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Various interferometric methods can be used for testing aspheric surfaces with high accuracy. Using a par-
tially compensating lens in a Twyman-Green arrangement together with a computer-generated hologram
instead of a null corrector gives great flexibility. For quantitative analysis a high-resolution automatic
fringe analysis is necessary. The interferometric arrangement and the setup for the interferogram data ac-
quisition are described along with different algorithms for calculating the wave front data. Tilt and decen-
tering of the aspheric surface and the synthetic hologram as well as the actual aspherical parameters can be
derived from the calculated wave front using Zernike polynomials to communicate with a ray tracing pro-
gram. For small adjustment and shape errors the linearity will hold, leading to fast correction and numeri-
cal compensation of their effects on the surface error. The method is verified by several examples. Experi-
mental results agree with the proposed model.

1. Introduction

Aspheric surfaces will be used more frequently when
manufacturing and testing in industrial environments
can be improved. In addition to a point by point
analysis with optical, mechanical, or inductive testers,
interferometric techniques are frequently used leading
to faster and more accurate results of the test surface's
shape error. Many different interferometric methods
are used such as testing the complete optical system or
using a null corrector in the test arm of a Twyman-
Green interferometer to compensate the asphericity of
the surface under test. Shearing interferometry or
holography, where a hologram of a master surface serves
as a reference, also is among the techniques used.

A promising method is the use of computer-generated
holograms (CGHs) together with a partially compen-
sating lens to compare the wave front of an aspheric test
surface to a perfect one generated by a synthetic holo-
gram in a two-beam interferometer. Alternatively, the
aspheric wave front can be used to reconstruct a plane
wave front modulated with the surface errors which in
turn are compared with a perfect reference wave.
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A CGH can be used for testing a wide range of
aspheric surfaces with high accuracy leading to an ab-
solute measure of the surface errors. By contrast, in a
relative test a master surface needs to be available.

A number of papers on testing aspheric surfaces with
CGHs have been written.'1 4 From a practical point
of view a two-beam arrangement in which both beams
pass through the CGH is desirable. In this way the
inhomogenities of the hologram storage material, which
often is a photographic plate, are compensated. For
symmetrical optical systems to be tested, in-line
(Gabor-type) and off-axis CGHs can be used.14 A
two-wavelength technique reduces the sensitivity.' 5

Implementation of the interferometric technique
requires the analysis of possible errors due to imperfect
optical interferometer components. An automatic
fringe analysis is useful to calibrate the interferometer
with a well-known perfect spherical surface and to
measure surface deviations with resolutions of X/100.
Adjustment of the interferometric setup can be time-
consuming; automatic fringe analysis is desirable if high
precision is required. In the following the testing pro-
cedure with CGHs, the fringe analysis algorithms, and
a method for computer detection of adjustment and
shape errors along with their numerical compensation
are described.

II. Testing Procedure with Computer-Generated

Holograms

A two-beam interference arrangement of the Twy-
man-Green type with an off-axis hologram for testing
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aspheric surfaces is shown in Fig. 1. The incident wave
is separated by the beam splitter into test and reference
beams, reflected back from the mirror M slightly
obliquely, to be used as the reference by passing through
the hologram undisturbed. For fringe analysis of closed
fringes a plane-parallel plate is used to shift the phase
in steps of 90°. The simple lenses L1, L2 , and L3 are
auxiliary lenses to adapt the aperture of the lens under
test TS. They should also image the test surface onto
the CGH, a necessary condition for strong aspheric wave
fronts and should compensate some of the wave front's
asphericity. L4 is a high quality lens to be used for
testing spherical surfaces without a CGH by replacing
the auxiliary lenses Ll,2,3 by LI. In addition L4 and LI
are used for focusing on the aspheric's vertex to have a
precise reference point when placing the surface into the
correct testing position. A spatial filter in the focus
plane of L5 avoids unwanted light; L6 images the fringe
pattern as a measure of the discrepancy between the test
piece and the perfect aspheric onto a diode array or a
video camera connected to a computer for fringe anal-
ysis. For testing aspheric surfaces the separation of
lenses L1, L2 , and L3 may need to be modified or one or
more lenses may be replaced appropriately. They are
by no means perfect; they need to be tested by replacing
the aspheric surface by a known spherical mirror. For
perfect agreement no fringes should occur. Sources of
errors result from the departure of lens shapes and
separations used for computing the wave front as well
as for centering errors of the components, magnification
error and distortion by photoreduction, and errors in
generating the hologram. Most of the errors can be
compensated by an appropriate hologram containing
additional correcting terms in the actual wave front.

