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Abstract

Network analysis is often focused on characterizing the dependencies between network relations 

and node-level attributes. Potential relationships are typically explored by modeling the network 

as a function of the nodal attributes or by modeling the attributes as a function of the network. 

These methods require specification of the exact nature of the association between the network 

and attributes, reduce the network data to a small number of summary statistics, and are unable 

provide predictions simultaneously for missing attribute and network information. Existing 

methods that model the attributes and network jointly also assume the data are fully observed. In 

this article we introduce a unified approach to analysis that addresses these shortcomings. We use 

a previously developed latent variable model to obtain a low dimensional representation of the 

network in terms of node-specific network factors. We introduce a novel testing procedure to 

determine if dependencies exist between the network factors and attributes as a surrogate for a test 

of dependence between the network and attributes. We also present a joint model for the network 

relations and attributes, for use if the hypothesis of independence is rejected, that can capture a 

variety of dependence patterns and be used to make inference and predictions for missing 

observations.
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1 Introduction

A common goal in the analysis of network data is to characterize the dependence between 

network relations and a set of node-specific attributes. For example in recent years many 

studies in the social sciences have examined the relationship between individuals’ friendship 

networks and their health measures, such as happiness, smoking and drinking behavior, and 

obesity (e.g. Veenstra et al. (2013) and references therein). Similarly in the biological 

sciences, scientists are interested in the relationship between how proteins interact and their 

biological importance (see Butland et al. (2005) for example). In each of these applications, 
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the data consists of two parts: the network relations {yi,j : i, j ∈ {1, …, n}} representing a 

measure of the directed relationship between each pair of nodes i and j, and p-variate nodal 

attributes {xi : i ∈ {1, …, n}}. In the case of a social network, the nodes, network relations Y 

= {yij}, and attributes X = {xi}, often represent people, their friendships, and their 

demographic and behavioral characteristics, respectively.

Traditional approaches to describing the dependence between a network and attributes rely 

on statistical methods that model either the network conditional on the attributes, {Y|X}, or 

the attributes conditional on the network, {X|Y}. In the social sciences, this first perspective 

parallels the theory of “social selection”, whereby individuals’ attributes influence the 

formation of their social relations, and the second perspective is motivated by “social 

influence” theory whereby individuals’ relations affect their attributes.

Methods that model the network as a function of the attributes, {Y|X}, commonly specify a 

regression framework for the dependence: the probability of the relation yi,j is a function of 

βTxi,j where xi,j = f(xi, xj), xi and xj are the attributes for nodes i and j, and β is an unknown 

parameter vector. The covariate vector xi,j typically includes terms for each attribute of the 

sender node i and receiver node j, as well as interaction terms measuring the similarity 

between the sender and receiver attributes. These interaction terms are frequently specified 

as the absolute difference between the attributes, an indicator of whether an attribute is the 

same for both the sender and receiver node (in the case of discrete attributes), or the product 

of the nodes’ attributes. Examples of network models that can accommodate such a 

regression term are exponentially parameterized random graph models (ERGM) (Frank and 

Strauss (1986), Wasserman and Pattison (1996), Snijders et al. (2006), Hunter and 

Handcock (2006)) and latent variable models (Hoff et al. (2002), Hoff (2005)). This latter 

class of models regresses a function of the network on both attribute terms and node-specific 

latent variables; Austin et al. (2013) proposed a slight modification to this model class where 

the network is expressed as a function of nodal latent variables and the latent variables 

themselves are regressed on the attributes.

Methods for assessing the impact of the network on nodal attributes, {X|Y}, often regress 

each node’s attributes on the attributes of other nodes in the network according to the 

network relations. For example, Christakis and Fowler (2007) use a logistic regression 

model to estimate the degree to which an individual’s obesity status can be explained by the 

obesity status of individuals in their social network (children, neighbors, spouse, etc.) (see 

Cohen-Cole and Fletcher (2008) and Lyons (2011) for additional discussion of these 

methods). Other similar models include the auto-regressive network effects models of 

Erbring and Young (1979) and Marsden and Friedkin (1993) and the p* social influence 

models of Robins et al. (2001). All of these models are univariate, focusing a single attribute 

of interest that is possibly subject to social influence.

While modeling the network and attributes as functions of one another is able to provide 

some insight into their dependence structure, there are two primary drawbacks to utilizing 

these methods for analysis. First, neither modeling framework allows for simultaneous 

inference about the dependencies between and among the network relations and attributes. 

For example, when analyzing data on an adolescent friendship network and individuals’ 
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health behaviors there may be interest in whether smoking habits and obesity status are 

conditionally independent given the network. Addressing this question of dependence 

between attributes conditional on the network is impossible using either of the conditional 

modeling frameworks. A second limitation of these methods is that they are unable to 

accommodate, and provide predictions for, datasets that have both missing network and 

attribute information. In the conditional modeling frameworks either the network or 

attributes are assumed to be fully observed.

