT assumption43. We refer to the resulting
model as PMR-VC. Unfortunately, inference for PMR-VC is
challenging. Specifically, due to estimation uncertainty in the
hyper-parameter estimates, the p-values from PMR-VC becomes
severely deflated even under simple null simulations (Supple-
mentary Fig. 44). Such deflation of p-values has been previously
observed in variance component tests for microbiome applica-
tions44. Only few methods exist to address such p-value in-
calibration issue resulting from hyper-parameter estimation
uncertainty45, and it is not straightforward to adapt any of these
to PMR-VC. In addition, neither PMR-Egger nor PMR-VC can
account for correlation between horizontal pleiotropic effects γ
and SNP effects on gene expression β. Therefore, while we view
PMR-Egger as in important first step towards effective control of
horizontal pleiotropic effects in TWAS applications, we empha-
size that imposing more realistic modeling assumptions on the
horizontal pleiotropic effects in the PMR framework will likely
yield more fruitful results in the future.

We have primarily focused on modeling continuous traits with
PMR-Egger. For case control studies, we have followed previous
approaches and directly treated binary phenotypes as continuous
outcomes14,46–48, which appears to work well in both WTCCC
and GERA data applications we examined. Treating binary phe-
notypes as continuous outcomes can be justified by recognizing
the linear model as a first order Taylor approximation to a gen-
eralized linear model46. However, it would be desirable in the
future to extend PMR-Egger to accommodate case control data or
other discrete data types in a principled way, by, for example,
extending PMR-Egger into the generalized linear model
framework.

We have primarily focused on modeling individual-level data
with PMR-Egger. However, like many other linear model-based
methods in statistical genetics, PMR-Egger can also be easily
extended to make use of summary statistics. The summary sta-
tistics version of PMR-Egger is described in detail in the Supple-
mentary Notes and implemented in the same software. Briefly,
the summary statistics version of PMR-Egger requires marginal
SNP effect size estimates and their standard errors, both on the
gene expression and on the trait of interest. In addition, it
requires a SNP by SNP correlation matrix that can be constructed
based on a reference panel. We validated the implementation of
the summary statistics-based approach of PMR-Egger through
simulations (details in Methods). Specifically, we constructed the
SNP by SNP correlation matrix from four different reference
panels: all individuals from the GWAS data; 10% randomly
selected individuals from GWAS; individuals of European or
African ancestry from the 1000 Genomes project. We applied the
summary statistics version of PMR-Egger to each reference panel
and compared results with the individual-level data-based PMR-
Egger that was applied to the complete data. As expected, except
in the case when the reference panel is completely unmatched to

the original data (i.e., with the African reference panel), the p-
values from both approaches for testing causal effects as well as
for testing pleiotropy effects are largely consistent with each
other, demonstrating the effectiveness of the summary statistics
version of PMR-Egger (Supplementary Fig. 45).

Finally, in addition to what we have already mentioned in the
Methods, we emphasize again that while we have followed the
previous MR literature and use “causal effect” through the text,
the effect is causal only when certain MR modeling assumptions
hold. These MR assumptions are often not straightforward to
validate as it is impossible to measure all confounding factors in
the study. Therefore, we caution against the over-interpretation of
causal inference in observation studies such as TWAS applica-
tions. However, we do believe MR is an important step that allows
us to move beyond standard linear regressions and is an
important analysis that can provide potentially more trustworthy
evidence with regard to causality as compared to simpler
regression approaches.

Methods
PMR-Egger overview. We consider a probabilistic Mendelian randomization
framework for performing two-sample Mendelian randomization analysis with
correlated SNP instruments. Two-sample Mendelian randomization analysis aims
to estimate and test for the causal effect of an exposure on an outcome in the
setting where the exposure and outcome variables are measured in two separate
studies with no sample overlap. In the TWAS applications we consider here, the
exposure variable is gene expression level that is measured in a gene expression
study, while the outcome variable is a quantitative trait or a dichotomous disease
status that is measured in a GWAS. Oftentimes, the gene expression study and
GWAS are performed on two separate samples. Although we mostly focus on
TWAS applications in the present study, we note that the two-sample Mendelian
randomization is also commonly performed in settings where both the exposure
and outcome variables are complex traits that are measured in two separate
GWASs. An illustrative diagram of MR analysis is displayed in Supplementary
Fig. 1.

