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Testing and Modeling Threshold 
Autoregressive Processes 

RUEY S. TSAY* 

The threshold autoregressive model is one of the nonlinear time series models available in the literature. It was first proposed 
by Tong (1978) and discussed in detail by Tong and Lim (1980) and Tong (1983). The major features of this class of models 
are limit cycles, amplitude depeadent frequencies, and jump phenomena. Much of the original motivation q f  the model is 
concerned with limit cycles of a cyclical time series, and indeed the model is capable of producing asymmetric limit cycles. The 
threshold autoregressive model, however, has not received much attention in application. This is due to (a) the lack of a suitable 
modeling procedure and (b) the inability to identify the threshold variable and estimate the threshold values. The primary goal 
of this article, therefore, is to suggest a simple yet widely applicable model-building procedure for threshold autoregressive 
models. Based on some predictive residuals, a simple statistic is proposed to test for threshold nonlinearity and specify the 
threshold variable. Some supplementary graphic devices are then used to identify the number and locations of the potential 
thresholds. Finally, these statistics are used to build a threshold model. The test statistic and its properties are derived by 
simple linear regression. Its performance in the finite-sample case is evaluated by simulation and real-world data analysis. The 
statistic performs well as compared with an alternative test available in the literature. Further applications of threshold auto- 
regressive models are also suggested, including handling heterogeneous time series ahd modeling random processes with periodic 
variances whose periodicity is not fixed. The latter phenomenon is commonly encountered in practice, especially in econometrics 
and biological sciences. 

KEY WORDS: Arranged autoregression; Nonlinear time series; Nonlinearity test; Predictive residual; Sunspot. 

1. INTRODUCTION Nevertheless, the TAR model has not been widelv used 

A time series Y, is a self-exciting threshold autoregres- 
sive (TAR) process if it follows the model 

r j - ~  5 Y,-d < r,, (1) 

where j = 1, . . . , k and d is a positive integer. The 
thresholds are -m = r, < r1 < < rk = w; for each j, 
{aj')) is a sequence of martingale differences satisfying 

sup E(laji)ld I F,-l) < w a.s. for some 6 > 2, (2) 
1 

with F,-I the 0 field generated by I i = 1, 2, . . . ; 
j = 1, . . . , k). Such a process partitions the one-dimen- 
sional Euclidean space into k regimes and follows a linear 
AR model in each regime. The overall process Y, is non- 
linear when there are at least two regimes with different 
linear models. This nonlinear time series model was pro- 
posed by Tong (1978, 1983) and Tong and Lim (1980) as 
an alternative model for describing periodic time series. 
The model has certain features, such as limit cycles, am- 
plitude dependent frequencies, and jump phenomena, that 
cannot be captured by a linear time series model. For 
instance, Tong and Lim (1980) showed that the threshold 
model is capable of producing asymmetric, periodic be- 
havior exhibited in the annual Wolf's sunspot and Cana- 
dian lynx data. 
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edges the financial support of the Aluminum Company of America Re- 
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in applications, primarily because (a) it is hard in practice 
to identify the threshold variable and estimate the asso- 
ciated threshold values, and (b) there is no simple model- 
ing procedure available. The procedure proposed by Tong 
and Lim (1980) is complex. It involves several computing- 
intensive stages, and there were no diagnostic statistics 
available to assess the need for a threshold model for a 
given data set. The goal of this article, therefore, is to 
propose a procedure for testing threshold nonlinearity and 
building, if necessary, a TAR model. The proposed test is 
simple because it uses only familiar linear regression 
techniques. The modeling procedure consists of four steps, 
each informative. The steps can also be used iteratively 
when the number of regimes k is large or the degree of 
nonlinearity is weak. 

The article is organized as follows. In Section 2, I discuss 
some sampling properties of least squares estimates of a 
TAR model. Least squares estimates are used throughout. 
Section 3 deals with testing the threshold nonlinearity. An 
arranged autoregression provides predictive residuals that 
are used in nonlinearity testing and threshold specification. 
Asymptotic distribution of the proposed test statistic is 
given, and the finite-sample performance is evaluated by 
simulation and analysis of several real data sets. Section 
4 suggests some graphics that are informative in locating 
the values of the thresholds and thus useful in specifying 
the threshold regimes. Section 5 gives the proposed model- 
ing procedure, and three illustrative examples (including 
the sunspot data and the Canadian lynx series) are given 
in Section 6. It is hoped that the article will broaden the 
use and stimulate further investigation of the TAR model. 

For convenience, 1 refer to Model (1) as a TAR(k; p, 
d)  model, where k is the number of regimes separated by 
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k - 1 nontrivial thresholds rj, p denotes the AR order, 
and d is the threshold lag (called the delay parameter by 
Tong). The interval r,-I 5 Yt-d < rj is the jth regime of 
Y,. Note that (a) the AR order p may differ from regime 
to regime, (b) the TAR model becomes a nonhomoge- 
neous linear AR model if only the noise variances a! = 
var(a,(j)) are different for different regimes, and (c) the 
TAR model reduces to a random-level shift model if only 
the constant terms are different for different j. These 
last two features are of special interest in various appli- 
cations and are related to outliers and model changes in 
linear time series analysis. The fact that the TAR models 
encompass these special cases suggests that the models 
may have further applications beyond nonlinear time se- 
ries analysis. 