For generating the computer hologram we use an
Optronics drum plotter with a minimum step length of
12.5 gm, thus allowing 20,000 by 20,000 pixels to be
plotted onto 25 X 25 cm2 of photographic film in 256
different gray levels. For final use in the interferometer
a one-step reduction on high contrast photographic
plates or on photoresist is required. The latter is used
when improved diffraction efficiency is necessary.

Ill. Automatic Fringe Analysis

The fringe patterns obtained by interferometry
represent contour lines of phase differences between the
interfering wave fronts. In the Twyman-Green inter-
ferometer they contain information about the shape
error of the surface under test. A quantitative evalu-
ation of the fringe pattern thus leads to a quantitative
description of the surface error.

For fringe analysis many different methods are used.
They can be classified into static, where a single inter-
ferogram (photograph, video image) is analyzed, or
dynamic, where the fringe pattern is manipulated to get
a phase change in time.

Static algorithms are
Analysis "by hand" using ruler and pencil to deter-

mine the position of fringer centers or analysis using a
digitizing tablet.16"17

TS

LI

.M

LI

Fig. 1. Twyman-Green interferometer with a CGH to test aspheric
surfaces.

Localization of fringe centers using video techniques
and image processing.18-2 2

Phase detection technique in the spatial domain
using Fourier transformation23 or Fourier analysis in
connection with a video technique. 2 4 25

Nearly all static methods need fringe patterns with
monotonous increases of fringe orders which are
achieved by tilting the interferometer's reference mir-
ror. Using the Fourier techniques, strong tilts are de-
sirable to arrive at high carrier frequencies.

Dynamic algorithms are
Phase stepping by changing the phase difference

between the two interfering beams by a certain amount
and measuring the intensities at selected sample points
for each step.26 Three steps are a minimum, changing
the phase by 900 or 1200 per step.27 28 Using four steps
leads to a simple mathematical expression.2 9

Heterodyne techniques using two different wave-
lengths which lead to periodic changing intensities in
the interference pattern with phase delays according to
the optical path differences. Since phase shifting is not
interrupted during sampling the use of integrating de-
tectors is recommended using the "integrating bucket"
calculation similar to the phase stepping methods.30

The ac-phase detection technique involve a time-
varying manipulation of the reference phase combined
with electronic phase detection of the varying intensity
signal similar to the heterodyne technique. However,
the change of the reference phase is not necessarily
linear in time. Applying a sinusoidal movement to the
reference mirror includes the possibility for phase-
locked interferometric systems.31

All dynamic methods can calculate the phase differ-
ence at any point within the interference pattern and
allow analysis of the closed fringes. Inhomogeneous
illumination of the interferometer as well as different
sensitivities of the detector elements have no influence
on the measurement.

IV. Fringe Analysis Setup and Applied Algorithms

For the phase measurement two different systems
have been established:

A Hamamatsu C 1000 camera connected to a DEC
PDP 11/34 computer including the necessary software
to provide control over camera functions and the phase
stepping device. The latter consists of a Burleigh
Inch-Worm Translator which slightly rotates a plane-
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FOURIER-SPECTRUM

-100 0 frequency f 100

Fig. 2. Fourier spectrum of fringe pattern with high carrier frequency.

parallel plate within the reference arm of the interfer-
ometer. The camera provides up to 1024 X 1024 data
points containing 256 gray levels. Special columns and
lower resolutions can be selected.