We denote x as an n1-vector of exposure variable (i.e., gene expression
measurements) that is measured on n1 individuals in the gene expression study and
denote Zx as an n1 by p matrix of genotypes for p instruments (i.e., cis-SNPs) in the
same study. Note that, unlike standard MR methods that select independent
instruments, we follow existing TWAS approaches and use all cis-SNPs that are in
LD as instruments. We denote y as an n2-vector of outcome variable (i.e., trait) that
is measured on n2 individuals in the GWAS and denote Zy as an n2 by p matrix of
genotypes for the same p instruments there. For both Zx and Zy, we coded their
genotypes based on minor allele count, where the minor allele is defined in the
GWAS data. We examined the robustness of such genotype coding in simulations
through genotype flipping. We consider three linear regressions to model the two
studies separately

x ¼ μx þ Zxβþ εx ; ð1Þ

~x ¼ μx þ Zyβþ ε
~x ; ð2Þ

y ¼ μy þ ~xαþ Zyγþ ϵ; ð3Þ

where the Eq. (1) is for the gene expression data and the Eqs. (2) and (3) are for the
GWAS data. Here, μx and μy are the intercepts; ~x is an unobserved n2-vector of
exposure variable on the n2 individuals in the GWAS; β is a p-vector of
instrumental effect sizes on the exposure variable; α is a scalar that represents the
causal effect of the exposure variable on the outcome variable; γ is a p-vector of
horizontal pleiotropic effect sizes of p instruments on the outcome variable; εx is an
n1-vector of residual error with each element independently and identically

distributed from a normal distribution N 0; σ2x
� �

; ε
~x is an n2-vector of residual error

with each element independently and identically distributed from the same normal

distribution N 0; σ2x
� �

; and ϵ is an n2-vector of residual error with each element

independently and identically distributed from a normal distribution N 0; σ2y

� �

. We

note that while the above three equations are specified based on two separate
studies, they are joined together with the common parameter β and the unobserved
gene expression measurements ~x. Equations (2–3) can also be combined into

y ¼ ~μy þ Zyβαþ Zyγþ εy ; ð4Þ

where ~μy ¼ μxαþ μy ; εy ¼ ε
~xαþ ϵ.

Our key parameter of interest in the above joint model is the causal effect α. The
causal interpretation of α requires two assumptions of MR analysis to hold: (i)
instruments are associated with the exposure; (ii) instruments are not associated
with any other confounders that may be associated with both exposure and
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outcome. Note that our model no longer requires the general exclusion restriction
condition of traditional MR (i.e., instruments only influence the outcome through
the path of exposure), as we make explicite modeling assumptions on the
horizontal pleiotropy effects γ. Certainly, PMR-Egger still need to satisfy the
InSIDE assumption that the instrument-exposure effects and instrument-outcome
effects are independent of each other, which is sometimes refered to as the weak
exclusion restriction condition8. In our model, we derive the causal interpretation
and identification of α under the decision-theoretic framework of causal
inference26,49–51 (details in Supplementary Notes). Because the causal effect
interpretation of α depends on MR assumptions as well as other explicit modeling
assumptions, many of which are not easily testable in practice, MR analysis in
observational studies likely provides weaker causality evidence than randomized
clinical trials. Therefore, while we follow standard MR analysis and use the term
“causal effect” through the text, we only intend to use this term to emphasize the
fact that α estimate from an MR analysis is more trustworthy than the effect size
estimate in a standard linear regression of y on ~x.

Because p is often larger than n1, we will need to make additional modeling
assumptions on β to make the model identifiable. In addition, the two instrumental
effect terms defined in Eq. (4), the vertical pleiotropic effect Zyβα and the
horizontal pleiotropic effect Zyγ, are also not identifiable from each other, unless
we make additional modeling assumptions on γ. Here, we follow standard
polygenic model and assume that all elements in β are non-zero and that each

follows a normal distribution N 0; σ2β

� �

. In addition, we follow the burden test

assumption commonly used for rare variant test and assume equal horizontal
pleiotropic effects across SNPs γj= γ for j= 1,…p. With the burden test
assumption on the horizontal pleiotropic effects γ, our model becomes a
generalization of the commonly used MR-Egger regression model. In the special
case where instruments are independent and treated as fixed effects and where a
two-stage estimation procedure is used for inference, our model reduces to MR-
Egger. However, our method can handle general cases where MR-Egger does not
apply to. In particular, unlike MR-Egger, our method can handle multiple
correlated instruments and perform inference in a likelihood framework.