Fellows and Handcock (2012) proposed a new class of models for jointly modeling a 

network and attributes called exponential-family random network models which is a 

combination of an ERGM and a Gibbs random field. This joint model addresses the first 

limitation of the conditional models and could potentially (with modification) address the 

second limitation of imputing missing data. However these models, like ERGMs, require 

careful specification to avoid model degeneracy issues (Handcock (2003), Schweinberger 

(2011)) and require explicit elicitation of the possible relationships between the network and 

attributes. Kim and Leskovec (2011) and Kim and Leskovec (2012) proposed a simple joint 

attribute and network model for which mathematical analysis on network connectivity and 

degree distributions is tractable. A limitation of this model class is that it only 

accommodates categorical attributes and assumes no missing attribute or network 

information. Both of these existing joint modeling frameworks lack traditional procedures 

for testing whether the joint model is appropriate, i.e., if dependencies even exist between 

the network and attributes.

In this article, we propose a unified approach to the analysis of network and attribute data. 

Our approach builds off existing network models and inference procedures and makes two 

key contributions to statistical network methodology. The first contribution is a testing 

strategy for determining whether dependencies exist between the network and attributes. 

The second contribution, for use when the test rejects independence, is a joint modeling 

framework for the network and attributes that allow for predictions for missing information 

and inference on the dependencies between and within the network and attributes. Neither of 

these objectives can be addressed with existing network analysis methods. Our proposed 

methodology can be summarized as follows. Investigating the dependence between network 

data Y and attribute data X is difficult since network data are often high dimensional, 

containing relational information on each pair of nodes. For this reason, in Section 2 we 

propose using a previously developed network model to represent the (n × n) matrix of 

network relations Y with a low-dimensional structure defined by an (n × r) matrix N of node-

specific network factors (r ≪ n). These network factors N are not observed directly and 

hence are estimated from the observed network Y using a network model.

In Section 3 we introduce a novel testing strategy for evaluating whether dependencies exist 

between the network Y and attributes X by formally testing for correlation between the 

estimated network factors N and the attributes X. A conceptual representation of this testing 

framework is shown in Figure 1. If the network is independent of the attributes, then any 

functions of the network, specifically the network factors, are also independent of the 

attributes. A primary advantage of this approach is that the overall relationship between the 

network and an arbitrary number of attributes can be assessed without needing to construct a 
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complex regression model of the network relations on the attributes or perform variable 

selection. In Section 4 we show via simulation that there is little loss in power for the test 

due to not observing the network factors directly.

In Section 5, we propose a novel joint model for the network and attributes, for use when the 

hypothesis of independence between the network factors and attributes is rejected, that is 

able to capture dependence such as that detected by the test. This joint model allows for 

simultaneous estimation and inference on the dependence between and within the network 

and attributes, as well as provides methodology for handling and predicting missing network 

and attribute data. We show that the joint model conditional on the attributes can be viewed 

as a reduced rank regression of the network relations on attribute interactions. This further 

motivates the joint model as a mechanism for parsimoniously characterizing attribute and 

network dependence. In Section 6 our proposed methodology in used to analyze data from 

the National Longitudinal Study of Adolescent Health. In a cross validation experiment, we 

demonstrate that predictions of missing attribute data can be improved by basing 

imputations on both observed network and attribute information rather than attribute data 

alone. We conclude with a discussion in Section 7.

2 Calculation of node-specific network factors

The latent space network models in Hoff et al. (2002) and latent variable models in Hoff 

(2005) and Hoff (2009) provide parsimonious representations of the patterns in a network 

using node-specific latent factors. These models have been shown to capture a variety of 

network dependence patterns such as homophily, transitivity, reciprocity, and heterogeneity 

in node sociability and popularity. We consider an extension of the model presented in Hoff 

(2009) that contains additive and multiplicative latent effects, as well as structure for within 

dyad correlation. This model is a mosaic composed of common network effects well 

established in the literature. Ultimately, we use this model to obtain a low-dimensional 

representation of the network in terms of interpretable node-specific factors. We describe the 

model for continuous network data, and at the end of this section we briefly discuss how 

these methods can be extended to model ordinal or binary relations.

Let yi,j represent a continuous measure of the directed relation from node i to node j. For 

example, in an adolescent friendship network, relation yi,j may represent the aggregate call 

time of phone calls initiated by person i to person j in the last month. We consider the 

following model:

(1)

The overall mean relation is represented by μ and the random error by ei,j. The additive 

sender effect ai and receiver effect bj are often interpreted as a measure of node i’s 

sociability (i.e. outgoingness) and node j’s popularity respectively. The multiplicative 

interaction effect  can capture higher order dependence, such as network transitivity, 

balance, and clustering (Hoff (2005)). One interpretation of the these effects stems from the 

concept of an underlying social space (McFarland and Brown (1973), Faust (1988)), 

whereby nodes that are close to one another in the underlying space exhibit similar network 
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patterns. In this context, the node-specific sender factors ui and receiver factors υi can be 

interpreted as k-dimensional representations of the underlying outgoing (sending) and 

incoming (receiving) behaviors of node i. A similar interpretation was used to motivate the 

latent position models in Hoff et al. (2002).

