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Abstract

Threshold autoregressive models in which the process is piecewise linear in the

threshold space have received much attention in recent years. In this paper, we use

predictive residuals to construct a test statistic to detect threshold nonlinearity in

a vector time series and propose a procedure for building a multivariate threshold

model. The thresholds and the model are selected jointly based on the Akaike infor-

mation criterion. The �nite-sample performance of the proposed test is studied by

simulation. The modeling procedure is then used to study arbitrage in security mar-

kets and results in a threshold cointegration between logarithms of future contracts

and spot prices of a security after adjusting for the cost-of-carrying the contracts.

In this particular application, thresholds are determined in part by the transaction

costs. We also apply the proposed procedure to U.S. monthly interest rates and two

river 
ow series of Iceland.

Keywords: Akaike information criterion, Arranged autoregression, Model change,

Nonlinearity test, Predictive residuals, Recursive least squares, Threshold cointegra-

tion.
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1 Introduction

To motivate the study of multivariate threshold models, we consider an application in
�nance in which an asset is traded simultaneously in two markets. Based on the theory of
law of one price, the asset should have the same price at the same time in both markets;
otherwise, one can buy the asset in the cheapest market and simultaneously sell it in the
dearest market to make a pro�t. However, some minor deviation in prices of the asset
may exist because other factors such as transaction cost, capital constraint, interest rate,
and execution risk may discourage traders or market makers from trading if the potential
pro�t is small. In other words, arbitrage opportunities occur only when the deviation in
prices is substantial so that the potential pro�t exceeds the cost of trading. An arbitrage
opportunity, however, cannot last long because advances in computer trading can easily
take advantages of such an opportunity when it appears.
Let pit be the log price of the asset in market i at time t and zt = p1t � p2t be the price

di�erential in logarithms. Log-transformation is commonly used in �nancial data analysis.
Then, zt cannot continuously assume large values in modulus, because there exist no long
lasting arbitrage opportunities. From a statistical point of view, zt+` should have a high
probability to return to its mean when jztj is large. In �nance, zt is said to be highly
mean-reverting when jztj is large. This behavior has profound impacts on the dynamics of
pit and we can formulate an approximate model for pit as:

pt =

8><
>:

f1(pt�1;pt�2; � � � ; �1tj�1) if zt�d � r1
f2(pt�1;pt�2; � � � ; �2tj�2) if r1 < zt�d � r2
f3(pt�1;pt�2; � � � ; �3tj�3) if r2 < zt�d;

(1)

where pt = (p1t; p2t)
0, fi(:) are well-de�ned functions such that fi(:) 6= fj(:) for i 6= j, �i

are �nite-dimensional parameters, �it denote noise terms, d is a positive integer denoting
the average time taken to execute an arbitrage trade, and r1 < 0 < r2 are real numbers.
This model says that the dynamic behavior of pit depends on the magnitude of zt�d. When
zt�d < r1 < 0, there exists an arbitrage opportunity of buying the asset at market 1 and
selling simultaneously at market 2. When zt�d > r2 > 0, an arbitrage opportunity occurs
in the opposite direction. When zt�d is between r1 and r2, the price di�erential induces no
arbitrage. The two prices should move closer to each other following any arbitrage trading.
Model (1) has three regimes and belongs to the class of general multivariate threshold

models in which zt is referred to as the threshold variable, d is the threshold lag or delay,
and ri's are the thresholds. See Tong (1990) and the references therein. In our particular
example, the thresholds ri are functions of transaction cost, interest rate, economic risk, and
�nancial purpose of a trade. If pit are unit-root nonstationary, then model (1) represents
a co-integrated system in which zt represents a stationary combination of the system, see
Balke and Fomby (1997) for further discussions on threshold cointegration.
In this paper, we shall focus on linear models which may also depend on some exogenous

variables. Consider a k-dimensional time series yt = (y1t; � � � ; ykt)0 and a v-dimensional
exogenous variables xt = (x1t; � � � ; xvt)0. Let �1 = r0 < r1 < � � � < rs�1 < rs = 1.
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Then, yt follows a multivariate threshold model with threshold variable zt and delay d if
it satis�es

yt = cj +
pX

i=1

�
(j)
i yt�i +

qX
i=1

�
(j)
i xt�i + �

(j)
t if rj�1 < zt�d � rj (2)

where j = 1; � � � ; s, cj are constant vectors, and p and q are non-negative integers. The

innovations satisfy �
(j)
t = �

1=2
j at, where �

1=2
j are symmetric positive de�nite matrices and

fatg is a sequence of serially uncorrelated random vectors with mean zero and covariance
matrix I, the identity matrix. The threshold variable zt is assumed to be stationary and
have a continuous distribution. Model (2) has s regimes and is a piecewise linear model in
the threshold space zt�d, but it is nonlinear in time when s > 1.
For model (2), we assume that the threshold variable zt is known, but the delay d, the

number of regimes s, and the thresholds ri are unknown. Our goal is two-fold. First, we
propose a test statistic to detect the need of employing such a model against the alternative
of a linear model, i.e. s = 1 versus s > 1. The proposed test is a generalization of that in
Tsay (1989) for the univariate case and has an asymptotic chi-square distribution. The test
is simple, performs well in �nite samples, yet it does not depend on the alternative model
or encounter the problem of unde�ned parameters under the null hypothesis. The general-
ization also allows for exogenous variables and conditional heteroscedasticity. Second, we
consider a procedure for building such a multivariate threshold model including estimation
of d and the thresholds. We employ the conditional least squares method in estimation
and Akaike information criterion in model selection. The procedure is easier to apply than
that of Tsay (1989) who uses scatterplots that often require subjective interpretations.
The paper is organized as follows. In Section 2, we consider an arranged regression

analysis that transforms the threshold model in (2) into a change-point problem. We
then use recursive least squares to obtain predictive residuals in the arranged regression
and use the standardized predictive residual to construct the proposed test statistic. The
asymptotic distribution of the proposed test is derived. We also use simulation to study the
�nite-sample performance of the proposed test. Some related literature is also reviewed. In
Section 3, we brie
y address conditional least squares estimation of the model. In Section
4, we propose a procedure for model building. Akaike information criterion is used to select
the thresholds as well as other parameters. The proposed test and modeling procedure are
applied in Section 5 to two real examples of high-frequency data in �nance. We compare
the results with those available in the literature using other methods. The model we
built appears to be in closer agreement with common expectations. Finally, we apply the
modeling procedure to U.S. monthly interest rates and two daily river 
ow series of Iceland.

2 Testing

Consider the null hypothesis that yt is linear versus the alternative hypothesis that it fol-
lows the multivariate threshold model in (2). This problem has attracted much attention in
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recent years, partly because of the di�culty that the thresholds ri are unde�ned under the
null hypothesis when the likelihood ratio test is used. See Hansen (1996a), Chan and Tong
(1990), and the references therein. Most of the likelihood-based tests consider the univari-
ate case with two regimes, i.e. a single threshold, and use simulation to obtain critical
values. On the other hand, Petruccelli and Davies (1986) and Tsay (1989) transform the
testing problem into detecting change points using the concept of arranged autoregression
and employ predictive residuals to construct test statistics that do not involve unde�ned
parameters. More speci�cally, these tests use the threshold variable to construct an ar-
ranged regression, but do not depend on other features of the alternative model. They
are simple and have familiar limiting distributions. For example, the test statistic of Tsay
(1989) has an asymptotic F-distribution. Limited experience shows that this latter ap-
proach has decent power when the sample size is moderate or large. See Balke and Fomby
(1997) for some power comparison.
In this section, we generalize the test statistic of Tsay (1989) to the multivariate model in

(2) and use simulation to study the �nite-sample performance of the test statistic. Several
reasons justify such an extension. First, the test is extremely simple and has an asymptotic
chi-square distribution. This is an important feature when the sample size is large such as
in the analysis of high-frequency data in �nance where the sample size can easily exceed
5000. Second, the test is widely applicable, including co-integrated systems. Its limiting
distribution holds under weak regularity conditions. Third, the test has good power in
detecting threshold nonlinearity.