In the above model, we are interested in estimating the causal effect α and testing
the null hypothesis H0:α= 0 in the presence of horizontal pleiotropy effects γ. In
addition, we are interested in estimating the horizontal pleiotropic effect size γ and
testing the null hypothesis H0:γ= 0. We accomplish both tasks through the maximum
likelihood inference framework. In particular, we develop an expectation
maximization (EM) algorithm for parameter inference by maximizing the joint
likelihood defined based on Eqs. (1, 4) (details in Supplementary Notes). The EM
algorithm allows us to obtain the maximum likelihood of the joint model, together
with maximum likelihood estimates for both α and γ. In addition, we apply the EM
algorithm to two reduced models, one without α and the other without γ, to obtain the
corresponding maximum likelihoods. Afterwards, we perform likelihood ratio tests for
eitherH0:α= 0 orH0:γ= 0, by contrasting the maximum likelihood obtained from the
joint model to that obtained from each of the two reduced models, respectively. We
refer to the above inference procedure as probabilistic, as we place estimation and
testing into a maximum likelihood framework. Our inference procedure is in contrast
to the commonly used two-stage estimation procedure (as used in, for example, Egger

regression8,22, PrediXcan1 and TWAS2), which estimates β̂ from Eq. (1) first and then
plug in the estimates into Eq. (4) for inference. The previous two-stage estimation

procedure fails to properly account for the estimation uncertainty in β̂ and is known to
lose power compared to a formal likelihood inference procedure5,11,13.

We refer to our model and algorithm together as the two-sample probabilistic
Mendelian randomization with Egger regression (PMR-Egger). As explained above,
we use “probabilistic” to refer to both the data generative model and the maximum
likelihood inference procedure. We use “Egger” to refer to the horizontal
pleiotropic assumption on γ that effectively generalizes the Egger-regression
assumption to correlated instruments. We also note that the joint generative
Mendelian randomization model defined in Eqs. (1, 4) is a useful conceptual
framework that unifies many existing MR methods. In particular, almost all
existing MR methods are built upon the joint model, but with different modeling
assumptions on β and γ, and with different inference procedures (Table 1).
Compared with these existing MR approaches, PMR-Egger is capable of modeling
multiple correlated instruments, effectively controls for horizontal pleiotropy, and
places inference into a likelihood framework.

Simulations. We performed simulations to assess the performance of PMR-Egger
and compare it with existing approaches. To do so, we first obtained 556 cis-SNPs
for the gene BACE1 on chromosome 11 from the GEUVADIS data52 (data pro-
cessing details in the next section) and simulated gene expression values. We used
the gene BACE1 because the number of cis-SNPs in this gene represents the median
of all genes. With the scaled genotype data Zx, we simulated SNP effect sizes β from
a normal distribution N(0,PVEzx/556), where the scalar PVEzx represents the
proportion of gene expression variance explained by genetic effects. We summed
the genetic effects across all cis-SNPs as Zxβ. In addition, we simulated residual
errors εx from a normal distribution Nð0; 1� PVEzxÞ. We then summed the
genetic effects and residual errors to yield the simulated gene expression level.

Next, we obtained genotypes for the same 556 SNPs from 2000 randomly selected
control individuals in the Kaiser Permanente/UCSF Genetic Epidemiology Research

Study on Adult Health and Aging (GERA)53,54 and simulated a quantitative trait.
Here, we directly used β from the gene expression data, which, when paired
with the causal effect α, yielded the vertical pleiotropic effects αβ. We set

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PVEzy=PVEzx

q

, and we simulated residual errors εy from a normal distribution

Nð0; 1� PVEzyÞ. Here, the scalar parameter PVEzy represents the proportion of

phenotypic variance explained by vertical pleiotropic effects in the absence of
horizontal pleiotropic effects. Afterwards, we simulated horizontal pleiotropic effects
γ for these SNPs (more details below). We summed the horizontal pleiotropic effects,
vertical pleiotropic effects, and residual errors to yield the simulated trait.