The random errors are modeled as Gaussian, independent across dyads, and correlated 

within a dyad:

(2)

The additive and multiplicative node-specific factors are also modeled as Gaussian and 

independent across nodes:

(3)

The within dyad correlation ρ is interpreted as a measure of network relation reciprocity and 

together with the additive effects ai and bj induces the covariance structure from the social 

relations model (Warner et al. (1979), Wong (1982)).

A Bayesian estimation procedure for this network model has been implemented in the 

‘amen’ package in the open source computing software program R; however the 

implementation restricts Σab,uυ = 0. Under this restriction the model can capture third-order 

dependence patterns between relation “cycles”, such as {yi,j, yj,k, yk,i} or {yi,j, yj,k, yi,k} 

where the edges create a closed loop (ignoring direction), but not between noncyclic relation 

triples such as {yi,j, yj,i, yk,i}. By allowing the additive and multiplicative effects to be 

dependent (i.e. Σab,uυ ≠ 0) as in (3), the model is able to capture a larger class of 

dependencies. Specifically, it can capture correlation among sets of relation triples where 

each relation in the set shares at least one node with another relation in the set (i.e. 

dependence between {yi,j, yj,k, yk,l}, but not between {yi,j, yj,k, ym,l}). One justification for 

allowing such dependence is that latent factors that act additively, affecting node popularity 

and sociability, plausibly also impact the network in a multiplicative manner. A modified 

version of the ‘amen’ R package that supports Bayesian parameter estimation for the 

network model presented here is available at the corresponding author’s website.

Motivation via the singular value decomposition

A key strength of the network model in (1) is its ability to capture a variety of common 

network phenomena, however an alternative motivation for the model stems from its 

relationship to the singular value decomposition (SVD) (see Hoff (2009) and Azari and 

Airoldi (2012) for discussion of similar motivations for related models). The singular value 

decomposition is a matrix factorization that is commonly used to obtain an approximation of 

a matrix M by another matrix M̂ which is of reduced rank and contains the main patterns of 

the original matrix M. The SVD-based approximation M ̂ is the optimal matrix 

approximation of its rank with respect to squared error loss. Here we show that the model in 

(1) is similar to an SVD-based approximation of the network Y, and hence can be viewed as 
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a low dimensional representation of the network that captures the dominant patterns in the 

relations.

The network model in (1) can be written in matrix form as Y = M + E, where

(4)

1n is an (n × 1) vector whose elements all equal one, a and b are (n × 1) vectors of the 

additive sender and receiver factors, U and V are (n × k) matrices of multiplicative factors, 

and E is an (n × n) matrix of errors.

The singular value decomposition of an arbitrary (n × n) matrix Y is written Y = ACBT, 

where A and B are orthogonal (n × n) matrices and C is an (n × n) diagonal matrix with non-

negative decreasing diagonal elements. The rank-k matrix that best approximates Y based on 

squared-error loss is given by M ̂ = ÂĈB ̂T where Â = A[, 1: k], Ĉ = C[1 : k, 1: k] and B ̂ = B[, 

1: k]. Absorbing Ĉ into Â and/or B ̂, the best rank-k approximation is written M ̂ = ĂB̆T. 

Letting µA, µB ∈ ℝk contain the columns means of Ă and B ̆ respectively, M ̂ can be 

expressed:

(5)

where Ã and B̃ represent multiplicative factors with mean-zero columns, ã and b ̃ represent 

mean-zero row and column factors, and μAB is an overall mean.

Observe that the representation in (5) resembles that in (4) for the network model. This 

illustrates the additive and multiplicative effects structure in the network model is similar to 

a rank-k matrix approximation of the network. Note that in the decomposition in (5), there is 

functional dependence between the overall mean, additive, and multiplicative effects. Since 

there are no such restrictions in the network model, the latent network effects represent a 

slightly larger class of approximations than that given by the set of matrices with rank-k.