A Fairchild 1500 R-CCD line scan camera with 2048
pixels connected to an IBM-PC computer by an ade-
quate controller. The computer is equipped with
graphic and D/A-A/D facilities. Phase stepping could
also be obtained by analog output to a ramp generator,
which in turn controls a piezoelectric-driven reference
mirror.

For automatic fringe analysis we use the spatial phase
detection technique based on a FFT algorithm 2 3 as well
as the three-phase step method.27 28 Both of them are
now briefly described.

A. FFT Method

A strong tilt between test and reference waves has to
be introduced to produce an intensity pattern I(x,y):

I(x,y) = a(xy) + b(xy) cos[1O(xy) + kx sinG], (1)

with a (x ,y) = average intensity,
b(x,y) = modulation,
O(x,y) = phase difference to be detected,

and
k = (27r)/X = wave number.

Introducing complex notation leads to

I(x,y) = a(xy) + c(xy) exp(ikx sinG)

+ c*(xy) exp(-ikx sinO), (2)

with c(x,y) = /2b(x,y) exp[i,0(x,y)] and c*(x,y) =
1/2 b(x,y) exp[-i40(x,y)] as the conjugate complex.
Fourier transformation in the x direction leads to

I(f,y) = A(f,y) + C(f-foay) + C*(f + foy), (3)

with I, A, and C as Fourier transforms of the variables
I, a, and c.

Choosing an adequate carrier frequency will give
three peaks in the spectrum which can be easily sepa-
rated (Fig. 2). When C(f - foy) is filtered, shifted to
the origin, and transformed back, one arrives at

F-11C(f,y)I = c(xy) = 
1
12 b(xy) exp[i0(xy)].

q(x,y) can be obtained by either

O(x,y) = arctan Im1C(X'Y))
Relc(x,y)j

or applying the complex natural logarithm:

Inc (xy) = In (2 - + i (xy)
2

(4)

(5)

(6)

containing k(x,y) entirely within the imaginary part.

B. Three-Phase Step Method

The three intensity patterns that differ by phase-
shifts of A can be expressed as

Ii(x,y) = a(xy) + b(xy) cos[O(xy) - Al,

I2(Xy) = a(x,y) + b(xy) cosp(xy),

I3(xy) = a(xy) + b(x,y) cos[l(x,y) + A].

Using addition theorems we can arrive at

[ 3 I- I Al
O(xy) = arctan I I3- .tan 2 .

I1 +13-212 2j

(7)

(8)

Using A = 900 results in the simplest case of tanA/2 =
1; however A = 1200 is sometimes practiced arriving at
tanA/2 = 3 requiring more calculation.

V. Compensation of Adjustment Errors

Adjustment of the interferometric setup can be
time-consuming, since seven degrees of freedom need
to be balanced: tilt and decentering of the aspheric
surface in two directions and decentering as well as
rotation of the hologram. A lot of skill and patience is
needed, especially since some of the adjustment errors
have similar effects on the interference pattern.

We have found it appropriate to approximate the
measured wave front by a set of polynomials; Zernike
polynomials were used because of their orthogonal
properties. They easily interface with the ray tracing
program to calculate and eliminate the influences of the
actual adjustment errors on the measured wave front.