In the simulations, we first examined a baseline simulation setting where we set
PVEzx= 10%, PVEzy= 0, with all γj= 0. On top of the baseline setting, we varied
one parameter at a time to examine the influence of various parameters. For PVEzx,
we set it to be either 1%, 5%, or 10%, close to the median gene expression
heritability estimates across genes55,56. For β, we examined alternative SNP effect
size distributions that deviate from the polygenic assumption in the baseline
setting. Specifically, we randomly selected either 1 SNP, 1%, 10%, or 100% of the
SNPs to have non-zero effect, and simulated their effects from a normal
distribution to explain a fixed PVEzx in total. In addition, we examined the case of
correlated β, where the SNP effects on gene expression is generated from a
multivariate normal distribution with the covariance matrix w∑. Here, ∑ is the LD
matrix among SNPs and w is a scalar that is chosen to ensure that PVEzx equal to
10%. For PVEzy, we varied its value to be either 0% (for null simulations), 0.2%,
0.4%, or 0.6% (for power simulations). For the horizontal pleiotropy effects γ, we
randomly assigned a fixed proportion of γj to be non-zero (proportion equals 10%,
30%, 50%, or 100%). Afterwards, we set the absolute value of non-zero γj to be the
same value of γ. As a sensitivity analysis, we also randomly assigned some of their
signs to be positive and some of their signs to be negative, with the ratio of positive
effects to negative effects being either 1:9, 3:7, or 5:5. Here, we set γ to be 1 × 10−4,
5 × 10−4, 1 × 10−3, or 2 × 10−3, which corresponds to the 50%, 70%, 90%, 95%
quantiles of horizontal pleiotropic effect estimates across all genes and all traits in
the WTCCC data (more details below), respectively. While genotype coding is
based on allele frequency in both simulations and analysis, we also examined cases
where we randomly flipped the genotypes of a fraction of SNPs before analysis so
that genotype coding does not match between simulation and analysis. The faction
of flipped genotype SNPs is set to be either 10%, 30%, or 50%. In addition, we
conducted analysis by orienting SNP genotypes based on its estimated effect sign
on the gene expression, to examine whether such “positive orientation” strategy can
improve the performance of PMR-Egger. For null simulations and type I error
control examination, we performed 10,000 simulation replicates for each
simulation scenario described above. For power calculation, for each scenario, we
performed 1000 alternative simulations together with 9000 null simulations and
calculated power based on false discovery rate (FDR).

While we applied PMR-Egger to analyze individual-level data from all
simulations, we also applied PMR-Egger to analyze summary statistics in a subset
of simulations to validate the implementation of the summary statistics-based
PMR-Egger algorithm. These results are presented in the Discussion section. Here,
we considered the simulation settings with a fixed sample size (n1= 465, n2=
2000), different causal effect sizes (PVEzy= 0 or 0.6%) and different pleiotropy
effect sizes (γ= 0 or 0.0005). In the analysis, we calculated the LD matrix in the
eQTL data using the observed individual-level genotypes in the eQTL study. We
calculated the LD matrix in the GWAS data from a reference panel. The reference
panel is constructed in four different ways, by using individual-level genotypes
from either all individuals in the GWAS (n= 2000), 10% of randomly selected
individuals from the GWAS (n= 200), individuals with European ancestry (n=
503) or individuals with African ancestry (n= 611) from the 1000 Genomes
project phase 3. Note that the African ancestry panel includes 99 Esan in Nigeria
(ESN), 113 Gambian in Western Division, Mandinka (GWD), 99 Luhya in
Webuye, Kenya (LWK), 85 Mende in Sierra Leone (MSL), 108 Yoruba in Ibadan,
Nigeria (YRI), 96 African Caribbean in Barbados (ACB), and 61 people with
African Ancestry in Southwest USA (ASW).