Non-identifiability of multiplicative factors

From the representation in (4), it is evident that the multiplicative network effects (U, V) 

individually are non-identifiable: the probability model for Y in (1) is the same with 

multiplicative latent factors (U, V) as it is with factors (UAT, VA−1) for any nonsingular (k × 

k) matrix A. In other words, all multiplicative factors which satisfy {(UAT, VA−1) : A (k × k) 

nonsingular} are equivalent with respect to the probability model for Y. In the absence of 

prior information which prefers one parameter over another within the same equivalence 

class, inference for the relative likeliness of parameter values should be conducted over the 

equivalence classes. Performing inference over the equivalence classes of (U, V) is 

equivalent to performing inference on the posterior distribution of UVT. This issue is 

discussed further in Sections 3 and 5.
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Non-continuous network measures

Observed network information is often not continuous. For example it is common for 

network data to be binary where yi,j is an indicator of whether the relation between nodes i 

and j exceeds some threshold, or ordinal where yi,j represents, for instance, the relative rank 

of node j from the perspective of node i. To model non-continuous relations, the network 

model in (1) can be generalized by modeling yi,j = ℓ(zi,j) where zi,j is a continuous measure 

of the pairwise relation and ℓ is a function defining the relationship between zi,j and yi,j. The 

latent continuous network measure zi,j is then modeled using the network model in (1) in 

place of yi,j. In the case of binary data, a thresholding function may be appropriate 

(corresponding to the probit model), and in the ordinal case the ordered probit can be 

considered. Hoff et al. (2013) discusses additional ℓ functions which account for censoring 

of binary and ordinal relations when nodes are restricted on the number of relations they can 

send (i.e. the number of non-zero relations in a row of Y). We employ one of these link 

functions in Section 6 to analyze fixed rank nomination data from the National Longitudinal 

Study of Adolescent Health using the proposed testing and joint modeling methodology 

introduced here.

3 Testing for dependencies

The goals in an analysis of network and attribute data are often threefold: 1) to determine 

whether dependencies exist between the network and attributes, 2) to model and estimate 

these dependencies, and finally 3) to make inference and possibly make predictions for 

missing data. The first step in any such analysis is to formally test for dependencies between 

the network and attributes. In this section, we describe a novel, simple approach to 

performing such a test.

A classical approach to determining whether there is an association between the nodal 

attributes Xn×p and network relations Yn×n would be to test whether dependencies exist 

between X and the rows of Y or between X and the columns of Y. This would involve 

hypothesizing that each attribute is uncorrelated with each node’s outgoing relations (H0: 

Cov(X[, i], Y [j,]) = 0 for all i,j) or incoming relations (H0: Cov(X[, i], Y [,j]) = 0 for all i,j) 

and investigating the evidence against these claims. However, conventional multivariate 

analysis tests are not applicable to these problems since these tests address relationships 

between p + n variables based on n observations.

We propose an alternative testing approach using the the estimated latent network factors 

Nn×(2k+2) = [a, b, U, V] from the network model in (1). The nodal attributes X = [x1, …, xn]T 

are independent of the network Y if and only if the attributes are independent of any function 

of the network. As described in Section 2, the network factors N provide a simplified 

representation of the network. Thus, we propose testing for dependence between the latent 

network factors N and attributes X on the basis that rejecting such a test would imply 

dependence between the network Y and attributes X (see Figure 1). However, the latent 

network factors N are not observed so in practice they must be estimated from the observed 

network Y. In this section we present a test for dependence between the estimated network 

factors and attributes that borrows from classic multivariate testing theory, discuss 

invariances in the test, and describe an exact likelihood ratio testing procedure. We also 
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discuss alternative interpretations of the test that do not involve distributional assumptions 

on both the latent factors and attributes.

Suppose the nodal attributes {xi : i ∈ {1, …, n}} are continuous and mean-zero, and let 

 denote the (estimated) latent network factors for node i. We propose 

testing for linear dependence between the network factors and attributes using a classical 

multivariate test based on the assumption that the network factors and attributes are samples 

from a multivariate normal distribution:

(6)

The null and alternative hypotheses for this test are

(7)

Network model and test invariances

As mentioned in Section 2, the network model in (1) is invariant under transformations of 

the multiplicative latent factors. Formally, this non-identifiability can be expressed as an 

invariance of the probability model under transformations of network factors {ni : i ∈ {1, 

…, n}} by elements of group

which act via multiplication on the left: 

. It would be undesirable for the 

test in (7) to depend on which latent factor estimates in the set

(8)

are selected to represent the network. As discussed in Section 2, the probability of the 

network Y is the same for all latent factor estimates in this set, and hence all elements within 

a set are equivalent based on the likelihood. Define  to be the extension of group N to 

transformations of :

which acts via left multiplication and leaves xi unchanged. We define  in order to relate the 

invariance in the network model parameterization to the test in (7).
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The testing problem in (7) is itself invariant under left multiplication of  by 

elements in the group ℱ, where ℱ is defined

An ℱ-invariant test is a test for (7) that produces the same results for all attributes and 

network factors that are equivalent under group ℱ. Observe that  is a subgroup of ℱ. This 

implies that an ℱ-invariant test will also respect the -invariances in the network relations 

probability model. In other words, all latent network factor estimates in the same 

equivalence set given by (8) will generate the same test results for (7) under an ℱ-invariant 

test.