2606 APPLIED OPTICS / Vol. 24, No. 16 / 15 August 1985

I NTERFEROGRAM



Table . Zenike Polynomials with Azimuth Frequency m = I1

y Direction x Direction

U2 = rsinO U3 = r cosO
Us = (3r

3
- 2r) sinO U9 = (3r

3
- 2r) cosO

U19 = (10r
5

- 12r
3

+ 3r) sinO U19 = (10r
5

- 12r
3

+ 3r) cosO
U32 = (35r

7
- 60r

5
+ 30r

3
- 4r) sinO U3 3 = (35r

7
- 60r5 + 30r

3
- 4r) cosO

Let w(r,O) be an approximation of the measured wave
front W(r,O):

N
W(r,O) _ w(r,O) = L AjUj(r,O),

j=O

with Aj as coefficients and

rsin
U1(r,O) = UT'(r,0) = R(r) I mO

lcosJ

(9)

(10)

as Zernike polynomials; r and are radius and angle
within the unit circle; and m and n are whole numbers
with n representing the polynomial degree and m rep-
resenting the azimuth frequency. Furthermore

n>0,-n <m <n (n - m is an even number). (11)

For m > 0 the cosine function, for m < 0 the sine func-
tion is valid.

n(n+ 2)-rm
a= +1

2

is the number of the polynomial term starting with] =

1 for n = m = 0, and Rm(r) is defined as
n-m

Rn'(r) = E (-I)s (n -s)! r(n-2s) . (12)s~o ( 2 'I 2 
Taking into account that mainly odd terms will arise
when decentering and tilting the optical elements by
only a small amount, polynomials with m = i1 need to
be evaluated, whereas defocusing and errors in radius
and eccentricity are described by rotational symmetric
polynomials with m = 0. Since rotation of an off-axis
hologram leads only to a linear part in the wave front,
which is compensated by a tilt of the reference mirror,
there are at least four odd terms to be evaluated for the
x and y directions, respectively, as shown in Table I.

Calculating the derivatives of the Zernike coefficients
A 2 .. .A33 with respect to decentering and tilt of the
aspheric surface and the hologram by ray tracing leads
to a set of linear equations:

A2

/ I#Rx

\ A3 3

OflRX

aA, A 2 0A2 /
3
Rx.

af3Ry .. O(EHx, a9EHy

which has to be inverted to calculate the amounts of tilt
and decentering.

Here O
3Rxy is the tilt of reference mirror or

rotation of off-axis hologram,
fAx/y is the tilt of the aspheric sur-

face,
EAxIy is the decentering of the aspheric

surface, -

EHxIy is the decentering of the holo-
gram-,

A2 .. A3 3 are the measured Zernike coeffi-
cients, and

(aA2)I(aflRX) are the calculated derivatives
... (A 33)/(aemy) from ray tracing.
For small adjustment errors linearity can be assumed,

so that the inversion delivers accurate results. Stronger
errors will need an iterative process such as the damped
least-squares method, to arrive at the measured coef-
ficients by ray tracing.

To increase the accuracy more higher-degree coeffi-
cients can be added as far as they are significant. In this
case the set of linear equations contains more equations
than unknown variables, and a least-squares fit algo-
rithm has to be used for the inversion. Once the ad-
justment errors have been calculated, their contribution
to the wave front can be easily determined in terms of
Zernike polynomials which can be subtracted from the
measured wave front.

The algorithm described above works well assuming
an aspheric surface with mainly rotational symmetric
errors. Care should be taken when testing surfaces with
stronger asymmetric errors. In this case shape errors
could be interpreted as adjustment errors leading to an
overcompensation of the odd terms.

In Figs. 3-6 some examples of adjustment error
compensations are presented. A vertical cross section
was evaluated by the automatic fringe analysis program
using 1024 pixel resolution. Using the above-described
calculation the adjustment errors were determined with
respect to the y direction. The x direction was ne-
glected for simplicity. Substracting the odd terms due
to decentering and tilt leads to identical curves of shape
error.