Besides the single gene-based simulations, we also conducted cross-gene
simulations. Specifically, we randomly selected 10,000 genes from GEUVADIS. We
extracted cis-SNPs for these 10,000 genes, obtaining a median of 576 cis-SNPs per
gene (min= 11; max= 7409). For each gene in turn, we used its cis-SNPs to
simulate its gene expression level as described above. Afterwards, we applied
different methods to analyze simulated data. The cross-gene-based simulations
reflect the varying LD pattern and the varying number of cis-SNPs across genes
that we observe in real data, and thus are likely to be more realistic than the single
gene-based simulations. We performed cross-gene simulations under all simulation
settings described above, including settings with varying gene expression
heritability, varying genetic architectures underlying gene expression, as well as
varying causal and horizontal pleiotropy effects.

Real data applications. We applied our method to perform TWAS by integrating
gene expression data with several GWASs. Specifically, we obtained GEUVADIS
data52 as the gene expression data and examined 39 phenotypes from three
GWASs. The three GWASs include the Wellcome Trust Case Control study
(WTCCC)57, the Kaiser Permanente/UCSF Genetic Epidemiology Research Study
on Adult Health and Aging (GERA)53,54, and the UK Biobank58.
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The GEUVADIS data52 contains gene expression measurements for 465
individuals collected from five different populations that include CEPH (CEU),
Finns (FIN), British (GBR), Toscani (TSI) and Yoruba (YRI). In the expression
data, we only focused on protein coding genes and lincRNAs that are annotated in
GENCODE (release 12)59,60. Among these genes, we removed lowly expressed
genes that have zero counts in at least half of the individuals to obtain a final set of
15,810 genes. We performed PEER normalization to remove confounding effects
and unwanted variations following previous studies14,61. Afterwards, following14,
to remove remaining population stratification, we quantile normalized the gene
expression measurements across individuals in each population to a standard
normal distribution, and then further quantile normalized the gene expression
measurements to a standard normal distribution across individuals from all five
populations. Besides expression data, all individuals in GEUVADIS also have their
genotypes sequenced in the 1000 Genomes Project. We obtained genotype data
from the 1000 Genomes Project phase 3. We filtered out SNPs that have a Hardy-
Weinberg equilibrium (HWE) p-value < 10−4, a genotype call rate <95%, or a
minor allele frequency (MAF) <0.01. We retained a total of 7,072,917 SNPs for
analysis.

The WTCCC data consists of about 14,000 cases from seven common diseases
and 2938 shared controls57. The diseases include type 1 diabetes (T1D; n= 1963),
Crohn’s disease (CD; n= 1748), rheumatoid arthritis (RA; n= 1861), bipolar
disorder (BD; n= 1868), type 2 diabetes (T2D; n= 1924), coronary artery disease
(CAD; n= 1926), and hypertension (HT; n= 1952). We obtained quality
controlled genotypes from WTCCC and initially imputed missing genotypes using
BIMBAM62 to arrive at a total of 458,868 SNPs shared across all individuals.
Afterwards, we further imputed SNPs using the 1000 Genomes as the reference
panel using SHAPEIT and IMPUTE263. We filtered out SNPs that have an HWE p-
value < 10−4, a genotype call rate <95%, or an MAF < 0.01 to obtain a total of
2,793,818 imputed SNPs. For each trait in turn, we first regressed the phenotype on
the top 10 genotype principal components (PCs) and obtained phenotype residuals.
We then scaled the phenotype residuals to have a mean of zero and standard
deviation of one and used these phenotype residuals for TWAS analysis. In
addition to the main analysis that uses phenotype residuals, we also performed
parallel analysis with PMR-Egger where we used the original phenotype as the
outcome variable and the top 10 genotype PCs as covariates.