2. CONSISTENCY OF LEAST SQUARES ESTIMATES 

Since the TAR model is a locally linear model, ordinary 
least squares techniques are useful in studying the process. 
I give a brief discussion of some useful results. For a given 
TAR(k; p ,  d)  model of (I), denote by n, the number of 
observations of Y, that are in the jth regime r,-l 5 Yt-d 
< r j .  Assume that 

njln -t cj in probability, (3) 

for all j = 1, . . . , k, where n is the total sample size and 
c, is a positive fraction such that xi=, C, = 1. Next, for 
each regime j, form the ordinary least squares autoregres- 
sion of order p and denote the estimate of @ ! I )  by & I 1 )  and 
the associated X 'X matrix by XIX(j). Furthermore, as- 
sume that for each j 

as n + a ,  where and are the minimum and 
maximum eigenvalues of X'X(j) based on sample size n. 

Theorem 2.1. Suppose that Y, follows the TAR Model 
(1) with a,"', n,, and XIX(j) satisfying (2)-(4), respectively. 
Then, for given k, d, and the threshold values r,, the or- 
dinary least squares estimates &? converge to @') almost 
surely. 

Under Conditions (1) and (3), Y, is a linear autoregres- 
sion in every regime, with increasing sample size as the 
total sample size n goes to infinity.   he or em 2.1 then 
follows directly from the results of Lai and Wei (1982), 
where the almost sure convergence of least squares esti- 
mates was shown under Conditions (2) and (4) for general 
linear stochastic regressions. Condition (4) is general, and 
is satisfied, for instance, when Y, is ergodic. 

3. A TEST FOR THRESHOLD NONLINEARITY 

In this section I consider testing threshold nonlinearity. 
The proposed test is related to the portmanteau test of 
nonlinearity of Petruccelli and Davies (1986), in that it 
also is based on arranged autoregression and predictive 
residuals. Nevertheless, the two tests are different in ways 
in which the special features of the predictive residuals are 

exploited. Roughly speaking, the proposed test is a com- 
bined version of the nonlinearity tests of Keenan (1985), 
Tsay (1986), and Petruccelli and ~ a v i e s  (1986). It is ex- 
tremely simple and widely applicable. Its asymptotic dis- 
tribution under the linear model assumption is nothing but 
the usual F distribution. 

3.1 Arranged Autoregression and 
Predictive Residuals 

Write an AR(p) regression with n observations as Y, = 
(1, Y,-l, . . . , Yt-P)P + a, for t = p + 1, . . . , n, where 
p is the ( p  + 1)-dimensional vector of coefficients and a, 
is the noise. I refer to (Y,, 1, Y,-l, . . . , Y,-,) as a case 
of data for the AR(p) model. Then, an arranged auto- 
regression is an autoregression with cases rearranged, 
based on the values of a particular regressor. For the TAR 
model (I), arranged autoregression becomes useful if it is 
arranged according to the threshold variable. To see this, 
consider case k = 2. That is, consider the situation of a 
nontrivial threshold rl. For a given TAR(2; p ,  d)  model 
with n observations, the threshold variable Y,-d may as- 
sume values {Yh, . . . , Yn-d), where h = max{l, p + 1 
- d). Let xi be the time index of the ith smallest obser- 
vation of {Yh, . . . , We rewrite the model as 

where s satisfies Yns < r1 s Yns+,. This is an arranged 
autoregression with the first s cases in the first regime and 
the rest in the second regime. It is useful for the TAR 
model because it effectively separates the two regimes. 
More specifically, the arranged autoregression provides a 
means by which the data points are grouped so that all of 
the observations in a group follow the same linear AR 
model. Note that the separation does not require knowing 
the precise value of rl. Only the number of observations 
in each group depends on rl. 

To illustrate the potential use of arranged autoregres- 
sion in studying TAR models, I give the motivation of the 
proposed test. Consider Model (5). If one knew the thresh- 
old value rl, then consistent estimates of the parameters 
could easily be obtained. Since the threshold value is un- 
known, however, one must proceed sequentially. The least 
squares estimates 6;') are consistent for (DL1) if there are 
sufficiently large numbers of observations in the first re- 
gime, that is, many i 5 s. In this case, the predictive 
residuals are white noise asymptotically and orthogonal to 
the regressors {Yni+d-u 1 v = 1, . . . , p). On the other 
hand, when i arrives at or exceeds s the predictive residual 
for the observation with time index n,+l + d is biased 
because of the model change at time x S + ~  + d. Here, it is 
easy to see that the predictive residual is a function of the 
regressors {Yni+d-u I v = 1, . . . , p). Consequently, the 
orthogonality between the predictive residuals and the re- 
gressors is destroyed once the recursive autoregression 



Tsay: Testing and Modeling Threshold Autoregressive Processes 233 

goes on to the observations whose threshold value exceeds 
rl. Notice that here the actual value of rl is not required; 
all that is needed is the existence of a nontrivial threshold. 
Based on the aforementioned consideration, one way to 
test for threshold nonlinearity is to regress the predictive 
residuals of the arranged autoregression (5) on the re- 
gressors {Yn,+,_, I v = 1, . . . , p) and use the F statistic 
of the resulting regression. 

