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Abstract

There have been increasing efforts to relate drug efficacy
and disease predisposition with genetic polymorphisms.
We present statistical tests for association of haplotype
frequencies with discrete and continuous traits in sam-
ples of unrelated individuals. Haplotype frequencies are
estimated through the expectation-maximization algo-
rithm, and each individual in the sample is expanded into
all possible haplotype configurations with correspond-
ing probabilities, conditional on their genotype. A re-
gression-based approach is then used to relate inferred
haplotype probabilities to the response. The relationship
of this technique to commonly used approaches devel-
oped for case-control data is discussed. We confirm the
proper size of the test under Hy and find an increase in
power under the alternative by comparing test results
using inferred haplotypes with single-marker tests using
simulated data. More importantly, analysis of real data
comprised of a dense map of single nucleotide polymor-
phisms spaced along a 12-cM chromosomal region al-
lows us to confirm the utility of the haplotype approach
as well as the validity and usefulness of the proposed

statistical technique. The method appears to be success-
ful in relating data from multiple, correlated markers to
response.

Copyright© 2002 S. Karger AG, Basel

Introduction

Haplotypes may be directly responsible for the ob-
served variation in the trait of interest through the com-
bined effects of multiple sequence variants on promoter
activity or protein structure and function [8, 10, 19]. Even
when a single, presumably unobserved polymorphism
accounts for the trait variation, nearby markers may form
haplotypes that are in much higher linkage disequilibrium
(LD) with that functional polymorphism than are the
individual markers because the disequilibrium between a
single site and whole haplotypes includes all pairwise as
well as higher order disequilibria terms [3]. Consider the
following simplified example of a population with equally
frequent three locus haplotypes: 4,B,C, A2B,Cy, A1 B, Cs,
A,B,Cy Here, the LD between loci pairs A, Band A, C is
zero. Still, locus A is in complete LD with haplotypes
formed by loci B and C (the BC pair here becomes a ‘sup-
er-locus’ with four alleles). The issue of haplotype utility is
nevertheless controversial [6]. Analytical results and pow-
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er computations of Akey et al. [1] suggest that haplotypes
can significantly improve power of association mapping.
In contrast, simulation studies by Long and Langley [24]
and Kaplan and Morris [20] found that single marker tests
provide at least as much power. Fallin et al. [13] used sta-
tistically reconstructed haplotype frequencies for relating
Alzheimer’s disease with multiple single nucleotide poly-
morphism (SNP) markers on chromosome 19. They
found examples of haplotype/disease associations that
were not identified using single markers. Their results
provide an example where haplotypes are more informa-
tive than a single-point analysis, even if the phase infor-
mation is recovered by statistical techniques.

In this paper we focus entirely on data from unrelated
individuals that do not provide full information about the
gametic phase of alleles at multiple markers. There have
been many descriptions of haplotype frequency inference
when single-locus genotypes are scored. The expectation-
maximization (E-M) algorithm, formalized by Dempster
et al. [7], is a popular iterative technique for obtaining
maximum likelihood estimates of sample haplotype fre-
quencies. Little and Rubin [23] provided a general de-
scription of the E-M algorithm for multinomial data. Hill
[18], MacLean and Morton [26], Hawley and Kidd [17]
and Chiano and Clayton [4] discussed different variations
of the algorithm. Weir and Cockerham [36] suggested that
in the case of two loci it is feasible to avoid iterations and
obtained an explicit equation for the maximum likelihood
estimate of gametic frequencies. They pointed out situa-
tions when no real-valued solutions exist, and therefore
no iterative technique may provide valid maximum likeli-
hood estimates of haplotype frequencies. Therefore, the
E-M algorithm should be used cautiously. Nevertheless,
Fallin and Schork [14] performed extensive simulations
showing the accuracy of the E-M algorithm for inferring
haplotype frequencies on average, even when the random
union of gametes assumption (also called Hardy-Wein-
berg equilibrium, or HWE) does not hold. Long et al. [25]
discussed tests for LD and higher order interactions using
E-M-inferred haplotype frequencies, giving elaborate de-
tails for implementing E-M computations in the three-
locus case. Excoffier and Slatkin [11] and Slatkin and
Excoffier [31] studied the importance of E-M assump-
tions and behavior of tests for disequilibrium using esti-
mated frequencies.