2.1 Arranged regression

Given observations fyt;xt; ztg, where t = 1; � � � ; n, our goal is to detect the threshold
nonlinearity of yt, assuming that p, q and d are known. To this end, we employ the least
squares method and place the model in a regression framework:

y0t =X 0

t� + �0t; t = h+ 1; � � � ; n (3)

where h = max(p; q; d),X t = (1;y0t�1; � � � ;y0t�p;x0t�1; � � � ;x0t�q)0 is a (pk+qv+1)-dimensional
regressor, � denotes the parameter matrix, and the notation u0 denotes the transpose of
u. If the null hypothesis holds, the least squares estimates of (3) are useful. On the other
hand, the estimates are biased under the alternative hypothesis.
Equation (3) remains informative under the alternative hypothesis provided that we

rearrange the ordering of the setup. For equation (3), the threshold variable zt�d assumes
values in S = fzh+1�d; � � � ; zn�dg. Consider the order statistics of S and denote the i-th
smallest element of S by z(i). Furthermore, let t(i) be the time index of z(i). Then, the
arranged regression based on the increasing order of the threshold variable zt�d is

y0t(i)+d =X 0

t(i)+d�+ �0t(i)+d; i = 1; � � � ; n� h: (4)

It is important to see that in (4) the dynamic of the yt series is not changed, that is, the
independent variable of yt is X t for all t. What's changed is the ordering by which data
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enter the regression setup, that is, the row order if one places the regression in a matrix
framework. An important feature of the arranged regression is that it e�ectively transforms
a threshold model into a change-point problem, because the regression is arranged according
to the increasing order of the threshold variable zt�d.

2.2 A test statistic

There are many ways to detect model change in (4). Here we use predictive residuals and
the recursive least squares method. Our idea is simple. If yt is linear, then the recursive
least squares estimator of the arranged regression (4) is consistent so that the predictive
residuals approach white noise. Consequently, predictive residuals are uncorrelated with
the regressor X t(i)+d. On the other hand, if yt follows a threshold model, the predictive
residuals would no longer be white noise because the least squares estimator is biased. In
this case, the predictive residuals would be correlated with the regressor X t(i)+d.

Let �̂m be the least squares estimate of � of equation (4) with i = 1; � � � ; m. That is, the
estimate of arranged regression using data points associated with the m smallest values of
zt�d. Let

êt(m+1)+d = yt(m+1)+d � �̂
0

mX t(m+1)+d (5)

�̂t(m+1)+d = êt(m+1)+d=[1 +X 0

t(m+1)+dVmX t(m+1)+d]
1=2; (6)

where V m = [
Pm

i=1X t(i)+dX
0

t(i)+d]
�1, be the predictive residual and standardized predictive

residual of regression (4), respectively. These quantities can be obtained e�ciently by the
recursive least squares algorithm. Next, consider the regression

�̂0t(`)+d =X 0

t(`)+d	+w0

t(`)+d; ` = mo + 1; � � � ; n� h (7)

where mo denotes the starting point of the recursive least squares estimation. The problem
of interest is then to test the hypothesis H0: 	 = 0 versus the alternative Ha: 	 6= O in
regression (7). Here we employ the test statistic

C(d) = [n� h�mo � (kp+ vq + 1)]fln[det(S0)]� ln[det(S1)]g (8)

where the delay d signi�es that the test depends on the threshold variable zt�d, det(A)
denotes the determinant of the matrix A, and

S0 =
1

n� h�mo

n�hX
`=mo+1

�̂t(`)+d�̂
0

t(`)+d; S1 =
1

n� h�mo

n�hX
`=mo+1

ŵt(`)+dŵ
0

t(`)+d

where ŵt is the least squares residual of regression (7). Under the null hypothesis that yt is
linear and some regularity conditions, C(d) is asymptotically a chi-square random variable
with k(pk + qv + 1) degrees of freedom.
Remark 1: The null hypothesis of 	 = 0 includes a zero intercept for all predictive

residuals. In theory, a non-zero intercept signi�es a systematic bias in the estimates of
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arranged regression, indicating possible model changes. However, due to the possibility of
�nite-sample bias, one may wish in some applications to exclude the intercept terms from
nonlinearity test in (8). In this case, S0 should be mean-corrected and the resulting test
has an asymptotical chi-square distribution with k(pk + qv) degrees of freedom. 2
For simplicity, when yt is linear, we write the model as

yt = c+
pX

i=1

�iyt�i +
qX

i=1

�ixt�i + �t; (9)

with �t = (�1t; � � � ; �kt)0. We shall assume that c = 0 if the determinant jI��1B�� � ���pB
pj

has a zero on the unit circle. Let V n be the usual X 0X-matrix of model (9) with t =
1; � � � ; n and denote the minimum and maximum eigenvalues of V n by �min(n) and �max(n),
respectively. Then, the following theorem of Lai and Wei (1982, Theorem 1) establishes
the strong consistency of the least squares estimates.

Theorem 1 Consider model (9) where c = 0 if yt contains any unit root. Suppose that
f�tg is a martingale di�erence sequence with respect to an increasing sequence of �-�elds
fFtg such that

sup
i;t

E(j�itj�jFt�1) <1 a:s: for some � > 2: (10)

Furthermore, assume that (yt�1; � � � ;yt�p;xt�1; � � � ;xt�q) is Ft�1-measurable such that

�min(n)!1 a:s: and ln[�max(n)] = o(�min(n)) a:s:

Then, the least squares estimates of equation (9) converge to c, �i and �i a.s.

Theorem 2 Suppose that yt follows the linear model in (9) and satis�es the conditions of
Theorem 1. Moreover, assume that

Cov(�tjFt�1) = �; a:s: (11)

and mo ! 1, n�1mo ! 0 as n ! 1. Then, the test statistic C(d) of (8) follows
asymptotically a chi-square distribution with k(kp + vq + 1) degrees of freedom for a �xed
positive integer d, where k and v are the dimensional of yt and xt, respectively.

Proof. By Theorem 1 and the condition of mo, the standardized residuals �̂t converge
a.s. to a martingale di�erence sequence, which under the assumption (11) is homogeneous.
By the functional central limit theorem (Helland, 1982, Theorem 3.3), (n� h�mo)S0 and
(n � h � mo)S1 of equation (8) follow asymptotically Wishart distributions. The result
then follows the same argument as that in the multivariate multiple regression analysis,
e.g. Johnson and Wichern (1988, p.308). 2.
Remark2: The homogeneity of �t can be relaxed by modifying the standardization of

the predictive residuals in the recursive least squares estimation. In particular, if �t has
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conditional heteroscedasticity, then equation (6) no longer holds, but the j-th element of
�̂t(m+1)+d can be obtained by the standardization

�̂j;t(m+1)+d = êj;t(m+1)+d=[�̂
2
j +X 0

t(m+1)+dV
�

mX t(m+1)+d]
1=2

where �̂2j =
Pm

i=1 ê
2
j;t(i)+d=(m� kp� vq � 1) is the residual mean square errors of the j-th

element of yt and

V �

m = V m(
mX
i=1

e2j;t(i)+dX
0

t(i)+dX t(i)+d)V m; with V m = (
mX
i=1

X 0

t(i)+dX t(i)+d)
�1:

For conditional heteroscedastic models, e2j;t is correlated with elements of X 0

tX t and the
variances of the least squares estimates must be modi�ed accordingly. 2

2.3 Simulation

We conduct a simulation study to examine the �nite-sample performance of the proposed
test statistic C(d) in (8). For performance under the null hypothesis, we consider three
models

yt =

"
0:7 0:2

�0:2 0:7

#
yt�1 + �t; � =

"
1:0 0:3
0:3 1:0

#
(12)

yt =

"
0:9 0
0:2 0:9

#
yt�1 + �t; � = I (13)

yt = �1yt�1 + �2yt�2 + �t; � = I; (14)

where �t are independent multivariate normal random variates with mean zero and covari-
ance matrix �, I denotes the identity matrix, and

�1 =

2
6664

0:8 0:2 0:0 0:2
0:33 �0:8 0:33 �1:2
0:2 �0:2 1:0 �0:2

�0:33 1:8 �0:33 2:2

3
7775 ; �2 =

2
6664
�0:15 0:15 0:0 0:15

0:3 �0:09 0:3 �0:06
0:15 �0:15 0:0 �0:15
�0:3 0:09 �0:3 0:06

3
7775 :

Models (12) and (13) are stationary but Model (14) represents a co-integrated system with
two unit roots; see Engle and Yoo (1987). We use the latter to illustrate that Theorems 1
and 2 apply to unit-root nonstationary processes. However, to avoid small-sample bias of
the least squares estimator for unit-root processes, we exclude the constant term from the
nonlinearity test in (8) for model (14) and use a larger mo to start the recursive estimation.
See Remark 1.
The sample sizes used are n = 150 and 300, and the number of replications is 10,000.