For the arranged autoregression (5), let bm be the vector 
of least squares estimates based on the first m cases, Pm 
the associated X'X inverse matrix, and xm+, the vector of 
regressors of the next observation to enter the autoregres- 
sion, namely Yd+,,+,. (Note that the positions of d and 
nm+, in the subscript of Y are interchanged to clarify that 
m + 1 is a subscript of n.) Then, recursive least squares 
estimates can be computed efficiently by 

D m + l  = D m  + Km+l[Yd+nm+l - ~h+lDm], 

and 

(see Ertel and Fowlkes 1976; Goodwin and Payne 1977), 
and the predictive and standardized predictive residuals 
by 

- dd+n,+, - Yd+n,+, - ~ h + l b  (6) 
and 

The predictive residuals can also be used to locate the 
threshold values once the need for a TAR model is de- 
tected, by using various scatterplots designed to show spe- 
cific features of the TAR model. Details are given in 
Section 4. Note that the problem considered here is related 
to the change-point or switching-regression problem, for 
which voluminous references are available in the litera- 
ture. For example, see Quandt (1960), Shaban (1980), 
Pole and Smith (1985), and Siegmund (1988). A key dif- 
ference, however, is that here the data are serially cor- 
related. 

3.2 A Nonlinearity Test 

I now give details of the proposed nonlinearity test. For 
fixed p and d, the effective number of observations in 
arranged autoregressions is n - d - h + 1, with h defined 
just before (5). Assume that the recursive autoregressions 
begin with b observations so that there are n - d - b - 
h + 1 predictive residuals available. Do the least squares 
regression 

for i = b + 1, . . . , n - d - h + 1, and compute the 

associated F statistic 

where the summations are over all of the observations in 
(8) and 2, is the least squares residual of (8). The argument 
(p ,  d)  of fiis used to signify the dependence of the F ratio 
on p and d. 

Theorem 3.1. Suppose that Y, is a linear stationary AR 
process of order p .  That is, Y, follows Model (1) with k 
= 1. Then, for large n the statistic fi(p, d)  defined in (9) 
follows approximately an F distribution with p + 1 and 
n - d - b - p - h df. Furthermore, ( p  + ~ ) f i ( ~ ,  d)  
is asymptotically a chi-squared random variable with 
p + 1 df. 

This theorem can be proved by using the same tech- 
niques as Tsay (1986, theorem I) and Keenan (1985, 
lemma 3.1). It uses the consistency property of least 
squares estimates of a linear AR model and a martingale 
central limit theorem of Billingsley (1961). (Details are 
omitted.) Note that the asymptotic distribution of the 
d)  statistic continues to hold if one replaces the standard- 
ized predictive residuals &, by the ordinary predictive re- 
siduals d, of (6). Nevertheless, the standardized predictive 
residuals appear to be preferable when the sample size is 
small. For a large sample, ordinary predictive residuals 
may save some computation. 

Since the number and locations of the thresholds are 
unknown, there exists no (global) most powerful test for 
threshold nonlinearity. Relative power, feasibility, and 
simplicity are the major considerations in proposing the 
fi(p, d)  statistic. The test can easily be implemented be- 
cause it requires only a sorting routine and the linear 
regression method. 

3.3 Power of the Test and Comparison 

I study (via simulation and analysis of some well-known 
data sets) the power of the fi(p, d)  statistic in detecting 
the threshold nonlinearity. I also compare it with the Pe- 
truccelli and Davies (1986) portmanteau test. Various 
threshold lags are used for each real data set. I choose b 
= (n110) + p ,  with n the sample size and p the fitted AR 
order. To compute the portmanteau test, the standardized 
residual of (7) is further normalized by 

where s; is an estimate of the residual variance a2 com- 
puted recursively by 

where RSS denotes residual sum of squares. Asymptoti- 
cally, z, is standard Gaussian, so the P value of the port- 
manteau test can be evaluated by using an invariant 
principle (see Petruccelli and Davies 1986). 

Table 1 summarizes the test results for some real data 
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Table 1. Nonlinean'ty Tests of Some Real Data 

Threshold lags, d 

Test 1 2 3 4 5 6 7 8 9 10 11 

Series C: p = 2, n = 226 

Series A: p = 7, n = 197 

Logged lynx data: p = 9, n = 114 

Original lynx data: p = 1 1, n = 1 14 

Fip,B9 1.41 1.46 3.59 2.08 2.90 1.58 1.68 2.22 1.54 1.17 1.71 
P ,000 ,000 ,004 ,270 ,267 ,910 ,950 ,257 ,100 ,049 ,451 

Sunspot series, 1700-1979: p = 11, n = 280 

F12,21s 3.10 10.55 3.89 1.85 1.98 2.73 2.20 2.08 1.93 .91 1.84 
P ,000 ,607 ,573 ,399 ,195 ,031 ,790 .069 .217 ,316 ,171 

NOTE: F , ,  denotes the proposed F statistic with u and v df, and P is the P value of the Petruccelii and Davies (1966) portmanteau 
test. Series A and C are from Box and Jenkins (1976). 

sets consisting of Series A and C of Box and Jenkins 
(1976), and the Canadian lynx and Wolf's sunspot data. 
Series A and C are known to be linear, whereas the others 
are believed to be nonlinear. The AR orders used are 
those commonly employed in the literature. From the ta- 
ble, I make the following observations. (a) Both the pro- 
posed @ ( p ,  d)  statistic and the portmanteau te~t~clearly 
declare Series A and C to be linear. (b) The F(p, d)  
statistic suggests that the lynx series (both the original and 
logged) and the sunspot data are nonlinear. (c) On the 
other hand, the results of the portmanteau test are mixed, 
especially for the sunspot series. That result depends heav- 
ily on the threshold lag (or the delay parameter) used. 
This observation agrees with the simulation results of Pe- 
truccelli and Davies (1986). 