Several authors have proposed a test that relates sam-
ple haplotype frequencies derived using the E-M algo-
rithm with a discrete response [15, 40, 41]. This common-
ly used method is a two-stage procedure. First, haplotype
frequencies are estimated using the E-M algorithm and
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sample likelihoods are evaluated in cases, controls, as well
as in the pooled sample (L;, L,, L3). Then the likelihood
ratio (LR) test statistic, x> = =2 In[Ls/(L; L»)], is calcu-
lated. This statistic has an asymptotic %2 distribution with
degrees of freedom given by the number of haplotypes
compatible with the sample minus one [40, 41]. The vari-
ance of this statistic may be inflated due to E-M estima-
tion. Instead of utilizing the %2 approximation, the null
distribution of %2 can be obtained by randomly shuffling
the affection status among individuals and recalculating
haplotype frequencies with corresponding likelihoods in
cases and controls [15, 41]. Significance levels are given
by the proportion of times when shuffled data produce as
extreme or more extreme values of the y2 statistic than the
original data set.

In this article we propose an association test for the
situation when the response is either continuous, or dis-
crete as in previously published research, and discuss sta-
tistical relationships to previously proposed LR approach
for case-control samples. The method, briefly stated, is to
relate the inferred haplotype frequencies to the observed
response using a regression model. The test for association
then uses an F test for a specialized additive model. The
significance level can be evaluated using the F distribu-
tion or a permutation test.

The regression approach that relates probabilistically
assigned predictors with trait values is not entirely new
[16]. Here we present theoretical justification of the
regression model by establishing its asymptotic superiori-
ty over a test based on the comparison of mean response
values across haplotypes as well as the equivalence of both
approaches under the null hypothesis (Appendix 1). Sasie-
ni [29] made similar observations for the case of two
alleles and binary phenotype and concluded that Armi-
tage’s trend test should be preferred over a 2 x 2 contin-
gency table test based on allele counts. Thus, we extend
Sasieni’s results to the multiallelic case and continuous
phenotype.

We study both the null hypothesis (Hy) error rates and
power of the method using both simulated and real data.
We confirm proper size of the test under Hy and find an
increase in power under the alternative by comparing test
results using inferred haplotypes with single-marker tests
using simulated data. More importantly, analysis of a
large real data sample using a dense map of SNP markers
distributed across a 12-cM chromosomal region allows us
to confirm the utility of the haplotype approach as well as
the validity and usefulness of the proposed statistical
technique.
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While we concentrate on haplotype frequencies ob-
tained by the E-M algorithm [see 4 and 11, for a review of
the general multilocus case], the method we propose can
easily accommodate frequencies obtained by different
statistical techniques [32]. We are currently working on
estimation techniques that will incorporate situations
when the assumption of random union of gametes does
not hold. One limitation of the the E-M-based approach is
that it does not allow the examination of effects due spe-
cifically to pairs of haplotypes, or ‘diplotypes’, which is a
consequence of the HWE assumption. The diplotype fre-
quencies can only be reconstructed from the products of
estimated frequencies of haplotypes. Nevetherless, bio-
logically realistic models (e.g. dominant or recessive mod-
els) that are not specifically haplotype driven, often result
in induced (i.e. marginal) haplotype effects. From a statis-
tical point of view, haplotype analysis can be considered
as a way of reducing degrees of freedom. With full diplo-
type analysis, /& haplotype categories result in (k2 + 1)/2
diplotype combinations, making the large number of pa-
rameters a concern.

Methods

Statistical Techniques

The rationale for the regression test developed here stems from its
asymptotic equivalence with previously proposed approaches. Ha-
plotypes inferred in the case-control design discussed above can be
arranged in a 2 x L table. The two rows in the table represent the
affection status and L columns correspond to the haplotypes compat-
ible with observed genotypes in a sample of size N. Entries in the
table are E-M-inferred haplotype counts that add up to 2N. If identi-
fication of haplotypes were certain, the %2 test would have been anal-
ogous to the usual test of heterogeneity of allele frequencies between
two groups at a multiallelic marker [39]. The test can be carried out
using the LR test or the asymptotically equivalent test based on Pear-
son’s goodness-of-fit statistics [5, 30]. Note that the individual 0-1
response that indicates whether a subject belongs to the case or to the
control category is doubled, that is, each individual in a sample is
counted twice. The approach is nevertheless valid if population
HWE holds, because the multinomial distribution of allele counts is
maintained [see 29, for details].