Table 1 shows the empirical percentiles of the test statistic C(d) and those of the corre-
sponding chi-square distributions. In the test, we assume y1;t�d is the threshold variable,
d 2 f1; 2; 3; 4g. The choice of mo is also given in the table. As anticipated, the empirical
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distributions of the test statistic C(d) are close to their asymptotic chi-square distributions
and do not depend on the choice of the delay d. Our limited experience shows that for a
unit-root nonstationary series a small mo may introduce bias in the empirical distribution
of C(d), resulting in larger empirical percentiles. We use mo � 5

p
n for the unit-root series

and mo � 3
p
n for the stationary case, where n is the sample size. These choices satisfy

the condition of Theorem 2 and work well in our study. In an application, the choice of
mo is a compromise between stable starting estimation and good power in testing (i.e.
keeping a reasonable sample size for testing). Further, di�erent values of mo can be used
to investigate the sensitivity of the test result with respect to the selection.
To study the power of the test, we employ two 2-dimensional threshold autoregressive

models

yt =

(
�
(1)
1 yt�1 + �

(1)
t if y1;t�1 < 0:0

�
(2)
1 yt�1 + �

(2)
t if y1;t�1 � 0:0

(15)

where

�
(1)
1 =

"
0:7 0:0
0:3 0:7

#
; �1 =

"
1:0 0:2
0:2 1:0

#
; �

(2)
1 =

" �0:7 0:0
�0:3 �0:7

#
; �2 =

"
1:0 �0:3

�0:3 1:0

#
;

yt =

8>><
>>:
�
(1)
1 yt�1 + �t if y1;t�1 < �3:3

�
(2)
1 yt�1 + �t if �3:3 � y1;t�1 < 3:3

�
(3)
1 yt�1 + �t if y1;t�1 � 3:3

(16)

where

�
(1)
1 =

" �0:9 0:0
0:2 �0:9

#
; �

(2)
1 =

"
1:2 0:0
0:0 0:6

#
; �

(3)
1 =

" �0:8 0:0
0:2 0:8

#
; � = I:

Again, the innovations are independent multivariate normal with mean zero and variance
�j. Table 2 gives the empirical probabilities of rejecting linearity using the critical value
12.59, which is the 5% signi�cance level of a chi-square distribution with 6 degrees of
freedom. The results are based on 10,000 replications of sample sizes 150 and 300. Fur-
thermore, to see the stability of the results, the simulation is repeated three times. The
starting point mo of the recursive least squares is 50 for the �rst simulation, which is ap-
proximately 3

p
300, and is 40 for the second and third simulations. The table also shows

power of the test when the delay d is misspeci�ed. It is seen that the test has good power
when the delay d is correctly speci�ed and the results are stable among the three simula-
tions. The power of the test deteriorates when the speci�ed delay moves away from the
true d.

3 Estimation

In this section, we consider conditional least squares estimation of the threshold model in
(2), assuming that p; q and s are known and the threshold variable zt is given. However,
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the delay d and the thresholds are part of the parameters. Our goal is to generalize the
results of Chan (1993) and Hansen (1996b) for the univariate case to model (2). For ease
in presentation, we focus on the case of s = 2 and write the model as

yt =

(
X 0

t�1 +�
1=2
1 at if zt�d � r1

X 0

t�2 +�
1=2
2 at if zt�d > r1

(17)

where at = (a1t; � � � ; akt)0. We assume that (a) zt�d is stationary and continuous with
a positive density function f(r) on a bounded subset of the real line, say Ro � R, and
(b) d 2 f1; � � � ; dog, where do is a �xed positive integer. The parameters of model (17)
are (�1;�2;�1;�2; r1; d), and their conditional least squares estimates can be obtained
in two steps. First, for given d and r1, model (17) reduces to two separated multivariate
linear regressions from which the least squares estimates of �i and �i (i = 1; 2) are readily
available. The estimates are

�̂i(r1; d) = (
(i)X
t

X tX
0

t)
�1(

(i)X
t

X ty
0

t); �̂i(r1; d) =

P(i)
t (yt �X 0

t�̂
�

i )(yt �X 0

t�̂
�

i )
0

ni � k
(18)

where
P(i)

t denotes summing over observations in regime i, �̂
�

i = �̂i(r1; d), ni is the number
of data points in regime i, and k is the dimension of X t, satisfying k < ni, for i = 1, 2.
Denote the sum of squares of residuals by

S(r1; d) = S1(r1; d) + S2(r1; d)

where Si(r1; d) denotes the trace of (ni�k)�̂i(r1; d). In step 2, the conditional least squares
estimates of r1 and d are obtained by

(r̂1; d̂) = argminr1;dS(r1; d)

where 1 � d � do and r1 2 Ro. The resulting least squares estimates for the parameters in
(18) are

�̂i = �̂i(r̂1; d̂); �̂i = �̂i(r̂1; d̂):

Let vec(A) be the column stacking vector of the matrix A and de�ne

D(r) = E(X tX
0

tjzt�d = r); D2(r) = E[(X 0

tX t)
2jzt�d = r] (19)

V i(r) = E(X tX
0

ta
2
itjzt�d = r); V2;i(r) = E[(X 0

tX t)
2a4itjzt�d = r]: (20)

Assumption 1 1. (X t; zt�d;at) is strictly stationary with �-mixing coe�cient �j =
O(j��), for some � > 4;

2. E(atjFt�1) = 0, where Ft�1 is the �-�eld generated by (Xj+1; zj+1�d;aj) for j � t�1;
3. E(jyitj4) <1, E(jxjtj4) <1, and E(jaitj4) <1 for all i and j;
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4. The density function f(r) of zt�d is positive on a bounded subset Ro � R and r1 is
an interior point of Ro;

5. f(r), D(r), D2(r), V i(r) and V2;i(r) are continuous at r = r1;

6. � � �1 ��2 6= 0;

7. �0

jD(r1)�j > 0, �0

jV i(r1)�j > 0 for j = 1; � � � ; k, where �j is the j-th column of
�.

Then, following the same approaches as Chan (1993) and Hansen (1996b), we can establish
asymptotic properties of the conditional least squares estimates for model (17).

Theorem 3 Consider model (17) and suppose that Assumption 1 holds. Then, the condi-
tional least squares estimators are strongly consistent as the sample size increases. That is,
�̂i ! �i, r̂1 ! r1, d̂! d, and �̂i ! �i almost surely as the sample size n goes to in�nity.
Furthermore,

p
nivec(�̂i � �i) are asymptotically normal with mean zero and covariance

matrix �i 
�i, where �i = limn!1(
P(i)

t X tX
0

t)=ni and 
 denotes the Kronecker product.

In practice, �i is estimated by (
P(i)

t X tX
0

t)=ni and �i by �̂i.
Theorem 3 provides asymptotic results for multivariate threshold models in (2) for which

the hyper-plane of the conditional expectation E(ytjFt�1) has a discontinuity at the thresh-
old zt�d = r1, where Ft�1 denotes the information available at time t � 1. Because of
Assumption 1.7, it excludes the case in which the hyper-plane is continuous but not di�er-
entiable at the threshold. This latter case is much more involved. Chan and Tsay (1997)
obtain the asymptotic result for the univariate continuous TAR model, but the result for
the multivariate model is yet to be rigorously investigated. For processes satisfying As-
sumption 1.1, readers are referred to Pham and Tran (1985). Assumption 1.4 ensures that
the sample size of each regime, i.e. ni, goes to in�nity when the sample size n increases.
Finally, for a limiting distribution of r̂1, see Hansen (1996b).