The GERA study consists of 61,953 individuals and 675,367genotyped SNPs.
We filtered out SNPs that had a genotype calling rate below 0.95, MAF < 0.01, or
HWE p-value < 10−4 to yield a total of 487,609 SNPs. We phased genotypes using
SHAPEIT64 and imputed SNPs based on the Haplotype Reference Consortium
(HRC version r1.1) reference panel65 on the Michigan Imputation Server using
Minimac366. Afterwards, we further filtered out SNPs that have a HWE p-value <
10−4, a genotype call rate <95%, an MAF < 0.01, or an imputation score < 0.30 to
arrive at a total of 8,385,867 SNPs that are shared across 61,953 individuals. We
examined 22 diseases in GERA that include asthma (number of cases n= 10,101),
allergic rhinitis (n= 15,193), cardiovascular disease (CARD, n= 16,431), cancers
(n= 18,714), depressive disorder (n= 7900), dermatophytosis (n= 8443), type 2
diabetes (T2D, n= 7638), dyslipidemia (n= 33,071), hypertension (HT, n=
31,044), hemorrhoids (n= 9922), abdominal hernia (n= 6876), insomnia (n=
4357), iron deficiency (n= 2706), irritable bowel syndrome (n= 3367), macular
degeneration (n= 4031), osteoarthritis (n= 22,062), osteoporosis (n= 5909),
peripheral vascular disease (PVD, n= 4718), peptic ulcer (n= 1007), psychiatric
disorders (n= 9408), stress disorders (n= 4706), and varicose veins (n= 2714).
For each trait in turn, we first regressed the phenotype on the top 10 genotype
principal components (PCs) and obtained phenotype residuals. We then scaled the
phenotype residuals to have a mean of zero and standard deviation of one and used
these phenotype residuals for TWAS analysis. In addition to the main analysis that
uses phenotype residuals, we also performed parallel analysis with PMR-Egger
where we used the original phenotype as the outcome and the top 10 genotype PCs
as covariates.

The UK Biobank data consists of 487,409 individuals and 92,693,895 imputed
SNPs58. We followed the same sample QC procedure in Neale lab (https://github.
com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas) to retain a total
of 337,198 individuals of European ancestry. We filtered out SNPs with an HWE p-
value < 10−7, a genotype call rate <95%, or an MAF < 0.001 to obtain a total of
13,876,958 SNPs. We selected 10 UK Biobank quantitative traits that have a
phenotyping rate >80%, a SNP heritability > 0.2 and a low correlation among them
following a previous study67. The 10 traits include height (h2= 0.579;), Platelet
count (h2= 0.404), bone mineral density (h2= 0.401), red blood cell count (h2=
0.324), FEV1–FVC ratio (h2= 0.313), body mass index (BMI, h2= 0.308), RBC
distribution width (h2= 0.288), Eosinophils count (h2= 0.277), forced vital
capacity (h2= 0.277), white blood cell count (h2= 0.272). For each trait in turn, we
regressed the resulting standardized phenotypes on sex and top 10 genotype
principal components (PCs) to obtain the residuals, standardized the residuals to
have a mean of zero and a standard deviation of one, and finally used these scaled
residuals to conduct TWAS analysis. We also performed parallel analysis with
PMR-Egger by using the original phenotype and including the top 10 genotype PCs
as covariates.

We combined the GEUVADIS data with each of the three GWASs for TWAS
analysis. To do so, in the GEUVADIS data, for each gene in turn, we extracted cis-
SNPs that are within either 100 kb upstream of the transcription start site (TSS) or
100 kb downstream of the transcription end site (TES). We overlapped these SNPs

in GEUVADIS with the SNPs obtained from each of the three GWASs to obtain
common sets of SNPs. The median number of the overlapped cis-SNPs between
GEUVADIS and WTCCC, GERA or UK Biobank are 200, 556, or 500, respectively.
Afterwards, for each pair of gene (from GEUVADIS) and trait (from GWAS) in
turn, we examined the causal relationship between gene expression and trait of
interest while testing and controlling for potential horizontal pleiotropic effects.