It is straightforward to show that the x2 goodness-of-fit test statis-
tic is a simple linear function of the F statistic obtained from the
analysis of variance (ANOVA) where the response is binary [34]. In
fact, p values obtained from both tests are almost identical except for
very small sample sizes. Therefore, in the case of continuous
response it is tempting to apply the equivalent approach, the
ANOVA with doubled sample size. We demonstrate, however (see
Appendix 1), that while this approach is statistically valid, a more
powerful test is available through our proposed haplotype trend
regression (HTR). In addition to superior power, our HTR approach
naturally extends to the case when haplotype frequencies are not
directly observed.

Haplotype Trend Regression

To explain the HTR method simply (more details are given in
Appendix 1), consider a simple example of three individuals with
response values denoted as Y, Y3, and Y3 that have unambiguously
resolved haplotype pairs //hy, hy/hs, and hy/h3. The regression equa-
tion E(Y) = DB is then

Y
Elvn!=
Y3

In the case where haplotypes are statistically inferred, the entries
in the matrix D will be the inferred conditional probabilities of
haplotypes given the genotype. Specifically, for haplotypes 4, and /3,
the conditional probability of the pair (%, /3) for the ith individual
with genotype Gj is

W o h hs

1 1 0 0 H
10 12 12 El
1 172 0 12 2
B3

Pr(G; | ha, h3)py, Di,
> Pr(G; | huy 1) Dh, Dh,

u,v

Pr(hy, h3|G)) =

where p;, pj, denote haplotype frequencies. These probabilities corre-
spond to columns 2 through 4 in the matrix D above. The probability
Pr(G; | hy, hj) is either 0 or 1, and so the D values for haplotypes
incompatible with the ith subject genotype are equal to 0, and they
are equal to %2 or to 1 otherwise for the case when haplotype identifi-
cation is certain. In the case when haplotype frequencies are statisti-
cally inferred, the entries in D corresponding to haplotypes are no
longer 0, Y2 and 1, except for homozygous and single heterozygous
subjects, reflecting the phase ambiguity. We test for the association of
haplotypes with trait using the overall null hypothesis Hy: B, = = 5
=0 and the F test or its permutational analogue. We test the individ-
ual jth haplotype effect using the same approach using the null
hypothesis Ho: fj= 0. The permutational version of the HTR requires
the F statistic value for the original data set as well as F values for
multiple data sets created by shuffling the response vector Y. The
significance level is the proportion of times the F value for shuffled
data sets is at least as large as the original. This computation can be
done very efficiently, since most of the steps in obtaining F values for
shuffled data can be pre-computed. For example, for calculating
parameter estimates, we need the matrix P = (D'D)-'D’ to get f§ =
P’Y. This matrix is invariant under shuffling and only needs to be
computed one time.

Data Description and Laboratory Methods

137 individuals were available for analyses. There were 45 unre-
lated individuals, consisting of founders from families that were col-
lected in Utah, from the CEPH collection (http://landru.cephb.fr/).
Additionally, we included 92 unrelated Caucasian volunteers col-
lected at GlaxoSmithKline, Research Triangle Park, N.C. 551 or-
dered SNPs in a 12-cM region on chromosome 12 were genotyped
using a variety of methods, including single base chain extension
(SBCE), TagMan, oligonucleotide ligation, ABI sequencing, and
polymerase chain reaction-restriction fragment length polymor-
phism (PCR-RFLP). Marker order was determined for the majority
of SNPs by PCR-based scoring for the presence or absence of individ-
ual SNPs on BAC clones comprising an overlapping clone contig cov-
ering the 12-cM region with an average 4-fold redundancy of cover-
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age and a mapping resolution of 40 kb pairs. Approximately one
third of the SNPs locations were further refined to single base pair
resolution on DNA sequence contigs ranging in size from 100 to
800 kb. The minor allele frequency range was 0.0125-0.5. The allele
frequency distribution did not differ significantly from the uniform
(0,1) distribution. 48% of the marker pairs separated by 50-100 kb
and 68% of the markers separated by 30-50 kb were in high LD as
measured by statistically significant correlation between alleles of at
least 0.3 [34]. For this data set this value corresponds to the average
value of Lewontin’ D’ of 0.75 [21]. The overall distribution of marker
positions was consistent with a uniform distribution.