4 Modeling

Identifying an adequate multivariate threshold model for a given data set involves selection
of many parameters. Except for the identi�cation of the threshold variable zt, the most
di�cult problem may be the speci�cation of the number of regimes, i.e. the identi�cation
of s. In some applications, past experience and substantive information may provide useful
information on the choice of s. In others, the computational complexity and the data may
restrict s to a small number such as 2 or 3. In this section, we assume that zt and s
are given. When s is unknown, we assume that it is either 2 or 3 and use some criterion
statistics to make a selection. In an informal way, one may divide the data into subgroups
according to the empirical percentiles of zt�d and use the test statistic (8) to detect any
model change within each subgroup. This analysis can provide a preliminary estimate of s
and some possible locations for the thresholds.
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When zt and s are given, we use the AIC criterion to select a model, assuming that
0 � p � po; 0 � q � qo; 1 � d � do. In some cases, one may use the test results of (8) for
di�erent d to select the delay parameter, resulting in further simpli�cation. This is based
on the idea that the test is most powerful when d is correctly speci�ed. Given p; q; d and
s, the AIC criterion of a multivariate threshold model in (2) is

AIC(p; q; d; s) =
sX

j=1

[2 ln(Lj(p; q; d; s)) + 2k(kp+ vq + 1)] (21)

where Lj(p; q; d; s) is the likelihood function of regime j evaluated at the maximum likeli-

hood estimates of cj, �
(j)
i and �

(j)
i . If the innovations are multivariate normal, then AIC

reduces to

AIC(p; q; d; s) =
sX

j=1

[nj ln(j�̂jj) + 2k(kp+ vq + 1)]; with �̂j =
1

nj

�X
t

�̂
(j)
t �̂

(j)0

t

where nj is the number of data points in regime j, the summation
P
�

t is summing over

observations in regime j, and �̂
(j)
t are the residuals.

The AIC has been used in the literature to select threshold autoregressive models, see
Tong (1990). When p; q and s are �xed, AIC is asymptotically equivalent to selecting the
model that has the smallest generalized residual variance using the conditional least squares
method.

5 An Application

As an illustration, we apply the multivariate threshold model to study index futures arbi-
trage in �nance. See Forbes, Kalb and Kofman (1997), referred to as FKK hereafter, who
consider a Bayesian analysis of this problem. We shall also discuss the di�erences between
their model and the model we obtain. An arbitrage trading consists of simultaneously buy-
ing (short-selling) a security index and selling (buying) index futures of the same security
whenever the prices diverge by more than the cost of carrying the security index over time
until maturity of the futures contract. Here the cost involves transaction cost, dividend
yields of the security, interest rate and many other factors. Some of the cost are known,
but others are not. In the �nance literature, Brenner and Kroner (1995) give the expression

Ft;T � St = (rt;T � qt;T )(T � t) + z�t (22)

where St is the logarithm of a security index price at time t and Ft;T is the logarithm of
the index futures price at time t with maturity T , rt;T is the risk-free interest rate, qt;T
is the dividend yield on the security index, and (T � t) is the time to maturity of the
futures contract. For model (22), z�t should be weakly stationary and, for arbitrage to be
pro�table, z�t must exceed a certain value in modulus determined by transaction costs and
other economic and risk factors.
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The data are the intra-day transaction data for the S&P 500 stock index in May, 1993
and its June futures contract traded at the Chicago Mercantile Exchange. FKK used the
data to construct a one-minute bivariate price series with 7060 observations. We use the
same series. However, to avoid unduly in
uence of big outliers, we replaced 10 extreme
values (5 on each side) by the simple average of their two nearest neighbors. This step does
not a�ect the qualitative conclusion of our analysis.
The two series Ft;T and St contain a unit root. However, equation (22) indicates that they

are co-integrated after adjusting the e�ect of interest rate and dividend yield. Consequently,
the �rst di�erenced series with an error-correction term are used in the analysis. Let
ft = Ft;T � Ft�1;T and st = St � St�1 be the return series and zt = 100z�t . Figure 1 shows
the time plot of ft, st and zt. All three series 
uctuate around a �xed mean and within a
�xed range.
Let yt = (ft; st)

0. The arbitrage theory and error-correction representation suggest a
three-regime bivariate threshold model

yt =

8>><
>>:
c1 +

Pp
i=1�

(1)
i yt�i + �1zt�1 + �

(1)
t if zt�d � r1

c2 +
Pp

i=1�
(2)
i yt�i + �2zt�1 + �

(2)
t if r1 < zt�d � r2

c3 +
Pp

i=1�
(3)
i yt�i + �3zt�1 + �

(3)
t if r2 < zt�d

(23)

where r1 < 0 < r2. The error-correction term can be zt�` for 1 � ` � p. We use zt�1 as it
is common in the literature. In the notation of model (2), we have xt = zt�1 with q = 1
and v = 1.
FKK entertained model (23) with p = 8. They used a Bayesian procedure with non-

informative prior to estimate the model and obtained d̂ = 1 with r̂1 = �:10381 and r̂2 =
0.12763. They suggest that in this particular application, a trading order was typically
executed within 4 minutes so that f1,2,3,4g was used as possible values of d.
In our analysis, we begin with the multivariate threshold test of Section 2. Table 3(a)

gives the test results of the statistic (8) for d= f1,2,3,4g and p= 8. The recursive estimation
starts with mo = 200, which is about 2:5

p
7060. The null hypothesis is that the series are

linear so that model (23) reduces to a bivariate linear model. The p-values of the test
statistics, based on the asymptotic chi-square distribution with 36 degrees of freedom, are
all close to zero. Therefore, as expected, the test strongly suggests threshold nonlinearity.
The test also indicates that d = 1 because it corresponds to the maximum of the test
statistic. The test results continue to hold for all p between 1 and 10.
Turn to modeling. It is reasonable to assume that the prices are log-normal so that we

use normal likelihood to evaluate the AIC criterion. For comparison purpose, we �xed p =
8 so that the selection is only on the thresholds. Based on the empirical range of zt�1, we
assume that r1 2 [�0:115;�0:02] and r2 2 [:025; 0:145]. Using a grid search method with
300 points on each of the two intervals, the minimumAIC selects d̂ = 1 with r̂1 = �0:022574
and r̂2 = 0.037673. The minimum AIC is �1:3099�105. The empirical thresholds obtained
are very di�erent from those of FKK. It is interesting to compare the two models.
In practice, arbitrage is only one of many possible reasons for trading the security indexes.

But it is impossible to identify a trade that is purely for arbitrage purposes. Consequently,

11



the empirical thresholds r̂i of model (23) are not completely determined by transaction cost.
For the S&P 500 index, it seems that market-makers are more likely to take advantage of
an arbitrage opportunity than individual investors. For market-makers, the transaction
cost may be low.

5.1 Comparison

Table 4 gives the parameter estimates and their t-ratios of the model selected by the AIC
criterion. Several interesting features are shown. First, as anticipated, the return series
ft and st do not depend on the co-integrated series zt�1 in the middle regime. This is in
agreement with common sense discussed in the Introduction. When the price di�erence is
small, there is no arbitrage opportunity so that the two price series are not co-integrated.
On the other hand, for the two outer regimes, the return series depend on the co-integrated
series zt�1; the t-ratios for the coe�cients of zt�1 are highly signi�cant for returns of the
S&P500 stock index. On the contrary, the model of FKK fails to show this property. The
t-ratios for the coe�cients of zt�1 for their middle regime are approximately 0.25 and 5.66,
indicating some dependence on zt�1. Second, the past returns of the futures series appear
to be more informative in explaining the variations in both returns series, i.e. more t-ratios
of ft�i are statistically signi�cant. This is in agreement with the �nding of FKK and the
common knowledge that futures series are more liquid. Third, similar to that of FKK, our
model also shows the negative �rst-order (partial) coe�cient in futures price changes, that
is, for the futures return ft, the coe�cients of ft�1 is signi�cantly negative in the lower
regime and marginally negative in regimes 2 and 3. In �nance, this phenomenon is referred
to as the bid-ask spread induced bounce. Finally, the signi�cance of the constant term in
the outer regimes is understandable. For threshold models, these drift terms are needed to
insure that the return series have zero unconditional means.
In summary, the model we obtained shows all the properties discussed in FKK that are

in agreement with �nance theory. In addition, our model also agrees with the common
expectation of threshold co-integration discussed in Balke and Fomby (1997).