Likelihood ratio test

There is no uniformly most powerful invariant test for (7), however the likelihood ratio test 

is ℱ-invariant, unbiased (Perlman and Olkin (1980)), and generally performs well. Let N = 

[a, b, U, V] be the (n × (2k + 2)) matrix of network factors. The likelihood ratio test statistic 

can be written

(9)

where L0 and L refer to the likelihood corresponding to the multivariate normal model in (6) 

with and without restricting ΣN,X = 0. The term  is the ith eigenvalue of

and its positive square root is commonly referred to as the ith canonical correlation between 

N and X. This correlation represents the largest correlation obtainable between a linear 

combination of attributes and a linear combination of the network factors such that the linear 

combinations are uncorrelated with the respective combinations used to obtain the first i − 1 

correlations. The test based on (9) rejects the null hypothesis for large values of Λ and was 

shown to have monotonically increasing power as a function of each population canonical 

correlation (Anderson and Gupta (1964)).

Under the null hypothesis, W = Λ−2/n has a Wilks’ Lambda U(p, 2k + 2, n − (2k + 2)) 

distribution, which is equivalent to the product of independent, Beta distributed random 

variables (Muirhead (1982)):
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The α-quantiles for this distribution can be obtained via Monte Carlo estimation and used to 

perform exact level-α tests for (7).

Alternative interpretation of the test

The test in (7) was derived as the likelihood ratio test for a model where both the network 

factors and attributes are samples from a normal distribution. However in some cases these 

assumptions may not be appropriate. Fortunately, alternative interpretations of the test exist 

that do not rely on such assumptions. The likelihood ratio test in (9) for the test in (7) is the 

same as the likelihood ratio test to determine whether the coefficients in a linear regression 

are nonzero, where either the network factors are regressed on the attributes or the attributes 

are regressed on the network factors. These conditional tests can be expressed

(10)

(11)

where βX|N and βN|X are (p × (2 + 2k)) and ((2 + 2k) × p) matrices, respectively. If the nodal 

attributes were specified as part of the study design or are binary or ordinal, it may be 

inappropriate to model them as Gaussian as is done in (6). Instead it may be preferable to 

test for dependence between the attributes and network factors via the conditional 

formulation in (11), where no distributional assumptions are placed on X. The likelihood 

ratio test for the tests in (7), (10) and (11) are identical, so the testing framework presented is 

appropriate if the assumption of normality is reasonable for one or both of the network 

factors and attributes.

4 Simulation study

To analyze data with the test outlined in Section 3, the network latent factors N must be 

estimated from the observed network Y. We expect this to result in a decrease in the power 

of the test in (7) compared to if the network factors were able to be observed directly. 

Furthermore, we expect a greater decrease in power when the observed network relations are 

less informative (i.e. binary rather than continuous). In this section we present a simulation 

study that quantifies the degree to which power is lost when the network factors are not 

observed and must be estimated from observed network relations.

Consider the network model in (1) with one multiplicative effect (k = 1), zero mean (μ = 0), 

and independent standard normal errors (ρ = 0, ):

(12)

We consider the case where one nodal attribute is of interest (p = 1) and the attribute and 

latent network factors have one of the following covariance structures:

A. Cov[(xi, ai, bi, ui, υi)] = ΣXN = I + γEx,a,

B. Cov[(xi, ai, bi, ui, υi)] = ΣXN = I + γEx,u.
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Ex,a is the (5 × 5) matrix of zeros with a one in the entires corresponding to Cov[x, a] and 

Cov[a, x], and Ex,u is defined analogously. In scenario A the attribute and each network 

factor are uncorrelated, except the additive sender factor ai and the attribute xi which have 

correlation γ. Similarly, in scenario B correlation γ exists between the sender multiplicative 

factor ui and the attribute xi.

Monte Carlo estimates of the power based on the level-0.05 likelihood ratio test in (9) for 

the test in (7) were computed for squared correlation values γ2 ∈ {−0.05, 0, 0.05, 0.1, 0.15, 

0.2}, network sizes n ∈ {25, 50, 100} and three decreasingly informative observations of the 

network:

1. N = [a, b, U, V] is observed;

2. N is estimated from a continuous network Y according to (1);

3. N is estimated from a binary network Bd, where Bd is defined as Bd = {bi,j : bi,j = 1 

if yi,j > yd, 0 otherwise} and yd is chosen such that the proportion of network 

relations greater than yd (i.e. the network density) is d.

Notice that the binary network Bd is a deterministic function of the continuous network Y. 

We consider the binary networks with density 0.5 and 0.15. The former case represents a 

relatively dense binary network with many observed relations, whereas the latter case 

reflects more common network seen in survey data where information about only a small 

number of nodes’ relations are available. For the continuous network Y and binary networks 

Bd, the Bayesian estimation procedure was used to obtain estimates of the latent network 

factors. A probit function was specified for the binary networks. The additive factors a and b 

were estimated by their posterior means, and the multiplicative factors U and V were 

estimated by the first left and right singular vector of the posterior mean of the multiplicative 

effect UVT in (4).