Compared methods. For testing the causal effect, we compared the performance of
PMR-Egger with five existing methods that include: (1) SMR, which uses a single
instrument and does not control for horizontal pleiotropy. For SMR, we first
performed a linear regression to choose the top associated cis-SNP to be the
instrumental variable. (2) PrediXcan, which uses multiple correlated instruments
but does not control for horizontal pleiotropy. For PrediXcan, we used all cis-SNPs
for the model and used ElasticNet implemented in the R package glmnet to obtain
the coefficient estimates for the cis-SNPs. (3) TWAS, which uses multiple corre-
lated instruments but does not control for horizontal pleiotropy. For TWAS, we
used all cis-SNPs for the model and used BSLMM46 implemented in the GEMMA
software68 to obtain coefficient estimates for the cis-SNPs. (4) CoMM, which uses
multiple correlated instruments but does not control for horizontal pleiotropy. We
used all cis-SNPs for the model and used the R package CoMM for model fitting.
(5) LDA MR-Egger, which uses multiple correlated instruments and controls for
horizontal pleiotropy. We used all cis-SNPs for the model and contacted the
authors of LDA MR-Egger to obtain the method source code. All these methods are
suitable for two-sample design and yield p-values for testing the causal effect α.
Note that PrediXcan, TWAS and CoMM are not originally described as an MR
method but conceptually rely on the same joint MR model based on Eqs. (1) and
(4). These three methods differ in their prior assumptions on β: PrediXcan relies on
ElasticNet assumption; TWAS relies on BSLMM46 assumption; whereas CoMM
relies on the normal prior assumption. In addition, PrediXcan and TWAS rely on a
two-stage regression procedure while CoMM is based on maximum likelihood.
Also, while the prior used in PrediXcan is polygenic, the parameter estimates
obtained from PrediXcan is sparse as it uses posterior mode instead of posterior
mean. We were unable to compare our method with either GSMR or the standard
Egger regression, as both require multiple independent SNP instruments that are
generally not feasible to obtain in TWAS applications.

Again, we used all cis-SNPs for methods that can make use of multiple
correlated instruments (i.e., PMR-Egger, TWAS, PrediXcan, CoMM, and LDA
MR-Egger). We performed a linear regression to select the top associated cis-SNP
as the instrumental variable for SMR, as it can only use a single instrument. In all
simulations and real data applications, methods that can use either individual-level
data or summary statistics (PMR-Egger, PrediXcan, and TWAS) are applied using
individual-level data as input to ensure their optimal performance. Methods that
can only use individual-level data (CoMM) are applied using individual-level data
as input. Methods that can only use summary statistics (SMR and LDA MR-Egger)
are applied using summary data as input. For PMR-Egger, we used individual-level
data for all main analyses and used summary data for a subset of analyses that are
described in the Discussion section.

Besides the above methods, we also compared different methods to a recently
published fine-mapping TWAS method, FOCUS42. In the FOCUS analysis, we
followed42 and obtained a set of independent non-overlapping genomic regions
termed as LD blocks from LDetect69. We removed genomic regions that overlap
with the MHC region due to the extensive LD structure there. Following42, we also
focus our analysis on a subset of regions that harbor at least one genome-wide-
significant SNP (p < 5 × 10−8; the default threshold used in FOCUS), and for each
TWAS/MR method (i.e., PMR-Egger, TWAS, PrediXcan, CoMM, or SMR), also
harbor at least one TWAS gene that is declared significant by the given method.
We then applied FOCUS to analyze these remaining regions and identify genes that
are in the 90% credible set.

For testing horizontal pleiotropic effect, we compared the performance of PMR-
Egger with two existing methods that include (1) LDA MR-Egger; and (2) the
global test in MR-PRESSO, which is implemented as an R package. Both these
methods examine one gene at a time and output a p-value for testing horizontal
pleiotropic effects. Note that, unlike PMR-Egger and LDA MR-Egger, MR-PRESSO
requires independent instruments and uses permutation to obtain the empirical p-
values. Due to the heavy computational burden resulting from permutations, we
restricted the number of permutations in MR-PRESSO to 10,000 (the lowest
possible p-value from MR-PRESSO is thus 10−4) and were only able to apply MR-
PRESSO to a subset of simulation scenarios.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
No data were generated in the present study. The GEUVADIS gene expression data are

publicly available at http://www.geuvadis.org. The WTCCC genotype and phenotype

data are publicly available at https://www.wtccc.org.uk. The GERA genotype and

phenotype data are available at https://www.ncbi.nlm.nih.gov/gap with dbGaP accession

number phs000788. The UK Biobank data are from UK Biobank resource at https://mrc.

ukri.org/research/facilities-and-resources-for-researchers/biobank/.
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Code availability
Our method is implemented in the R package PMR, freely available at http://www.xzlab.

org/software.html and https://github.com/yuanzhongshang/PMR. The code to reproduce

all the analyses are available on GitHub https://github.com/yuanzhongshang/

PMRreproduce.
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