5.2 Further analysis

To better understand the system, we consider a univariate model for the co-integrated
series zt. Under the arbitrage argument, zt should follow a univariate self-exciting threshold
autoregressive model with three regimes. The thresholds of this model should in theory
be the same as those of the model for yt. Furthermore, the models in the outer regimes
should have higher tendency in mean-reversion because there exists no prolonged arbitrage
opportunity. Finally, the delay for zt should be the same as that of yt.
Table 3(b) gives the results of applying the threshold test (8) to zt with p = 7 and q =

0. The order 7 is obtained based on partial autocorrelation of zt and con�rmed by the AIC
criterion. The results clearly reject linearity and, as expected, con�rm that the delay for
zt is d = 1.
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Next, we used AIC criterion to search for the thresholds. The thresholds are assumed
to be in the intervals [�0:12;�0:015] and [0:02; 0:145]. With a grid search method using
300 points on each interval and p = 7, the AIC criterion selects thresholds r̂1 = �0:017093
and r̂2 = 0.044086 with minimum AIC equal to 4998.7. We further re�ne the search using
intervals [�0:04;�0:01] and [0.02,0.06] and 200 grid points for each interval. The re�nement
does not yield reduction in the AIC criterion. Clearly, the selected thresholds for zt series
are close to those for yt.
The parameter estimates of the model for zt are shown in Table 5. For simplicity by

ignoring the marginally signi�cant parameters in the outer regimes, the �tted model indeed
con�rms the expectation that zt has stronger mean-reverting tendency in the outer regimes.
The estimates of the coe�cients of zt�1 are 0.81, 0.93, and 0.88, respectively, for the three
regimes. While the di�erences in coe�cients are not large, they do match with common
belief. In sum, the empirical threshold model for zt is in agreement with that for yt.

5.3 Symmetric thresholds

In this particular application, it maybe reasonable to assume that the two thresholds are
symmetric with respect to zero, that is, r1 = �r2 in model (23). Imposing symmetry
substantially reduces the computation of threshold selection via the AIC criterion. For
illustration and comparison, we assume r2 2 [:02; :085] and use a grid search method with
700 points to select jointly the thresholds and the delay parameter. Table 6 shows the
minimum AIC and the corresponding thresholds for d 2 f1; 2; 3; 4g. The overall AIC
selects d̂ = 1 with thresholds r2 = �r1 = .03122, which is reasonably close to the choices of
asymmetric model. Figure 2 shows the scatterplot of AIC versus threshold r2. The AIC is
well behaved with a unique minimum. The �tted model with symmetric thresholds shows
the same features as those given in Table 4. For example, the dependence of return series
ft and st on zt�1 remains insigni�cant in the middle regime.
Finally, residual analysis of the threshold models built shows no signi�cant serial cor-

relations, but some minor conditional heteroscedasticity. The latter may be due to the
occasional large values in the data; see Figure 1. Because the sample size is large, minor
conditional heteroscedasticity should not alter the results obtained in our analysis.

5.4 Another data set

To double check the threshold estimation, we also apply the symmetric threshold model
to a second data set, consisting of the same variables for November 1993 with contract
expiration in December 1993. This new data set has 7693 observations. Again, we replace
the 10 most extreme values by the averages of their two nearest neighbors. The proposed
test again con�rms threshold nonlinearity with d̂ = 1. Speci�cally, with p = 10 and q = 1,
the C(d) statistics are 103.46, 84.70, 98.96, and 106.28, respectively, for d = 1; � � � ; 4. The
asymptotic distribution of these statistics is chi-square with 44 degrees of freedom.
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Using symmetric thresholds with r2 2 [:015; :15] and 700 grid points, the AIC selects r̂2
= 0.040613, which is close to 0.03122 obtained for the May data.

6 More Applications

6.1 Analysis of U.S. Interest Rates

As a second example, we consider U.S. monthly interest rates from 1959.1 to 1993.2. The
series used are the three-month Treasury Bills and three-year Treasury Notes, representing
short-term and intermediate series in the term-structure of interest rates. Denote the two
interest-rate series by Y1t and Y2t. We employ the growth series in our study, that is, we
use yt = (y1t; y2t)

0, where yit = ln(Yit)� ln(Yi;t�1). Figure 3(a) and (b) show the time plots
of yt. Each yit series has 409 observations and 
uctuates around a �xed level and within a
�xed range, indicating weak stationarity.
Let xt = ln(Y1t)� ln(Y2t) be the \spread" in the logged interest rates. Under normal eco-

nomic conditions, interest rates are positively correlated with maturities. The correlation
between interest rates and maturities may become negative when the U.S. economy is in
contraction (or recession). The latter situation is referred to as \inverted yield curve" in
the economic literature. Consequently, xt assumed negative values more often than positive
ones. The magnitude of xt, therefore, may indicate the status of the U.S. economy, and it
seems reasonable to use xt as a threshold variable in our analysis. However, to reduce ran-
dom 
uctuations in U.S. monthly interest rates and to incorporate the common knowledge
that interest-rate changes were made carefully using perhaps quarterly economic informa-
tion, we use a 3-month moving average of xt as the threshold variable. More speci�cally,
the threshold variable zt is de�ned as follows:

z1 = x1; z2 = (x2 + x1)=2; zt = (xt + xt�1 + xt�2)=3; t � 3; (24)

which is the 3-month \average spread" in logged interest rates. Figure 3(c) shows the time
plot of zt. As expected, zt only assumed positive values in the middle 70s and early 80s
when the U.S. economy was weak.
Our analysis starts with threshold nonlinearity test. Under the null hypothesis of linearity,

both the AIC criterion and the chi-square test of Tiao and Box (1981) select a bivariate
AR(7) model for yt. Using p = 7 and zt of (24) as the threshold variable, we perform the
proposed test of Section 2 using di�erent starting numbers of observations for the recursive
least squares. The test results are given in Table 7 and clearly reject the linear hypothesis.
The test statistics also suggest using delay d̂ = 4 or d̂ = 1, corresponding to delay by a
quarter or a month. We re-run the test with recursive least squares starting at mo = 60 and
75, respectively. The results con�rm nonlinearity and possible values of d. Consequently,
in our further analysis, we employ d 2 f1; 4g.
With 409 observations, p = 7 and d 2 f1; 4g, we entertain the possibilities of multivariate

TAR models with 2 or 3 regimes. Therefore, there are four combinations of d and s, where s
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is the number of regimes. For each combination of d and s, we use a grid search method and
AIC to select the thresholds. For 2-regime models, we assume the threshold r1 2 [�0:30; :05]
and employ 300 grid points. For 3-regime models, we assume r1 2 [�0:30;�0:20] and
r2 2 [�0:15; :05]. The numbers of grid points are 70 and 50, respectively, for r1 and r2.
The intervals are chosen based on the range of zt. We summarize the results in Table 8.
From the table, it is clear that 3-regime models are preferred over 2-regime models. Between
the two 3-regime models, d̂ = 4 has a smaller AIC, but the di�erence is very small. In sum,
(p̂; d̂; ŝ) = (7,4,3) is selected by AIC for the data.
Finally, there is no particular reason to assume that the AR order must be the same in

all regimes. Indeed the estimation results with p = 7 show many insigni�cant parameters.
We further re�ne the model by using di�erent AR orders for di�erent regimes. Let pi be
the AR order for the i-th regime. The AIC criterion selects the orders (p1; p2; p3) = (2,6,7)
for the three regimes. Table 9 gives the conditional least squares estimates of the re�ned
model. Residual analysis of the model indicates there are no signi�cant serial correlations
in the residuals or the squared residuals. From Table 9, we make the following observations.
First, as anticipated, the growth series of interest rates are concurrently correlated. The
concurrent sample correlations of the residuals are 0.74, 0.73 and 0.69 with asymptotic
standard errors 0.085, 0.085 and 0.089, respectively, for the three regimes. Second, the
dynamic structure of the two growth series depends on the status of U.S. economy. In
regime 1, which presents economic expansion periods with 3-month interest rate much
lower than 3-year rate, the two growth series behaved basically as uncoupled processes,
even though each series shows some minor autocorrelations. Using observations in this
regime only, the likelihood ratio test for zero o�-diagonal elements in the AR matrices is
7.63 which corresponds to a p-value of 0.11 under the asymptotic �2