Table 2 gives the empirical frequencies of rejecting a 
linear process based on 1,000 realizations and 1% and 5% 
critical values. The model used in the simulation is a 
TAR(2; 1, I) ,  with parameters (ail), @(,'), @f), r,, a:, 
a:) = (1.0, .5 ,  1.0, 1.0, 1.0, 1.0) and @i2) given in the 
table. The sample sizes used are 50 and 100. For each 
realization of sample size n in the simulation, n + 200 
observations were generated and the first 200 values were 

discarded, to reduce any effect of the starting value (0) in 
generating a TAR model. In the test, p = 1 and d = 1 
were used. Again, b = (nI10) + p. From the table, it is 
clear that the proposed F statistic is more powerful than 
the portmanteau test in detecting threshold nonlinearity, 
except for the case @i2) = .O. For the linear models, that 
is, @(:) = .5 ,  the F statistic does not result in large Type 
I error. 

Table 3 shows results corresponding to those of Table 
2 but with threshold value rl = .O and constant terms 
@ii) = .O for j = 1, 2 both in the data-generating and 
testing. Since the constant term is related to the level of 
a process, it is important to see its effect on the testing. 
The F statistic again seems to be more powerful than the 
portmanteau test except for = -2.0. Based on the 
results of real examples and simulations, the proposed F 
statistic generally outperforms the portmanteau test in de- 
tecting threshold nonlinearity. It is relatively insensitive 
to the change in the threshold lag and is often more pow- 
erful than the portmanteau test. The portmanteau test, 
however, is not universally dominated by the F statistic. 
This is in agreement with the nonexistence of a global 
optimal test. 

Table 2. The Empirical Frequencies of Rejecting a Linear Model Table 3. The Empirical Frequencies of Rejecting a Linear Model 
Based on 1,000 Replications of a TAR(2; 1, 1) Model Based ori 1,000 Replications of a TAR(2; 1, 1) Model 

1% 5% 1% 5% 1% 5% 1% 5% 
@i2) 

7 F P F P @@' r F P F P @ ? ) F P F P @ ? ' F P F P  

n = 100,p = 1, d = 1 n = 5 0 , p  = 1 , d  = 1 n = 100,p = 1 , d  = 1 n = 5 6 , p = l , d = 1  

NOTE: The parameters used are (@tl, @\I1, @f), r l ,  a:, 08) = (1.0, .5, 1.0, 1.0, 1.0, 1.0), NOTE: The parameters used are (@fl, @\I), @f), r l ,  a:, 0%) = (.0, .5, .O, .O, 1.0, 1.0). The 
and F and P denote the F statistic and the portmanteau test. constant term is omitted. F and P denote the F statistic and the portmanteau test. 
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4. SPECIFYING THE THRESHOLD VARIABLE 

4.1 Selecting the Delay Parameter d 

A major difficulty in modeling TAR models is the spec- 
ification of the threshold variable, which plays a key role 
in the nonlinear nature of the model. For Model (I), the 
specification amounts to selection of the delay parameter 
d. Tong and Lim (1980) used the Akaike information cri- 
terion (Akaike 1974) to select d after choosing all of the 
other parameters. I propose a different procedure that 
selects d before locating the threshold values. The pro- 
posed method is motivated by the performance of the F 
statistic in analyzing real data. It assumes that the AR 
order p is given. For a given TAR process and an AR 
order p ,  one selects an estimate of the delay parameter, 
say dp, such that 

R(P, dp) = max UES @(p, u)), (12) 

where R(p, u) is the F statistic of (9), the subscript p 
signifies that the estimate of d may depend on p ,  and S is 
a set of prespecified positive integers, that is, a collection 
of possible values of d. For simplicity, assume that all of 
the test statistics R(p, u) of (12) have the same degrees 
of freedom. This can be achieved by a proper selection of 
the starting point b of the recursion [see (8)]. When the 
degrees of freedom are different, one may compute the P 
values of the F statistics and select dp based on the mini- 
mum of the resulting P values. 

Note that the choice of dp in (12) is somewhat heuristic. 
It is based on the idea that if TAR models are needed, 
then one might start with a delay parameter that gives the 
most significant result in testing for threshold nonlinearity. 
A more cautious data analyst may wish to try several values 
of d, such as those corresponding to the maximum and 
the second maximum of R(p, d)  in (12). 

Table 1 provides some examples for the proposed 
method with S = (1, . . . , p). For the sunspot series 
dl, = 2, and for the Canadian lynx data d, = 2. It is 
interesting to note that for the sunspot series dp = 2 for 
each p from 2 to 15, suggesting that the selection could 
be stable with respect to the AR order p .  In general, dp 
might vary with p ,  which is usually unknown. In this case, 
one may start with a reasonable AR order p ,  as suggested 
by some identification statistics such as the partial auto- 
correlation function of Y,, and refine the order later if 
necessary. Details are given in the next section. 