- t P uy

.A eVI. Calculation of Actual Aspherical ParametersEA yb e f l o d
3
A. Ahmost the same procedure can be followed to ex

flAy information about the shape errors of the asp]
EHx surface under test, such as errors of vertex radius

__.. aA33 aA 33 / Hy asphericities. The main difference is in the choi
013

Ry OEHx OEHy/ \f~y / Zernike terms, since rotational symmetric prob

tract
theric

sand
ce of
lems

should be solved. Ziernike polynomials witn m = U up
(13) to the 10th degree are listed in Table II.
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a

b d

A

Fig. 3. (a) Interferogram of 0.01-mm decentered aspheric; (b) interferogram of 0.10-mm decentered aspheric; (c) vertical cross section through

wave fronts for 0.01-, 0.03-, 0.05-, and 0.10-mm decentered aspherics; (d) compensated curves from (c).
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Fig. 4. (a) Interferogram of three units tilted aspheric; (b) interferogram of thirty units tilted aspheric; (c) vertical cross section through wave

fronts for three, nine, fifteen, and thirty units tilted aspheric; (d) compensated curves from (c).

For example, calculating the derivatives of the Zemnike

coefficients with respect to vertex radius r and eccen-
tricity e by ray trace leads to a set of linear equations:

/0A 5 8A5

A15J = .A
13 0A 1

J () (14)

r e

with A5,A13 representing the measured coefficients, and
Ar and Ae being the equivalent changes in aspherical
parameters according to the linear model. For larger
coefficients linearity might not hold, so that optimiza-
tion techniques must be used. More equations than
unknown parameters may be added to increase the ac-
curacy; however, polynomial expansions beyond the
10th or 12th degree are hardly ever significant.
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Fig. 5. (a) Interferogram of 0.1-mm decentered hologram; (b) interferogram of 1.0-mm decentered hologram; (c) vertical cross section through

wave fronts for 0.1-, 0.3-, 0.5-, and 1.0-mm decentered holograms; (d) compensated curves from (c).
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+6A~~~~~~~~~~~~~~~16
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Fig. 6. (a) Interferogram of 0.03-mm decentered and six units tilted aspheric with 0.1-mm decentered hologram; (b) interferogram of 0.06-mm

decentere and fifteen units tilted aspheric with centered hologram; (c) vertical cross section through wave fronts from (a) and (b); (d) compensated

curves from (c).

Calculating the actual aspherical parameters assumes
a perfectly focused aspheric surface, otherwise the effect
of defocus will be misinterpreted as shape error.

Figure 7 shows an example of a 1-D and 2-D analysis
of an aspheric germanium surface. According to the

cross-sectional measurement in Fig. 7(c) a calculation
of the actual values for r and e was carried out. The
residual deviations from the best-fitting asphere are
shown in Fig. 7(d).
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Table II. Rotational Symmetric Zernike Polynomials up to the 10th

Degree

U1 = 1
Ur = 2r 2 -1
U1 3 = 6r

4
- 6r

2
+ 1

U2 5 = 20r
6

- 30r4 + 12r
2

- 1
U41 = 70r- 140r6 + 9Or4 -20r 2 + 1
U61 = 252r

10
- 630r

8
+ 560r

6
- 210r

4
+ 30r

2
- 1

C

_. _.. - . . 1 1 ,., e . I ... .
V .", . .v . _L;

I 11 

-7 pOT I 09A

L* .. * . .. ... 1

- - - 1 714 -7 .I i . -O 9
Fig. 7. (a) Interferogram of aspheric Ge surface; (b) 2-D analysis of wave front; (c) cross section through wave front from (b); (d) deviations

from best-fitting asphere.

VIl. Conclusion

A Twyman-Green arrangement to test aspheric sur-
faces using partial lens compensation and computer-
generated holograms has been described. Auxiliary
lenses used to adapt the aperture of the test surface as
well as to compensate some of the asphericity and to
image the test surface onto the CGH need not be perfect
when the interferometer is calibrated with the help of
a well-known precise spherical mirror. In this case
automatic fringe analysis is used to measure the error
wave front arising from imperfect components and
adjustment errors within the setup. A corrected holo-
gram is then generated to compensate these errors.
Fringe analysis has been carried out by a static method
including tilt of the reference mirror to introduce a
carrier frequency from which the wave front can be
calculated by Fourier transform algorithms. A three-
phase step method has been reported allowing closed
fringes to be evaluated. Taking into consideration that
only odd terms arise when the test surface or the CGH
is tilted or decentered, Zernike polynomials can be used
to communicate with a ray tracing program to calculate
the actual adjustment state. Since mostly small errors
are introduced, linearity will hold leading to fast results
of tilt and decentering errors, whose influence can be
compensated by subtracting the odd terms.