Type I Error Rates Using Samples from Simulated Population

Frequencies of Haplotypes

We evaluated type I error rates for several scenarios which
included haplotype frequencies derived from markers in linkage dis-
equilibrium, from markers in linkage equilibrium, and from markers
in linkage equilibrium but not in HWE in addition to several
response distributions. Population haplotype frequencies were de-
rived from the symmetric Dirichlet distribution, Dir(y,7....,7). This
approach implicitly assumes a drift-mutation equilibrium [38]. As ¥
increases, the expected population haplotype diversity increases and
the expected population LD decreases [see 14 for a similar ap-
proach]. The dimension of the Dirichlet distribution corresponds to
the number of haplotypes. A single sample from this distribution gen-
erates a vector (p) of population haplotype frequencies with the prop-
erty that Zp; = 1. Each component of the vector is then associated
with a string that describes individual alleles at each SNP. For exam-
ple, for two biallelic markers p has four frequency components with
associated strings (‘11°,°12°,°21°,22°). Once p is generated, a random
sample of actual haplotypes can be obtained from it by multinomial
sampling. Assuming HWE, sampled haplotypes are randomly paired
to form individuals. We used the same simulation setup to assess
power loss due to gametic phase ambiguity (Appendix 2). A complete
linkage equilibrium (LE) situation was modeled by sampling individ-
ual population allele frequencies from a uniform distribution. Fur-
ther, the population genotype frequencies under LE are formed from
products of frequencies of alleles = Hardy-Weinberg disequilibrium
deviations. The deviations were set to either zero (HWE) or to the
value that could be detected by the exact test 60% of the time in
samples of 100 individuals [see 34, for discussion of the power calcu-
lations]. Each time the population frequencies were generated, we
sampled genotype data for 25-100 individuals and replicated this
5,000-10,000 times. Response data was sampled from the binary,
normal (0,1), mixture of normals, (0,1) and (5, 25), and normal (0,25)
truncated at -5 and 5 distributions. For each replicate, we calculated
the overall F test and corresponding asymptotic p value. We used 10
random E-M restarts to decrease chances of convergence to a local,
nonglobal, maximum. The estimated type I error rate was the propor-
tion of times that the null hypothesis was rejected at the 0.05 level.

Statistical Power Assuming an Explicit Population-Genetic

Model (‘Population Isolate’)

Less extensive, but more realistic simulations assumed a drift
with admixture population-genetic model that we used to form the
isolated population described in [2, 33]. In the model used in the
present study, we considered two starting populations (100 and
10,000 individuals for the isolate and the general populations) with
no ancestral LD. Thus, the LD in our model was a consequence of the
interplay of genetic drift (20 generations), migration from the larger
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(general) population into the isolate (first 8 generations, with a num-
ber of migrants equal to 5% of the isolate size), and recombination
during the history of the population isolate. The initial values of pop-
ulation allele frequencies were generated from the uniform distribu-
tion. The final generation of the isolate consisted of 10,000 individu-
als. We performed 300 separate evolutions.

The genetic map was the same for all 300 evolutions. The first 50
of 200 SNPs were uniformly and randomly placed in the 100-kb ‘can-
didate’ region. 10 of 50 markers (markers 15-24) contributed to the
value of the trait. These 10 markers defined multilocus genotypes
with population means of response sampled from the normal (0, 50)
distribution. Each individual in the population was given a response
value sampled from the normal distribution with the population
mean determined by the person’s 10-SNP genotype and 62 = 10. The
remaining 150 markers were uniformly and randomly placed on
another 300-kb region and assumed to be unlinked to the first seg-
ment, thus providing means for evaluating the type I error rate. At
the final generation, we sampled 100 random individuals from the
isolate population for the HTR analysis. Markers directly affecting
the response were removed from the analysis (i.e. assumed to be
unobserved). Significant LD was observed throughout both regions
dropping from the average correlation of 0.34 for neighboring mark-
ers to 0.1 for markers separated by 100 markers. In terms of D’ these
values were 0.80 and 0.49, correspondingly. We used a ‘sliding win-
dow’ approach, with 1-7 neighboring markers forming haplotypes.
Empirical power was obtained by calculating the proportion of times
in the 300 experiments when at least one of the sliding window p
values starting from marker 43 (last 7 markers) in the response-
affecting region was <0.001 for each window size. We chose these 7
distal markers to avoid high LD with the functional markers (mark-
ers 15-24). We also plotted the —log p value versus the marker map
for various window sizes.