4.2 Locating the Values of Thresholds 

For a TAR model, special care is needed in estimating 
the threshold r;s. To see this, assume that k = 2 and the 
true value of r, satisfies Yns < r, < YnS+]. Then, any value 
in the interval [Yns, Yns+,] is as good as the other in pro- 
viding an estimate of r,, because they all give the same 
fitting results for a specified TAR model. Therefore, how 
to select an estimate of r, with nice finite-sample properties 
from infinitely many possible values remains an open prob- 
lem. In general, one may provide an interval estimate for 
each of the threshold values or use sample percentiles as 

point estimates. I use the latter. That is, 1 adopt the ap- 
proach of Tong and Lim (1980) by considering the em- 
pirical percentiles as candidates for the threshold values. 
But instead of prespecifying a set of finite numbers of 
sample percentiles to work with, I search through the per- 
centiles to locate the threshold values. The only limitation 
is that a threshold is not too close to the 0th or 100th 
percentile. For these extreme points there are not enough 
observations to provide an efficient estimate. 

The methods proposed to locate the thresholds, hence 
the partitions of the Euclidean space, are scatterplots of 
various statistics versus the specified threshold variable. 
The statistics used show the special features of the TAR 
model. Although the graphics are not formal testing and 
estimating statistics, they do provide useful information in 
locating the thresholds. The plots used are (a) the scat- 
terplot of the standardized predictive residuals of (7) or 
the ordinary predictive residuals of (6) versus Yt-dp, and 
(b) the scatterplot of t ratios of recursive estimates of an 
AR coefficient versus Yl-dp. The rationale of each of the 
plots is discussed in the following, whereas illustrative ex- 
amples are deferred to the applications section. 

In the framework of arranged autoregression, the TAR 
model consists of various model changes that occur at each 
threshold value rj. Therefore, the predictive residuals are 
biased at the threshold values. A scatterplot of the stan- 
dardized predictive residuals versus the threshold variable 
thus may reveal the locations of the threshold values of a 
TAR model. On the other hand, for a linear time series 
the plot is random, except for the beginning of the recur- 
sion. This scatterplot is closely related to the traditional 
on-line residual plot for quality control. I use the scatter- 
plot because it tells the locations of the threshold values 
directly. In practice, I have found the plot informative in 
TAR modeling, especially for TAR models in which the 
only differences between different regimes are the vari- 
ances a;. 

To motivate the use of a scatterplot of recursive t ratios 
of an AR coefficient versus the threshold variable, it is 
best to begin with a linear time series. In this case, the t 
ratios have two functions: (a) they show the significance 
of that particular AR coefficient, and (b) when the coef- 
ficient is significant the t ratios gradually and smoothly 
converge to a fixed value as the recursion continues. Next, 
consider the simple TAR model 

where @I1) and @i2) are different. Let 4, be the recursive 
estimate of the lag-1 AR coefficient in an arranged au- 
toregression as in (5). By Theorem 2.1, the t ratios of 
4, behave exactly as those of a linear time series before 
the recursion reaches the threshold value r,. Once rl is 
reached, the estimate 6, starts to change and the t ratio 
begins to deviate. The pattern of gradual convergence of 
t ratios is destroyed. In effect, the t ratio starts to turn 
and, perhaps, changes direction at the threshold value. 
For Model (13), 4, begins to change when Yt-d reaches 
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r1 and eventually is a compromise between and @(:I. simple as compared with those outlined by Tong and Lim 
This behavior also appears in the associated t ratios show- (1980). It is hoped that this procedure may help exploit 
ing information on the value of rl. In general, it is easy to the potential of TAR models in application. The procedure 
see that the change in t ratio is substantial when the two is as follows. 
AR coefficients aie substantially different. 

To gain insight into the t ratio plots under the condition 
of no model changes in a series, a simulation study was 
conducted. One thousand realizations of a Gaussian 
AR(1) model Y, = .7Y,-, + a, were generated. As before, 
300 points of Y, were generated with Yo = 0 for each 
realization, but only the last 100 observations were used 
as data points. The arranged autoregression was then fitted 
withp = 1 and d = 1. Again, use b = (nI10) + p = 11 
data points to initiate a recursion. Denote the t ratio of 
6, at the time point s by T,, and define the percentage 
change in the t ratio as c, = I Ts+l - T,I/Ts x 100%. Let 
C(a) be the empirical percentage that c, 2 a%.  C(15) and 
C(10) were then counted. Since the t ratio is relatively 
unstable at the beginning of the recursion, the percentage 
changes were tabulated in three different time intervals, 
namely (13, loo), (36, loo), and (51, 100). The following 
results were obtained: (a) for the time interval (13, loo), 
C(15) = 14.0% and C(10) = 21.9%; (b) for the interval 
(36, loo), C(15) = 2.7% and C(10) = 6.5%; (c) for the 
interval (51, loo), C(15) = .7% and C(10) = 2.4%. From 
these results, it is seen that the t ratios are stable except 
for the beginning of the recursion. Next, to check the 
possibility that the t ratio may change its direction, define 
that there is an up-turn at time s if T,-I > T, and T, < 
TS+, 5 T,+,, and there is a down-turn at time s if T,-I < 
T, and T, > Ts+l 2 Ts+2. Based on these definitions, a 
5.9% down-turn rate was obtained, but only a single up- 
turn occurred. The results again indicate that the t ratios 
behave smoothly when there is no model change. 