4 distribution. In regime
2, which represents moderate or stable economy, there exists a unidirectional relation from
the short-term rates to the longer-term rates. The conclusion is supported by a likelihood
ratio test of 6.51, which gives a p-value of 0.37 under the asymptotic �2

6 distribution. In
regime 3, which represents economic slowdown or recession, feedback relation exists between
the two growth series.

6.2 Analysis of Iceland River Flow Data

In this subsection, we demonstrate that the proposed multivariate threshold models are
also applicable outside the realm of economics by considering brie
y two daily river 
ow
series of Iceland. The data are available in Tong (1990) who provided geographical and
meteorological conditions of the rivers and analyzed the series individually. The dependent
variables are the daily river 
ow, measured in m3s�1, of J�okuls�a Eystri River (denoted
by y1t) and Vatnsdals�a River (y2t) from 1972 to 1974. The exogenous variables are daily
precipitation (xt) in mm and temperature (zt) in

oC collected at the meteorological station
at Hveravellir. Following Tong (1990), the precipitation is shifted forward by one because
the recorded value is the accumulated rain at 9 a.m. from the same time the day before.
There are 1095 observations after the shift in precipitation. Figure 4 shows the time plots
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of the four variables. Some nonlinear features of the river 
ow series such as sharp rises
and slow declines are evident from the plots.
The strong nonlinearity of yt = (y1t; y2t)

0 is supported by the proposed threshold test in
(8). Table 10 gives the test results for three bivariate AR models and three possible thresh-
old variables. The exogenous variables used in the tests are lagged values of precipitation
(xt�1; xt�2; xt�3) and contemporaneous and lagged values of temperature (zt; zt�1). The
threshold variables used are lagged values of the individual river 
ow and the contempora-
neous and lagged values of daily temperature. We do not use precipitation as a threshold
variable because the distribution of daily precipitation is not purely continuous. All of the
tests are highly signi�cant compared with their asymptotic chi-squared distributions; most
of the p-values are close to zero. In fact, the signi�cance of the tests is insensitive to the
selection of AR order, ranging from AR(4) to AR(22) we have considered. Based on the
highly signi�cant test result and the fact that temperature in
uences snow melting that
a�ects river 
ows, we select zt as the threshold variable. Furthermore, it seems logical to
focus on two-regime TAR models in model selection for there is only a single freezing point.
Because temperatures in the drainage areas of the two rivers depend on the altitudes

and distances from the sea, we use AIC and the conditional least squares method to re-
�ne the estimation of the threshold. Using 400 equally spaced grid points in the interval
[�10oC; 6oC] and the AIC criterion, we obtain r̂1 = �0:42394 for all three vector AR mod-
els in Table 10. Figure 5 shows the scatterplot of AIC versus the possible threshold values
for the AR(15) model. The selection is clear. The selected threshold is close to the freezing
point and is in good agreement with the non-parametric estimation result showing in Figure
7.47 of Tong (1990, p.439) for the univariate relation between y1t and zt. Finally, we focus
on the bivariate TAR(15) model and use AIC to select the AR order for each regime. The
selected model is given in Table 11 with AIC = 16943.7. The numbers of observations in
each regime are 479 and 601, respectively, and the residual covariance matrices are

�̂1 =

"
1:62 0:13
0:13 0:46

#
; �̂2 =

"
47:83 2:40
2:40 5:97

#
:

Residual analysis indicates that the �tted model is adequate with no strong serial correla-
tions in the residuals. But a few clusters of large residuals remain, suggesting the possibility
of minor periodic behavior in the river 
ow caused by seasonality. For comparison, the AIC
for a bivariate linear AR(15) model using the same exogenous variables is 20422.8.
The model in Table 11 has some interesting features. First, the models in the second

regime have larger innovational variances. This is not surprising because the second regime
consists of days with temperature greater than �0:42394oC, which include days with rain
and snow melting in Iceland. Second, the model shows a feedback relation between the
two rivers. We interpret this relationship as an indication of missing useful variables such
as observations of evaporation and ground moisture content. These missing variables can
in
uence the e�ects of precipitation on river 
ow. Third, as expected, the e�ects of precip-
itation on river 
ows are more pronounced in the second regime; see the larger t-ratios of
the coe�cients of xt�i.
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7 Concluding Remarks

In this paper, we proposed a test statistic for detecting threshold nonlinearity in a vector
time series and a procedure for building multivariate threshold models. We illustrated
the proposed test and procedure via analysis of high-frequency �nancial data, monthly
U.S. interest rates and two daily river 
ow series of Iceland. The models obtained are in
agreement with common expectation.
Many problems remain open for the multivariate threshold models. For example, the

su�cient and necessary conditions for stationarity of the model are largely unknown (see
a special case in Chan, et al. (1985)) and the search for an appropriate threshold variable
zt in an application needs a careful investigation.
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Figure 1: Time plots of minute-returns of S&P500 index futures and prices and the asso-
ciated threshold variable, May 1993
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Table 1: Empirical distribution of the test statistic C(d) under the null hypothesis of linear
vector models with zt�d = y1;t�d and the recursive estimation starts at mo. The results are
based on 10,000 replications.

Prob .005 .01 .025 .05 .1 .5 .9 .95 .975 .99 .995
d (a) Model (12), n = 150, mo = 40
1 0.67 0.88 1.24 1.62 2.19 5.30 10.51 12.47 14.34 16.53 18.23
2 0.64 0.84 1.20 1.59 2.19 5.23 10.69 12.65 14.66 17.00 18.72
3 0.67 0.86 1.20 1.61 2.17 5.41 10.75 12.65 14.62 17.00 18.34
4 0.67 0.86 1.22 1.65 2.24 5.41 10.70 12.68 14.51 17.04 18.97
d (b) Model (12), n = 300, mo = 50
1 0.67 0.86 1.18 1.61 2.17 5.29 10.45 12.38 14.30 16.91 18.36
2 0.65 0.85 1.18 1.60 2.19 5.27 10.55 12.42 14.22 16.22 17.53
3 0.69 0.88 1.24 1.63 2.21 5.34 10.72 12.64 14.52 16.64 18.58
4 0.72 0.92 1.24 1.62 2.19 5.33 10.57 12.46 14.46 16.95 18.55
d (c) Model (13), n = 150, mo = 40
1 0.78 0.94 1.30 1.67 2.27 5.53 11.01 12.88 14.70 16.93 18.55
2 0.68 0.85 1.23 1.64 2.22 5.36 10.74 12.80 14.71 16.99 18.32
3 0.69 0.87 1.27 1.65 2.21 5.36 10.91 12.93 14.93 17.31 18.87
4 0.69 0.95 1.28 1.67 2.25 5.47 11.02 13.16 15.02 17.47 19.20
d (d) Model (13), n = 300, mo = 50
1 0.75 0.94 1.28 1.68 2.24 5.35 10.60 12.54 14.25 16.49 18.61
2 0.67 0.92 1.27 1.63 2.20 5.24 10.51 12.55 14.34 16.58 18.17
3 0.69 0.91 1.26 1.66 2.21 5.32 10.57 12.64 14.79 17.11 19.30
4 0.68 0.90 1.23 1.59 2.18 5.34 10.65 12.94 14.63 17.25 18.92
�2
6 .68 .87 1.24 1.64 2.20 5.35 10.64 12.59 14.45 16.81 18.55
d (e) Model (14), n = 150, mo = 60
1 15.45 16.49 18.72 20.66 22.84 32.04 43.46 47.26 50.85 54.94 57.26
2 15.31 16.70 18.68 20.45 22.66 31.98 43.34 47.14 50.46 54.07 56.74
3 15.33 16.63 18.59 20.49 22.76 32.03 43.30 47.06 50.28 54.90 57.84
4 15.49 16.70 18.70 20.57 22.70 32.06 43.25 46.83 49.92 53.88 57.00
d (f) Model (14), n = 300, mo = 90
1 15.28 16.51 18.36 20.11 22.38 31.32 42.53 46.30 49.64 53.25 56.32
2 15.26 16.56 18.43 20.05 22.32 31.26 42.68 46.03 49.15 53.69 56.14
3 15.39 16.28 18.36 20.09 22.30 31.29 42.44 46.24 49.48 53.55 56.56
4 15.42 16.55 18.29 20.07 22.29 31.19 42.49 45.90 49.13 53.25 56.16
�2
32 15.13 16.36 18.29 20.07 22.27 31.34 42.58 46.19 49.48 53.49 56.33
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Table 2: Empirical probability of rejecting linearity when the process follows a vector TAR
model, using 5% asymptotic critical value. The simulation is repeated three times.