Type I Error Rates and Statistical Power Using Real Data

We examined the relative merits of haplotype-based tests using
the data set of 551 markers in a 12-cM region typed on 137 individu-
als to provide a sampling of chromosomes from a real population.
We used the marker genotypes to assign individuals to case and con-
trol categories. Our goal was to compare the performance of the HTR
versus the likelihood ratio test (LRT) mentioned above. The binary
phenotype was formed as follows. For a given marker, we assumed
two penetrance parameters, y for the genotype ‘11’ with frequency
Py, and nfor the genotypes ‘12’ and ‘22’, or vice versa. To imitate the
case-control design with equal numbers of cases and controls, we set
1= 0.1, and obtain the probability of an ‘11’ individual being a ‘case’
as

y= 1/2-n(1-P11)
Py

from 1/2 = yPy1 + n(Py; + Py), provided Py = 4/9. If Py < 4/9, we
switch to the model 1/2 = nPy; + y(P; + Py,) to satisfy restrictions
that 0 < n, ¥ < 1. An individual was labeled as a ‘case’ if a random
draw from the uniform (0, 1) distribution is smaller than the probabil-
ity for this individual to be a ‘case’ given their genotype at a particu-
lar marker. Each marker in the data set was converted into a binary
response gene using this procedure. We test for association of this
‘response gene’ with nearby markers or haplotypes using the LRT
with permutation-based test statistic and both, asymptotic and per-
mutation-based HTR using 3,200 shufflings [27].
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Empirical power and error rates were obtained using the follow-
ing algorithm fori=1, ..., 551:

(1) Convert the ith SNP into a ‘response’ gene as described
above.

(2) Estimate frequencies of haplotypes using 20 markers on either
side of the response gene using nonoverlapping windows of sizes of
1-8 markers. Note that a window size of 1 corresponds to an allelic
test.

(3) Run asymptotic and permutation versions of HTR as well as
the LRT using the response variable and the estimated haplotype
frequencies for the neighboring markers, and save the obtained p val-
ues (p,) for each analysis.

(4) Randomly permute alleles at the ‘response’ marker, run both
asymptotic and permutation versions of HTR as well as the LRT
again, and save the resulting p values (py).

The set of p,s from the 551 experiments was used to estimate the
empirical power, and the corresponding set of pys was used to esti-
mate the empirical type I error rate for each window size. For a given
significance level, o, the power is the proportion of p, < @ and the
type I error rate is the proportion of py < @ among all tests for a given
window size.

Results

The simulations performed to evaluate type I error
rates (scenarios including haplotype frequencies derived
from markers in LD, from markers in LE, and from mark-
ers in LE but not in HWE with several response distribu-
tions) confirm that the type I error rates of the method do
not exceed the nominal 5% level. Asymptotic properties
of the test are expected to be adversely affected as the
amount of LD decreases, because it is accompanied by the
increased diversity of sample haplotypes [14]. Tables 1-3
present worst case situations of complete LE under HWE
as well as under deficit and excess of heterozygosity. In
most cases, the type I error rate is near the nominal rate
(5%). One exception is the case of a low (10%) frequency
of one of the categories of the binary phenotype with a low
sample size (25). Despite this, the method maintains
proper size even when the response variable is not nor-
mally distributed.

We used the population isolate simulations to assess
power. We used a ‘sliding window’ approach, forming
haplotypes with 1-7 neighboring markers, and plotting
—log(p value) on the y axis and the genetic map along the x
axis. Figures 1-4 show the results obtained from analysis
of 1 of the 300 replicates for window sizes of 1, 3, 5 and 7
using p values from the asymptotic F test.