Some remarks on the t-ratio plot are of interest. First, 
the t-ratio plot of the constant term 6, is important because 
it signifies level changes. Second, the usefulness of the 
plot is not limited to the case of a single threshold value. 
In fact, the previous discussion applies to each threshold 
as long as the sample size in every regime is reasonable. 
Third, the technique can be used iteratively. For instance, 
one may drop the observations in the first regime to detect 
the second threshold. (See Sec. 6, Ex. 3, for an illustra- 
tion.) Fourth, Haggan, Heravi, and Priestley (1984) con- 
sidered scatterplots of recursive AR estimates in studying 
nonlinear time series. But their estimates are not based 
on arranged autoregression; their model is the state-de- 
pendent model of Priestley (1980), which, as mentioned 
by those authors, is not particularly useful in handling the 
TAR model. Finally, since the ordered Yt-d are not equally 
spaced, it is often helpful in a scatterplot to omit some 
data points that have relatively large values in Y,-,. In this 
article the last b = (nI10) + p points in all of the scat- 
terplots are omitted. 

5. MODELING TAR MODELS 

In this section I use the results of previous sections to 
propose a procedure for modeling TAR models. The pro- 
cedure consists of several steps, but each step is relatively 

Step 1. Select the AR order p and the set of possible 
threshold lags S. 

Step 2. Fit arranged autoregressions for a given p and 
every element d of S ,  and perform the threshold nonlin- 
earity test fi(p, d). '1f the nonlinearity of the process is 
detected, select the delay parameter d, by the method of 
Section 4.1. 

Step 3. For given p and d,, locate the threshold values 
by using the scatterplots of Section 4.2. 

Step 4. Refine the AR order and threshold values, if 
necessary, in each regime by using linear autoregression 
techniques. 

In Step 1, the AR orderp may be selected by considering 
the partial autocorrelation function (PACF) of Y, or some 
information criteria such as the Akaike information cri- 
terion (AIC). I prefer PACF over information criteria be- 
cause (a) PACF often provides guidance for a reasonable 
value of p ,  (b) the information criteria could be misleading 
when the process is indeed nonlinear, and (c) the AR order 
can be refined, if desired, at Step 4. Furthermore, since 
high-order AR models could provide reasonable approx- 
imations to a nonlinear model, it is hoped that the selection 
of p in Step 1 can reflect such approximations. I believe 
that PACF can show this property better because it 
imposes no penalty on high-order terms. On the other 
hand, information criteria are designed to find the best 
linear model for a time series and tend to penalize high- 
order terms. The set S of possible threshold lags may be 
(1, . . . ., p) for a given p .  It can also include seasonal lags 
when there is seasonality in the process. In Step 3, t ratios 
of various AR coefficients can be examined as long as the 
AR coefficients are significant. Scatterplots of insignificant 
AR coefficients are usually not informative. The model 
refinement at Step 4 may rely on information criteria such 
as AIC because of the linear nature of the TAR model. 
For details of using AIC in modeling TAR models, see 
Tong and Lim (1980). 

6. APPLICATIONS 

I now apply the proposed procedure and statistics to 
some real examples. The sunspot and logged lynx series 
are included because the procedure suggests different 
threshold models from those now available. Residual anal- 
ysis and AIC are used to demonstrate that the models 
selected by the procedure are indeed better than those 
previously specified. A third data set that had previously 
been regarded as a periodic AR process is used to illustrate 
the potential use of TAR models in handling heteroge- 
neous time series. It also demonstrates iterative use of the 
procedure. 

Example 1. I begin with the annual sunspot data from 
1700 to 1979, given by Tong (1983, p. 280). The series 
consists of 280 observations and is known to exhibit asym- 
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metric cyclic behavior. Various linear and nonlinear 
models have been proposed for this process, and some of 
them appear to be reasonable. For instance, the TAR 
models suggested by Tong and Lim (1980) can produce 
asymmetric limit cycles similar to those actually observed. 
In general, for this series it seems that different data spans 
would suggest different models. I use all of the 280 ob- 
servations in model building. 

As shown in Sections 3 and 4, based on p = 11 the 
proposed F statistic confirms that the process is nonlinear 
and selects Yt-2 as the threshold variable. Therefore, I 
start with Step 3. Figure 1 gives the scatterplot of the t 
ratios of the lag-2 AR coefficient versus ordered Yr-2. 
From the plot, it is clear that the t ratio is significant and 
changes its direction twice: once near Y,-, = 35 and again 
near Y,-, = 72, suggesting that there are two nontrivial 
thresholds. That is, there are three regimes for the process. 
An examination of the actual values suggests that the pos- 
sible estimates of r, are (34.0, 34.5, 34.8, 35 .O, 35.4, 35.6, 
36.0) and those of r2 are (70.0, 70.9, 73.0, 74.0). This step 
substantially simplifies the complexity in modeling the 
TAR model because it effectively identifies the number 
and locations of the thresholds. Notice that the possibility 
of more than one threshold in this series was noted by 
Hong (1983, pp. 256-257). Finally, in Step 4 I use AIC 
to refine the threshold values and AR orders. The final 
threshold values are r, = 34.8 and r2 = 70.9. The AR 
orders are 11,10, and 10, and the numbers of observations 
are 116, 91, and 62. Details of the model are given in 
Table 4. The table also gives the ACF of the standardized 
residuals of the model, as well as the PACF of the squared 
standardized residuals. Both ACF and PACF fail to in- 
dicate any model inadequacy. In Table 4, many of the AR 
coefficients are small as compared with the corresponding 
standard errors, especially for those in the first regime. 
Nevertheless, the small coefficients are not 0, based on 
AIC. This shows that the major difficulty in analyzing the 
sunspot data comes from the first regime. Further analysis 
of this regime might be useful. 