*Shape errors of the surface under test, such as errors
of vertex radius, eccentricities, and higher-order
asphericities, are detected in the same fashion using the
rotational symmetric terms of the Zernike expansion.

This research was supported by a BMFT grant.
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Books continued from page 2599

are also calculated. Finally, Chap. 11 examines field problems in
gravitational fields. Examples are given of optical rotation sensors
that are important in inertial navigation systems in aircraft and
spacecraft and also in surveying. The mechanical gyroscope is now

being replaced by an optical device where laser light, forced to travel

in a circle, substitutes for the mechanical rotor. The result is an in-
strument based on relativistic ideas, which, without moving parts,
gives a resolution of the order of 10-15 '/h.

On the whole this book is of very high quality, and the formulas and

equations give the impression of high mathematical exactness.
Central to the work is the electrodynamics of moving bodies, which
is of great relevance in telecommunications, e.g., in the interpretation

of Doppler spectra from moving radar targets and to electric machine
design. Relativity allows formulation of these problems, in a clear
and precise fashion.

It is stated in the Preface that "the applicational approach used in
the text should be acceptable to space engineers, nuclear engineers,
electrical engineers and more generally applied physicists." I agree

with this statement but as an engineer I must stress that this is a book

of mathematical equations that are not that easy to understand or use

in practice. I also find it rather frustrating that no solutions are given

to the 118 problems presented.
It is also stated that the text has been written at the first-year

graduate-student level and assumes an intermediate mathematical
background as well as a reasonable foundation in electromagnetic
theory. Again I want to point out that a great deal of mathematical
and theoretical knowledge is needed to absorb the useful information

that is presented in this interesting book. The list of some hundred
references is impressive and will certainly be useful for deeper pene-

tration into the subject.

NILS ABRAMSON

Self Organization and Management of Social Systems: In-
sights, Promises, Doubts, and Questions. Edited by H. ULRICH
and G. B. PROBST. Springer-Verlag, New York, 1984. 155 pp.

$23.00.

Fluctuations and Sensitivity in Nonequilibrium Systems.
Edited by W. HORSTEMKE and D. K. KONDEPUDI. Springer-
Verlag, New York, 1984. 273 pp. $28.00.

This is a review of two recent publications from Springer.

SELF-ORGANIZATION AND MANAGEMENT OF SOCIAL
SYSTEMS is a postsymposium report of a conference held at the
University of St. Gall, Switzerland, 14-16 Sept. 1983. It is yet another

in the series on Synergetics. The volume might have been entitled

"whither cybernetics"; it contains nothing of specific interest to the
workers in the physical sciences. Nonetheless, I enjoyed reading the

book, especially the lead article by Von Foerster. There were clear
common threads throughout and considerable candor.

FL UC TUA TIONS AND SENSITIVITY IN NONEQ UILIBRI-
UM SYSTEMS is billed as a Proceeding in Physics 1, suggesting the

initiation of yet another series from Springer. This book comes from

a conference held in Austin, Tex., 12-16 Mar. 1984. There are optics

articles from Rosenberger et al. and Abraham, both covering material

that can be found elsewhere. For those in optics who have a general
interest in nonlinear systems dynamics or special interests in non-
equilibrium bistability and chaos, this book may be of interest. I have

found it to be quite useful. It covers a wide range of problems that
have parallels in optics. It is highly technical, and there are neither
decent overviews nor outstanding individual articles, but the general
level of presentation is comprehensible. There are several articles
on the effects of colored noise, which is of current interest to many

people working in laser physics.

FREDERIC A. HOPF
continued on page 2620
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