We obtained empirical power values for these experi-
ments by calculating the proportion of times when at least
one of the p values in the distal region (markers 43-49)
exceeded the stringent 0.001 significance level. These val-

Haplotype Trend Regression

Table 1. Type I error under HWE and five marker haplotypes

Response Sample size

25 50 100 500
0/1, Pr(0) =0.25 0.060 0.049 0.037 0.050
0/1, Pr(0) = 0.50 0.030 0.023 0.025 0.035
Normal 0.044 0.051 0.049 0.050
Normal mixture 0.045 0.038 0.041 0.045
Truncated normal 0.042 0.039 0.048 0.049

Table 2. Type I error under excess of heterozygotes and five marker
haplotypes

Response Sample size

25 50 100 500
0/1, Pr(0) =0.25 0.056 0.049 0.044 0.049
0/1, Pr(0) = 0.50 0.033 0.033 0.036 0.039
Normal 0.049 0.056 0.053 0.051
Normal mixture 0.046 0.045 0.047 0.048
Truncated normal 0.045 0.043 0.044 0.047

Table 3. Type I error under deficit of heterozygotes and five marker
haplotypes

Response Sample size

25 50 100 500
0/1, Pr(0)=0.25 0.070 0.049 0.045 0.049
0/1, Pr(0) =0.50 0.048 0.033 0.038 0.040
Normal 0.048 0.050 0.050 0.049
Normal mixture 0.046 0.043 0.044 0.047
Truncated normal 0.041 0.047 0.038 0.049

ues were 0.221, 0.452, 0.585, 0.749, and 0.579 consid-
ering haplotypes formed by 1, 2, 3, 5 and 7 markers in the
region defined by markers 43-49. When all markers are
considered, the power values increase (0.726, 0.860,
0.953, 0.971, 0.933), however the relative ranking re-
mains the same. Since none of these markers were directly
affecting the response, the increase in power is attribut-
able to higher LD between the marker haplotypes and the
unobserved haplotypes related to the response. In this
study, five-marker haplotypes exhibited the highest power
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Fig. 1. Sample -log(p values) against the marker map plots for window size of 1 using p values from the asymptotic
Ftest.
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Fig. 2. Sample -log(p values) against the marker map plots for window size of 3 using p values from the asymptotic
Ftest.
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Fig. 3. Sample —log(p values) against the marker map plots for window sizes of 5 using p values from the asymptotic
Ftest.
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Fig. 4. Sample -log(p values) against the marker map plots for window sizes of 7 using p values from the asymptotic
Ftest.
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Table 4. Power values (H,) and error rates

(Hy) for the real data set Haplotype size
1 2 3 4 5 6
HTR-A (Hp) 0.056 0.034 0.033 0.029 0.022 0.027
HTR-P (H)) 0.048 0.051 0.050 0.051 0.048 0.049
HTR-A (H,) 0.321 0.352 0.373 0.412 0.408 0.427
HTR-P (H,) 0.315 0.365 0.396 0.449 0.448 0.491
LRT-P (H,) 0.310 0.357 0.388 0.420 0.444 0.436

A = Asymptotic test; P = permutational test.

reflecting the trade-off between the level of LD with func-
tional haplotypes and the increase in degrees of freedom
associated with longer haplotypes. We did not attempt to
correct for the multiple testing, but simply recorded the
minimum p value in the region. Still, haplotype-based
tests show an increase in power. We note that the increase
in power is more dramatic when only the marker 43 is
used for single-marker tests, markers 43 and 44 for two-
marker tests and so on.

The proportion of rejections in the unlinked region
(150 markers to the right from marker 50) showed a slight
increase of the type I error measured as the number of
rejections over the number of tests across all markers and
simulations. The increase was up to about 0.0017 for the
0.001 level and up to about 0.056 for the 0.05 level for all
window sizes. This small increase is possibly due to to
nonequilibrium conditions at the final generation (as a
result of a relatively small number of generations and
small population size during the evolution) as well as to
increased probability of shared genealogy for the individ-
uals of a similar phenotype. Devlin and Roeder [8] argue
that the inflation of the type I error due to shared genealo-
gy (‘cryptic relatedness’ in their terminology) can be rath-
er substantial.

The chromosome 12 data set provides us with a unique
opportunity to compare statistical methods and the utility
of the haplotype approach using experimentally deter-
mined genotype data to estimate haplotypes on chromo-
somes drawn from a real human population, without hav-
ing to resort to assumptions of simulation models. Table 4
summarizes the type I error and power estimates for the
analysis of the chromosome 12 data set. We found the
asymptotic LR test overly conservative for the haplotypes
formed by three or more markers, because of the large
degrees of freedom associated with rare haplotype classes
(data not shown). We also found that a simple adjustment
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to the degrees of freedom by subtraction of the number of
haplotypes with very low frequency leads to an anticon-
servative test. Fallin [12] reported similar observations.
Therefore, we based our comparisons on the permutation-
based version of the LR test. Note that the type I error
estimates for the asymptotic or permutational HTR do
not exceed 0.05. The asymptotic error rates appear to be
conservative because of the increase in degrees of freedom
contributed by rare haplotypes, as it is the case for the
LRT [12]. The type I error rates for the permutation LRT
have been studied extensively [12] and are not reported
here. The power estimates for the LRT and HTR are simi-
lar with power increasing for an increased window size.
While all values in table 4 were obtained using nonover-
lapping windows to decrease the correlation between
tests, we observed very similar results using sliding win-
dows that shift one marker at a time (data not shown).