Figure 2 shows the power estimates for the two covariance structures A and B and the four 

network observations (N, Y, B0.5, B0.15) based on 2,000 simulations. A single power curve is 

shown for the latent network factors N since the correlation structures A and B are 

equivalent with respect to the invariances of the test in (7). Most notably, Figure 2 illustrates 

there is relatively little power lost when the network factors are estimated from an observed 

continuous or binary network, even when the network size is small. The power of the test is 

slightly larger when dependence exists between the attribute and an additive factor 

compared to when it exists between the attribute and a multiplicative factor for continuous 

and binary network observations. This is likely a consequence of the relative ease with 

which additive effects are estimated compared to interaction effects. As expected, the power 

of the test decreases as the observed network information becomes less informative (N → Y 

→ B0.5 → B0.15), although for even moderate network sizes the power loss is negligible.

5 Joint model for the network and nodal attributes

If the test in Section 3 rejects the null hypothesis of independence between the attributes and 

network factors, there is often interest in estimating and making inference on the 

dependencies, as well as predicting missing network and attribute information. Addressing 
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such inference objectives requires joint modeling of the network Y and attributes X. We 

propose jointly modeling the network Y and attributes X via a model composed of the 

network relations model in (1) and (2), and the latent factor and attribute model in (6). For 

completeness, we include all components of the joint model below.

(13)

(14)

(15)

Inference for the dependence and conditional dependencies between the attributes and 

network is based on the covariance matrix ΣXN.

Simplified parameterization

The non-identifiability of the latent factors discussed in Sections 2 and 3 translates to non-

identifiability of portions of the covariance matrix ΣXN. However, by restricting the 

covariance matrix to have specific structure, the -invariance of the network model due to 

the multiplicative latent factors can be removed.

We propose reparameterizing the model for the latent factors and attributes in (15) by

(16)

where D is a diagonal matrix with decreasing elements along the diagonal. The joint model 

defined by (13), (14), and (16) is not invariant to transformations of the network factors and 

attributes by elements in the group , however it continues to possess non-identifiability 

with respect to signs of the entries in U and V. Specifically, the probability of the observed 

network Y and attributes X is the same with parameters {U, V, ΣXN} as it is with parameters

(17)

where Sk×k is any diagonal matrix with ±1’s along the diagonal. Similar to the multiplicative 

network factors estimation in Section 2, inference for the parameters’ relative likeliness in 

this model should be over equivalence classes defined by the relations in (17).

Relation to reduced rank regression

The expectation of the network relations conditional on the attributes based on (13) 

resembles that of a reduced rank regression on (multiplicative) attribute interaction effects. 
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This is noteworthy as the motivations underlying reduced rank regression parallel many of 

the motivations for this network modeling framework.

The expectation of the network factors conditional on the attributes can be written

where βa|X, βb|X are (p × 1) vectors and βU|X and βV|X are ((2 + 2k) × p) matrices of 

coefficients based on ΣXN. Since the latent factors for different nodes are modeled as 

independent, the expectation of the network relations in (13) conditional on the attributes is

The interaction term  represents a linear combination of all possible pairwise 

products between the p sender and p receiver attributes, resulting in p2 linear effects. The 

coefficients on these linear effects are given by the (k × k) matrix , whose rank is at 

most equal to the minimum of p and k. Therefore, if the number of attributes is greater than 

the number of multiplicative network factors (p > k), linear constraints will exist among the 

p2 effect coefficients. In reduced rank regression the coefficient matrix corresponding to the 

regression of a multivariate outcome on a multivariate predictor is restricted to be reduced 

rank (Anderson (1951), see Reinsel and Velu (1998) for a comprehensive review). This 

approach to parameter dimension reduction is motivated by improvement in parameter 

estimation and interpretation. A similar goal exists in network modeling and is achieved 

here using the latent network factors. Modeling dependencies between the latent network 

factors N and attributes X instead of between the network relations Y and attributes X 

directly allows us to parsimoniously estimate and characterize complex (multiplicative) 

dependencies without defining a complicated regression model for the network relations. 

This approach is especially advantageous when the number of attributes is large and/or it is 

likely at most a small number of attribute pairs are related to the network.