Using the data from 1700 to 1920, Tong (1983, p. 241) 
specified a TAR model: for the sunspot series. Tong's 

I AR-2 Coefficient Plot 

Figure 1. Scatterplot of Recursive t Ratios of the Lag-2 AR Coefficient 
Versus Ordered Yt_,  for the Sunspot Data. The X axis is Yt-2. 

model uses Y1-3 as the threshold variable with a threshold 
36.6. As a rough comparison, I refit both Tong's and the 
previously specified model to this shorter data span. For 
Tong's model, I obtained close results, with an overall AIC 
1,083.8. For my model, the overall AIC is 1,064.1, which 
is substantially smaller. In addition, the PACF of the 
squared standardized residuals of Tong's model has a value 
.16 at lag 2, which is significant. But the two TAR models 
have a similar first threshold that (from Fig. 1) is the most 
significant. This demonstrates that the proposed proce- 
dure can handle multiple thresholds in a direct manner. 
There is no need to assume knowledge of the number of 
thresholds. 

Example 2 .  In this example I give a TAR model for 
the logged Canadian lynx data. Again, this data set has 
been extensively analyzed. See Lim (1987) for a summary 
and discussion. Since there are only 114 observations, I 
start with p = 3 and S = {1,2,3) at Step 1 of the proposed 
modeling procedure. The F statistics of the nonlinearity 
test are 4.70,6.13, and 4.46, respectively. Thus p = 3 and 
d = 2 were tentatively entertained. To specify the thresh- 
olds at Step 3, the recursive t ratios of the lag-2 AR coef- 
ficient are not helpful because the t ratios stay between 
- 2 and 2 throughout the range of Y,-,, except for a few 
points at the end. Two other scatterplots are useful, how- 
ever. Figure 2 shows the t-ratio plot of the lag-l AR coef- 
ficient, from which a threshold with r, = 2.4 is clearly 
seen. The plot also shows a large jump around Y,-, = 2.6. 
But this point is not treated as a threshold for two reasons. 
First, the jump is basically due to three points. Second, 
there are only few observations with Y,-2 between 2.4 and 
2.6, making a separation difficult to estimate. Figure 3 
gives the scatterplot of the predictive residuals of (6) versus 
the ordered Y,-,. From the plot, it can be seen that the 
predictive residuals start to deviate around Y,-, = 3.1, 
suggesting yet another threshold value. [The deviation be- 
comes much more clear when a horizontal line of .O is 
drawn across the plot. Also, Tsay's (1988) technique of 
detecting a step change in residual variances could be used 
to help read the plot.] Consequently, there are two pos- 
sible thresholds for the process: One is about 2.4 and the 
other about 3.1. Again, I use AIC in Step 4 to refine the 
model and obtain two thresholds (r, = 2.373 and r, = 
3.154). The AR orders are 1, 7, and 2, whereas the num- 
bers of observations are 21, 42, and 45. The final TAR 
model is 

The residual variances are .015, .025, and .053, respec- 
tively. In model checking, the ACF and PACF of the 
standardized residuals and squared standardized residuals 
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Table 4. A TAR Model for the Annual Sunspot Series 1700-1979 

Lags 

Regimes 0 1 2 3 4 5  6 7 8 9 1 0 1 1 1 2  

AR Coefficients 

1 3.14 1.86 -1.36 .06 .04 .06 -.04 - 1 1  .04 .06 -.01 -.03 
2 11.4 1.06 -.03 -.70 ,351 -.I2 -.02 .14 -.I9 .02 .27 
3 1.01 .63 .14 -.A2 -.01 -.I4 .10 .31 -.46 .21 .I9 

ACF of standardized residuals 

PACF of squared standardized residuals 

.06 .05 .02 -.04 -.02 .OO .02 .04 -.04 .14 -.02 .06 

NOTE: The threshold variable is Yt-2 with thresholds rr = 34.8 and rz = 70.9. The AR orders are 11, 10, and 10. The numbers of 
obselvations are 116, 91, and 62, and the residual variances are 173.3, 123.7, and 84.5. The overall AIC = 1,379.4. 

of the model all fail to suggest any model inadequacy. 
Nevertheless, there is a slight deviation from symmetry in 
the histogram of the standardized residuals. 

A TAR model for the lynx data was given by Tong (1983, 
p. 190) that has AIC = - 337.6, whereas the AIC of the 
aforementioned model is - 347.7. In comparing the two 
models, it is interesting to note that the single threshold 
obtained by Tong is 3.116, which is very close to the second 
threshold obtained here. In fact, there is only one obser- 
vation, 3.142, between 3.116 and 3.154. Thus the two ap- 
proaches arrive at a similar conclusion. On the other hand, 
the analysis of Haggan et al. (1984) of the logged lynx 
data indicates that there is a possible threshold around 2.2 
(of Y,-I rather than Y,-2). This appears to agree with my 
results. Therefore, for the lynx data the proposed ap- 
proach is able to capture features previously noticed in 
the literature. 

vations to reduce the sizes of three relatively large resid- 
uals. The adjustments are from 102.5, 84.1, and 91.5 to 
97.9, 81.0, and 88.0 at t = 20, 110, and 112, respectively. 
A linear AR(9) was fitted to the data, and the residual 
ACF and PACF appear to be clean. Nevertheless, the 
PACF of the squared residuals assumes values .22 and .15 
at lags 1 and 3, and the residual plot shows some hetero- 
scedasticity. The latter feature is understandable in light 
of the periodic nature of outside temperature that appar- 
ently influenced the attic temperature. In view of this, a 
periodic autoregression or a seasonal time series model 
may be useful. But 'since the periodicity is not fixed 
throughout the process, further analysis is needed. 