n = 150 n = 300
true d Misspeci�ed d true d Misspeci�ed d

Model 1 2 3 4 1 2 3 4
(15) 99.4 46.2 23.2 16.9 100.0 80.3 43.9 25.6

99.4 45.3 22.4 15.4 100.0 79.8 43.2 26.0
99.3 44.9 22.7 15.9 100.0 79.1 44.5 25.6

(16) 87.7 34.3 25.4 18.5 97.9 66.8 43.3 29.6
87.9 33.3 25.1 17.9 98.2 66.7 42.8 30.1
87.9 33.6 24.6 18.1 98.0 67.1 42.9 29.9

Table 3: Results of threshold nonlinearity test. The sample size is 7060 and the starting
point of recursive least squares is 200.

(a) Bivariate, p = 8, q = 1 (b) Univariate zt, p = 7
d 1 2 3 4 1 2 3 4

C(d) 300.4 282.2 179.7 147.5 71.28 70.04 30.58 13.18
d:f: 36 36 36 36 8 8 8 8
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Table 4: Least squares estimates and their t-ratio for the May 1993 data. The model
is selected by minimum AIC and the two thresholds are �0:022574 and 0.037673. The
numbers of data points for the three regimes are 2234, 2410, and 2408, respectively.

Regime 1 Regime 2 Regime 3
ft st ft st ft st

cnst 0.00002 0.00005 0.00000 0.00000 -0.00001 -0.00005
t ( 1.47) ( 7.64) ( -0.07) ( 0.53) ( -0.74) ( -6.37)

ft�1 -0.08468 0.07098 -0.03861 0.04037 -0.04102 0.02305
t ( -3.83) ( 6.15) ( -1.53) ( 3.98) ( -1.72) ( 1.96)

ft�2 -0.00450 0.15899 0.04478 0.08621 -0.02069 0.09898
t ( -0.20) ( 13.36) ( 1.85) ( 8.88) ( -0.87) ( 8.45)

ft�3 0.02274 0.11911 0.07251 0.09752 0.00365 0.08455
t ( 0.95) ( 9.53) ( 3.08) ( 10.32) ( 0.15) ( 7.02)

ft�4 0.02429 0.08141 0.01418 0.06827 -0.02759 0.07699
t ( 0.99) ( 6.35) ( 0.60) ( 7.24) ( -1.13) ( 6.37)

ft�5 0.00340 0.08936 0.01185 0.04831 -0.00638 0.05004
t ( 0.14) ( 7.10) ( 0.51) ( 5.13) ( -0.26) ( 4.07)

ft�6 0.00098 0.07291 0.01251 0.03580 -0.03941 0.02615
t ( 0.04) ( 5.64) ( 0.54) ( 3.84) ( -1.62) ( 2.18)

ft�7 -0.00372 0.05201 0.02989 0.04837 -0.02031 0.02293
t ( -0.15) ( 4.01) ( 1.34) ( 5.42) ( -0.85) ( 1.95)

ft�8 0.00043 0.00954 0.01812 0.02196 -0.04422 0.00462
t ( 0.02) ( 0.76) ( 0.85) ( 2.57) ( -1.90) ( 0.40)

st�1 -0.08419 0.00264 -0.07618 -0.05633 0.06664 0.11143
t ( -2.01) ( 0.12) ( -1.70) ( -3.14) ( 1.49) ( 5.05)

st�2 -0.05103 0.00256 -0.10920 -0.01521 0.04099 -0.01179
t ( -1.18) ( 0.11) ( -2.59) ( -0.90) ( 0.92) ( -0.53)

st�3 0.07275 -0.03631 -0.00504 0.01174 -0.01948 -0.01829
t ( 1.65) ( -1.58) ( -0.12) ( 0.71) ( -0.44) ( -0.84)

st�4 0.04706 0.01438 0.02751 0.01490 0.01646 0.00367
t ( 1.03) ( 0.60) ( 0.71) ( 0.96) ( 0.37) ( 0.17)

st�5 0.08118 0.02111 0.03943 0.02330 -0.03430 -0.00462
t ( 1.77) ( 0.88) ( 0.97) ( 1.43) ( -0.83) ( -0.23)

st�6 0.04390 0.04569 0.01690 0.01919 0.06084 -0.00392
t ( 0.96) ( 1.92) ( 0.44) ( 1.25) ( 1.45) ( -0.19)

st�7 -0.03033 0.02051 -0.08647 0.00270 -0.00491 0.03597
t ( -0.70) ( 0.91) ( -2.09) ( 0.16) ( -0.13) ( 1.90)

st�8 -0.02920 0.03018 0.01887 -0.00213 0.00030 0.02171
t ( -0.68) ( 1.34) ( 0.49) ( -0.14) ( 0.01) ( 1.14)

zt�1 0.00024 0.00097 -0.00010 0.00012 0.00025 0.00086
t ( 1.34) ( 10.47) ( -0.30) ( 0.86) ( 1.41) ( 9.75)
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Table 5: A self-exciting threshold autoregressive model for the threshold variable zt. The
delay is 1 and the thresholds are �:017093 and .044086.

regime cnst zt�1 zt�2 zt�3 zt�4 zt�5 zt�6 zt�7 �̂2 size
1 -.0036 .8109 -.0071 -.0185 .0402 -.0291 .0274 .0538 .0009 2455

t-ratio -3.03 34.1 -.27 -.68 1.44 -1.05 .98 2.49
2 -.0000 .9336 -.0002 .0067 -.0160 -.0104 -.0033 .0227 .0007 2367

t-ratio -.03 25.56 -.01 .26 -.64 -.41 -.13 1.22
3 .0068 .8752 -.0409 -.0107 -.0345 .0787 -.0296 .0397 .0010 2231

t-ratio 3.86 34.84 -1.40 -.36 -1.16 2.63 -1.00 1.85

Table 6: Analysis for return series using a multivariate threshold model with symmetric
thresholds, p = 8, q = 1, r2 2 [:02; :085] and 700 grid points.

d r̂1 r̂2 AIC d r̂1 r̂2 AIC
1 �:031220 .031220 �1:3090� 105 2 �:030571 .030571 �1:3082� 105

3 �:029736 .029736 �1:3068� 105 4 �:029272 .029272 �1:3062� 105

Table 7: Results of threshold test for bivariate growth series of U.S. monthly interest rates,
where p = 7 and the degrees of freedom of the asymptotic chi-square distribution are 30.

d 1 2 3 4 5 6 7
mo = 50

C(d) 73.52 72.94 71.70 74.03 68.73 67.76 67.26
p-value �104 .16 .19 .29 .14 .72 .96 1.11

mo = 100
C(d) 79.28 63.98 68.40 72.34 65.21 61.34 59.01

p-value �104 .03 2.96 .79 .23 2.06 6.32 12.11

Table 8: Selection of thresholds, delay, and the number of regimes for the growth series of
U.S. monthly interest rates.

p̂ d̂ ŝ r̂1 r̂2 AIC
7 1 2 �:16977 �463:98
7 4 2 �:18372 �469:33
7 1 3 �:24930 �:13039 �798:79
7 4 3 �:22817 �:10392 �800:97
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Table 9: Least squares estimates and their t-ratios for U.S. interest-rate data. The model
is selected by minimum AIC and the two thresholds are �0:228169 and �:103922. The
numbers of data points for the three regimes are 137, 139, and 126, respectively.