Estimation

Estimation of the parameters in the joint network and attribute model is straightforward in a 

Bayesian context, where inference is based on the joint posterior distribution of the network 

factors {a, b, U, V} and parameters { , ρ, ΣXN} given the data {X, Y}. Since an analytic 

expression of the posterior distribution is not available, it is approximated by samples 

generated from a Markov chain Monte Carlo (MCMC) algorithm. The MCMC procedure 

implemented in the R package ‘amen’ for the model described in Section 2, where the 

additive and multiplicative factors are uncorrelated, was adapted for the joint model 

presented here. Details regarding the families of prior distributions considered and the 

corresponding MCMC algorithm are included in the appendix. Code is provided at the 

corresponding author’s website.
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6 Analysis of AddHealth data

We consider data from a survey of 389 high-school students from the National Longitudinal 

Study of Adolescent Health (AddHealth) (Harris et al. (2009)) and investigate whether 

evidence exists that student friendships are related to student health behaviors and grade 

point average (GPA). The data we use includes same-sex friendship nomination data, 

whereby students identified the top five friends of their sex, in addition to demographic and 

behavioral information. The data considered here can be described as follows:

• network information - R = {ri,j}: ri,j is the rank of student j in student i’s listing of 

friends (5 = highest, 1 = lowest) or 0 if student i did not list student j;

• nodal attributes - X = [xexercise, xdrink, xgpa]: standardized measures of exercise 

frequency, drinking frequency, and grade point average;

• nodal covariate - W = [wgrade]: student grade level (9, 10, 11, or 12).

Students in the same grade and adjacent grades are more likely to be friends than students 

many grades apart. For this reason, we refine our question of interest to be whether students’ 

attributes (exercise, drinking, and GPA) are associated with their network relations’ while 

controlling for their grade.

We use the fixed rank nomination likelihood introduced in Hoff et al. (2013) to model the 

observed network ranks and restriction that at most five friends could be listed on the 

survey. This likelihood assumes each observed network relation ri,j is the function of an 

underlying (latent) continuous measure zi,j such that the following relation consistencies are 

satisfied:

(18)

The first association is the function used in probit regression which assumes that if a 

friendship is reported, the latent friendship value must exceed a given threshold (in this case 

0). The second relation assures consistency of the ranks with the latent friendship measures. 

Finally, the last association posits that friendships between a given student and all students 

he/she did not list as a friend must be below the friendship threshold if the nominating 

student listed fewer than five friends.

The network model for the latent relations zi,j is that given in (1) with additional regression 

terms for whether students are in the same grade  and whether they are in adjacent grades 

(19)

Selection of factor dimension k

The multiplicative factor dimensions k for the male and female networks were determined 

using a method analogous to the scree plot method which is commonly used in factor 

analysis and principal components analysis. The network model in (18) and (19) was fit to 
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each gender network with k = 8. Let M denote the posterior mean estimate of the 

multiplicative network effect UVT, and M ̂ represent the rank eight matrix approximation of 

M based on the singular value decomposition. The total variation in M̂ is equal to the sum of 

the squared singular values: , where ‖·‖F denotes the Frobenius norm and λi 

is the ith singular value. Figure 3 shows the proportion of the total variation in M ̂ attributed 

to each multiplicative effect (i.e. ). For both the male and female network the 

large majority of the variation in the network relations explained by the eight multiplicative 

effects is associated with the first three effects. Thus, the multiplicative effect dimension 

was selected to be three for both networks.

Testing for dependence

As discussed in the Introduction, a traditional approach to modeling dependence between the 

network relations and nodal attributes would be to include regression terms in the form of 

sender, receiver, and interaction effects for the three attributes. Including all such effects 

using this approach would require 15 regression terms. However, by performing the test of 

independence proposed in Section 3 based on the latent network factors, we are able to 

assess the evidence for any relationship between the attributes and network without creating 

a potentially unnecessarily complex network model or performing any model selection.

The latent network factors for the model in (18) and (19) with k = 3 were estimated for the 

male and female networks. The additive factors a and b were estimated by their posterior 

means, and the multiplicative factors U and V were estimated by the first three left and right 

singular vectors of the posterior mean of the multiplicative effect UVT. The test of 

independence between the network factors and the three nodal attributes for the female and 

male network resulted in p-values < 0.001. Therefore, based on a 0.05 level test, we reject 

the null hypothesis of independence between the student attributes and their network 

relations after accounting for grade structure.

Jointly modeling the network and attributes

The rejections of the tests of independence between the attributes and network suggests the 

network factors are informative for nodal attribute data. To investigate this claim we 

performed a 20-fold cross validation on each sex dataset in which 5% of data for each 

attribute was treated as missing in each experiment. We compared predictions for the 

missing attributes based on the observed attributes alone to predictions based on both the 

network and observed attributes. The predictions based solely on the attributes were the 

fitted values from a regression of each attribute on all other attributes. The predictions based 

on the network and attributes were the posterior mean estimates from the Bayesian 

estimation procedure for the joint network and attribute model introduced in Section 5. For 

each sex dataset, a Markov chain was run for 500 iterations of burn-in followed by an 

additional 500,000 iterations and samples were thinned to every 25th iteration, resulting in 

20,000 simulated values for each missing element. The average effective sample size was 

2,607 for the male network and 734 for the female network.
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Table 1 shows the mean squared error over the 20 cross validations for each attribute and 

each sex dataset. The predictions based on the network and attributes improved upon the 

predictions based on the attributes alone for both sexes and all attributes. The improvement 

was greatest for male drinking frequency and female GPA where prediction mean squared 

error was reduced by about 15%. This illustrates that when dependence exists between the 

network and attributes, improvements in the predictions of missing values can be obtained 

by using both the network and attribute information.