Following the procedure of Section 5, select p = 9 and 
S = (1, . . . , 9) and perform a nonlinearity test. Using 
the predictive residuals of (6), the F statistics are 5.92, 
5.59, 5.18, and 4.69, respectively, for d = 1, 2, 3, and 4. 

Example 3. Finally, I analyze a process of hourly attic As compared with an Fdistribdtion with 10 and 198 df, 

temperatures, consisting of 251 observations. The data these results are highly significant. Thus I tentatively spec- 

were obtained from the Twin Rivers Project conducted by ify a TAR model with p = 9 and d = 1. Figure 4 shows 

the Princeton University Center for Environmental Stud- the t-ratio plot of the constant term in an arranged AR(9) 

ies, beginning May 26, 1976. A preliminary analysis shows regression with d = 1, that is, the t ratio of constant term 

that there are several potential outlying observations in versus Y,-,. From the plot, the t ratios are significant and 

the process. For simplicity, I have adjusted three obser- contain two major changes occuring approximately at 
Y,-, = 70 and 82. The second change appears to be rel- 

t - ra t io  of AR-1 Coe 

1 3 ~ ~ 1 1 1 1 ~ ~ 1 ~ ~ 1 ~ 1 ~ j  

f f icient 

Figure 2. Scatterplot of Recursive t Ratios of the Lag- 1 AR Coefficient 
Versus Ordered Yt-, for the Logged Canadian Lynx Data. The X axis 
is Yt_> 

Figure 3. Scatterplot of Predictive Residuals Versus Ordered Yt-, for 
the Logged Canadian Lynx Data. The X axis is Yt-z. 

0 . 6 -  

Predictive Residuals 

I I 1 I 1 I 



Tsay: Testing and Modeling Threshold Autoregressive Processes 239 

t-ratio of AR-0 Coefficient 

Figure 4. Scatterplot of Recursive t Ratios of the Constant Term 
Versus Ordered Yt-, for Example 3. The X axis is Yt-r. 

atively small and I come back to it later. Finally, after 
some refinement, we arrive at a TAR model with two 
threshold values (rl = 69.3 and r2 = 83.0). The AR orders 
are 7, 4, 6; the numbers of observations are 95, 75, 74; 
and the residual variances are .913, 2.386, 2.984. Details 
of the TAR model are 

The overall AIC of the model is 177.5. In model checking, 
the problems that appear in a linear AR(9) fit are no longer 
apparent. The ACF and PACF of the standardized resid- 

1 Predictive Residuals 1 

Figure 5. Scatterplot of Standardized Predictive Residuals Versus 
Ordered Y,+, for Example 3 After Omitting Observations With Y,-, 5 
69.3. The X axis is Yt- ,. 

uals are all clean. The first four PACF's of the squared 
standardized residuals are .lo, .2, - . l ,  and .05, respec- 
tively. Note that the residual variance of regime 1 is much 
smaller than those of the other two regimes. This partially 
explains the heteroscedasticity observed in the linear 
model. 

As mentioned earlier, the second threshold is less pro- 
nounced in Figure 4; this sometimes happens in applica- 
tion. An iterative procedure might be useful. I use this 
last example to illustrate the iteration. After locating the 
first threshold value, one may drop those cases of data in 
the first regime and carry out the recursive estimation of 
arranged autoregression, using the remaining cases to test 
for the need of a second threshold. For the attic temper- 
ature, p(9, 1) = 2.32 after removing those cases of data 
with Y,-, 5 69.3. Compared with an F distribution with 
10 and 135 df, the test is significant at the 5% level but 
not at the 1% level. Similarly, one may also confirm the 
threshold location by using the reduced data set. Figure 5 
gives the scatterplot of the standardized predictive resid- 
uals of the reduced data set of Example 3, from which 
r2 = 82 seems reasonable because there is an apparent 
difference in variance. 

7. CONCLUDING REMARKS 

I proposed a procedure for testing and building TAR 
models. The procedure is simple and requires no pre- 
specification of the number of regimes of a threshold 
model. I applied the procedure to three real data sets and 
obtained adequate models. In particular, for the Canadian 
lynx data of Example 2 the specified model gives rise to 
an asymmetric limit cycle similar to that of the data. 

Note that the TAR model (1) has a striking feature of 
discontinuity at the threshold Y,-, = rj when the coeffi- 
cients @li) depend on j .  This feature can capture jump 
phenomena observed in practice such as in the vibration 
study. Nevertheless, it appears to be somewhat counter- 
intuitive. To check this feature, Chan and Tong (1986) 
considered a class of smooth TAR models that put certain 
continuity constraints on the model. Much remains to be 
investigated for this continuity problem, however. 

[Received May 1987. Revised June 1988.1 
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