Regime 1 Regime 2 Regime 3
y1t y2t y1t y2t y1t y2t

cnst 0.0017 -0.0042 0.0015 0.0000 -0.0034 0.0090
t ( 0.36) ( -1.10) ( 0.34) ( 0.01) ( -0.46) ( 1.75)

y1;t�1 0.2508 0.0596 0.4340 0.1949 .0190 0.0182
t ( 2.05) ( 0.62) ( 3.60) ( 1.97) ( 0.14) ( 0.19)

y1;t�2 -0.1806 -0.1231 -.1139 0.0737 -0.0062 0.1590
t ( -1.64) ( -1.41) ( -0.83) ( 0.66) ( -0.04) ( 1.60)

y1;t�3 -.1083 -.1507 -0.0495 -0.1270
t ( -0.70) ( -1.18) ( -0.35) ( -1.29)

y1;t�4 0.2269 0.3433 -0.0327 0.0010
t ( 1.31) ( 2.42) ( -0.22) ( 0.01)

y1;t�5 -0.1534 -.0735 -0.0703 0.0504
t ( -0.96) ( -0.56) ( -0.47) ( 0.49)

y1;t�6 -0.2262 -0.0571 -0.4133 -0.3403
t ( -1.87) ( -0.58) ( -2.58) ( -3.09)

y1;t�7 0.3505 0.2563
t ( 2.18) ( 2.31)

y2;t�1 0.0741 0.2409 -0.1025 0.2251 0.8361 0.5137
t ( 0.48) ( 1.99) ( -0.66) ( 1.77) ( 4.49) ( 4.01)

y2;t�2 0.2631 0.0684 0.0600 -0.2885 -0.4139 -0.5747
t ( 1.87) ( 0.61) ( 0.35) ( -2.03) ( -1.99) ( -4.02)

y2;t�3 0.2857 0.2519 -0.0140 0.0855
t ( 1.55) ( 1.67) ( -0.07) ( 0.58)

y2;t�4 -0.0419 -0.2678 -0.0610 -0.080
t ( -0.22) ( -1.73) ( -0.28) ( -0.53)

y2;t�5 0.1647 -0.0770 0.3672 0.1144
t ( 0.87) ( -0.49) ( 1.66) ( 0.75)

y2;t�6 0.1054 -0.0271 0.0187 0.0295
t ( 0.61) ( -0.19) ( 0.09) ( 0.20)

y2;t�7 -0.3117 -0.2621
t ( -1.44) ( -1.76)

�̂ 0.0031 0.0018 0.0025 0.0015 0.0046 0.0022
0.0018 0.0019 0.0015 0.0017 0.0022 0.0022
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Table 10: Results of threshold nonlinearity test for Iceland daily river 
ow data, using
three possible threshold variables and three bivariate AR models. The sample size is 1095,
the exogenous variables used are daily precipitation lagged 1, 2 and 3 days and daily
temperature lagged 0 and 1 day, and the starting point of recursive least squares is 150,
where p is the AR order, d is the delay and d:f: stands for degrees of freedom of the
asymptotic �2 distribution.

(a) Threshold variable zt
p d 0 1 2 3 4 d.f.
4 C(d) 333.2 272.4 164.7 144.7 143.4 26
15 C(d) 379.8 340.5 235.8 193.4 176.4 70
19 C(d) 388.1 343.3 242.5 203.3 193.3 86

(b) Threshold variable y1t
4 C(d) 231.9 186.9 188.3 158.9 26
15 C(d) 273.7 209.2 231.2 199.9 70
19 C(d) 303.2 241.1 267.2 215.1 86

(c) Threshold variable y2t
4 C(d) 123.2 86.7 84.2 53.9 26
15 C(d) 179.6 143.0 149.8 116.0 70
19 C(d) 203.5 177.2 175.2 137.0 86

26



Table 11: Conditional least squares estimates and their t-ratios for a selected bivariate two-
regime TAR(15) model for the Iceland river 
ow data. The threshold value is �0:42394oC
and the numbers of observations in each regime are 479 and 601, respectively. The exoge-
nous variables are daily precipitation xt and temperature zt.

Regime 1 Regime 2
y1t y2t y1t y2t

Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio
cnst 7.47 17.55 1.42 6.48 -0.20 -0.20 1.30 4.59
y1;t�1 0.46 14.06 -0.06 -3.18 1.11 27.22 0.02 1.21
y1;t�2 0.08 2.09 0.03 1.59 -0.44 -7.71 -.04 -2.99
y1;t�3 0.06 2.35 -0.01 -0.42 0.32 5.34
y1;t�4 0.05 2.17 0.01 0.63 -0.28 -4.56
y1;t�5 -0.08 -3.32 -0.02 -1.34 0.18 2.90
y1;t�6 0.11 4.16 0.03 2.17 -0.14 -2.30
y1;t�7 -0.04 -1.63 -0.01 -0.57 0.07 1.22
y1;t�8 -0.01 -0.37 -0.01 -0.83 0.02 0.41
y1;t�9 0.02 0.87 0.02 2.09 -0.02 -0.63
y1;t�10 -0.05 -1.70
y1;t�11 0.05 2.06
y1;t�12 0.01 0.36
y1;t�13 0.04 1.54
y1;t�14 -0.07 -2.91
y1;t�15 0.05 2.70
y2;t�1 0.39 6.77 0.80 24.70 0.90 7.12 1.26 28.39
y2;t�2 -0.18 -4.73 -1.09 -5.11 -0.67 -8.99
y2;t�3 0.09 2.80 0.20 0.87 0.25 3.06
y2;t�4 0.03 0.82 0.51 2.20 0.16 1.98
y2;t�5 -0.02 -0.58 -0.17 -0.76 -0.00 -0.05
y2;t�6 0.02 0.54 0.11 0.57 -0.03 -0.49
y2;t�7 0.00 0.03 0.06 0.31 0.16 2.26
y2;t�8 0.02 0.60 -0.57 -2.88 -0.30 -4.43
y2;t�9 -0.02 -0.41 0.52 3.91 0.17 4.10
y2;t�10 -0.04 -1.12
y2;t�11 0.05 1.46
y2;t�12 0.01 0.42
y2;t�13 -0.08 -2.19
y2;t�14 0.09 4.08
xt�1 0.06 4.59 0.01 1.84 0.47 10.89 0.09 6.26
xt�2 -0.03 -2.49 -0.00 -0.11 -0.23 -4.71 -0.06 -3.77
xt�3 0.04 3.36 -0.01 -2.03 0.05 2.96
zt 0.03 1.63 0.01 0.93 0.88 4.78
zt�1 -0.02 -1.08 -0.02 -1.67 0.30 1.92
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Figure 2: AIC versus symmetric threshold
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Figure 3: Time plots of growth series of U.S. monthly interest rates from 1959.2 to 1993.2.
(a) 3-month Treasury Bills, (b) 3-year Treasury Notes, and (c) 3-month moving average of
spread in logged interest rates.
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Figure 4: Time plots of daily 
ow of J�okuls�a Eystri River and Vatnsdals�a River of Iceland
in 1972-1974. The exogenous variables are daily precipitation and temperature measured
at the Hveravellir meteorological station.
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Figure 5: Scatterplot of AIC versus temperature for Iceland river 
ow data using a two-
regime bivariate TAR(15) model.
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