7 Discussion

In this article we introduced an original approach to testing whether dependencies exist 

between a network and attribute data, and a joint modeling framework for the network and 

attributes, which relies on a simplified representation of the network in terms of latent node-

specific factors. As discussed in the Introduction, many others have proposed methodology 

for investigating the relationship between network and attribute data. The most common 

methods involve regressing either the network on functions of the nodal attributes or each 

node’s attributes on functions of the attributes of the node’s neighbors in the network. 

Frequently final models are settled upon after some, often undocumented, model selection 

procedure which not only alters the interpretation of the results, but also adds an additional 

element of subjectively to the analysis. The key distinction between the previous methods 

and those presented here is that our method does not involve any model selection procedures 

and simultaneously tests and estimates first and second order dependencies between the 

network and attributes.

Although the methods presented here are able to address questions about association 

between attributes and network relations based on a single cross-sectional dataset, the 

ultimate goal of much research in the social and biological sciences is to determine causal 

relationships using temporal network and attribute data. For example, sociologists are 

interested in determining whether students’ friendships impact their health behaviors or 

whether health behaviors cause changes in their friendship networks (Bauman and Ennett 

(1996)). Snijders et al. (2007) and Steglich et al. (2010) propose methods for modeling the 

co-evolution of networks and behaviors using actor-oriented processes whereby actors 

dictate changes in their behaviors and outgoing ties. These methods focus on binary data, 

rely on method of moments estimation procedures, and are not applicable to cross-section 

datasets since they model network and attribute changes conditional on the first observation. 

A key advantage of the latent variable model approach here is that it warrants a formal 

testing procedure void of any model selection procedures. Extending these methods to allow 

for testing of causal relationships between a network and attributes is a future research area 

of the authors.

A historically difficult problem not addressed here is how to select the number of 

multiplicative factors in the network model. In Section 6 we illustrated a procedure similar 

to the scree plot method used frequently to choose the number of factors in factor analysis 

and the number of eigenvectors in principal component analysis. An alternative approach 

would be to incorporate the dimension selection into the model by placing a prior on the 

number of factors, similar to that proposed in Hoff (2007) for the singular value 
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decomposition, and simultaneously estimate the multiplicative latent factor dimension along 

with the other parameters. However this would greatly increase the complexity of the model 

and computation time of estimation.
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Appendix

A Bayesian estimation procedure

In this section we outline the Bayesian estimation procedure used to obtain parameter 

estimates for the joint attribute and network model in (15). This procedure is extremely 

similar to that implemented in the ‘amen’ package in the statistical computing program R. 

We present the simple case here where the observed network Y is continuous, there are no 

regression terms in the network model, and there is no missing data. For details on 

accommodating non-continuous network data see Hoff et al. (2013) and for including 

regression terms see Hoff (2005).

Model -
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Prior distributions -

Markov chain Monte Carlo algorithm -

Given initial values of all latent variables {a, b, U, V} and parameters {ΣXN, ρ, }, the 

algorithm proceeds as follows:

1. Sample a, b|Y, X, U, V, ΣXN, ρ,  (normal).

2. Sample ΣXN|Y, X, a, b, U, V, ρ,  (inverse-Wishart).

3. Update ρ using a Metropolis-Hastings step with proposal ρ*|ρ ~ truncated 

normal[−1,1] (ρ, );

4. Sample , X, a, b, U, V, ρ, ΣXN (inverse-gamma).

5. For each latent factor i:

• Sample U[, i]|Y, X, a, b, U[, −i], V, ρ, , ΣXN (normal);

• Sample V [, i]|Y, X, a, b, U, V [, −i], ρ, , ΣXN (normal).

Although the estimation algorithm is not constructed based on the unique parameterization 

of the model, each sample of network factors from the posterior distribution can be 

transformed using the covariance matrix ΣXN sample to represent a sample from (16). 

Inference for the relative likeliness of parameter values is based on the posterior distribution 

over the parameter equivalence classes associated with representations congruent with (17).
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Figure 1. 

The primary patterns in the network Y are represented by r node-specific factors N. To 

determine if dependencies exist between the network Y and the p nodal attributes X, we 

propose a testing for a relationship between the network factors N and attributes X.
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Figure 2. 

Power when testing for independence between a single attribute xi and network factors {ai, 

bi, ui, ρi} based on four types of network observations (latent network factors N, continuous 

network Y, binary network B0.50, binary network B0.15).
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Figure 3. 

Proportion of variation in the posterior mean eight factor multiplicative effect M ̂ that is 

explained by each multiplicative effect.
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