Discussion

The first simulation setup (Dirichlet-derived popula-
tion frequencies) allowed us to investigate critical as-
sumptions of the method without modeling population
genetic evolution explicitly. We verified that the type I
error is maintained for various levels of LD as well as for
worst situations such as LE and nonnormal response. The
asymptotic version of HTR appears to be quite robust,
performing well under small sample sizes and various
response models, even for binary data. The use of the
binary response is motivated by the asymptotic equiva-
lence of the F test for the one-way ANOVA and the y? test
for contingency tables, as discussed above. Li [22] pre-
sented related asymptotic theory results justifying F tests
for dichotomous populations and confidence intervals for
the coancestry coefficient [34].
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The population isolate simulations were designed to
compare the power and type I error rates for single marker
and haplotypes of 2—-7 markers. This setup gives us the
ability to investigate type I error rates and power using
statistically independent realizations of the same evolu-
tionary process. This way, both statistical and actual
genetic sampling [34] are taken into account. Although it
is a more realistic model, it is also computationally
demanding. Consequently, we only studied the case of a
normally distributed phenotype. The phenotypic varia-
tion was modeled through the complex action of a single
gene. The phenotypic variation is influenced by multi-
marker genotypes rather than haplotypes, therefore the
model is not specifically in favor of haplotype tests. The
type I error rates from the unlinked region obtained as
averages over independent evolutions confirm the validi-
ty of the power comparisons for the haplotypes of differ-
ent sizes. By looking at the minimum p value for markers
within the region including markers 43-49, we are biasing
our results toward haplotypes formed by smaller numbers
of markers. Because the sliding window approach results
in seven single-marker tests, six two-marker haplotype
tests, etc. down to a single seven-marker haplotype test,
only the seven-marker haplotype test power values are not
inflated. An alternative approach is to consider only the
marker 43 (which is the closest marker to the functional
sites) when doing single-marker tests, markers 43 and 44
for two-marker tests, and so on. However, because of the
variability of the LD, it is not guaranteed that the closest
marker provides the most powerful test. Moreover, it is
possible that the increase in power for the haplotype-
based tests could be attributable to one of the markers
forming the haplotype [20]. Therefore, such an approach
would not address our aim to illustrate that we are indeed
finding increased information with the increase of the
haplotype size.

The third experiment (chromosome 12 data) was de-
signed to investigate the power and type I error rates of
the HTR using data with actual allele frequencies, inter-
marker linkage and higher order disequilibria. While the
population genetic model simulation discussed above uti-
lized a continuous response, this study used a binary
response mimicking a case-control design. This allows us
to directly compare the HTR to the LRT. Furthermore,
this study allows us to determine the extent of the associa-
tion of haplotypes of different sizes for this particular data
set. The optimal window size for this data set appears to
be about five or six, corresponding to the average size of
haplotypes of about 100 kb. The power values drop to 46
and 44% for seven-marker and eight-marker haplotype

Haplotype Trend Regression

tests (these values are obtained only for the permutational
HTR). This ‘fixed number of markers’ approach is suffi-
cient for the purpose of comparison of methods and dem-
onstration of utility of the HTR. An alternative approach
is to construct haplotypes of a variable number of markers
in a window of fixed genetic distance.

The dominant/recessive model of response with a pen-
etrance parameter and a phenocopy rate was chosen to
model a complex trait using a situation that again is not
specifically favoring haplotype-based tests. Note that the
p values calculated from these experiments are not inde-
pendent. The first ‘replicate’ includes the first marker as
the ‘response gene’ along with neighboring markers. The
second replicate has the second marker as the response
gene with neighboring markers. Nevertheless, the same
data sets are used for the HTR and LRT, and the results
are comparable. Despite the nonindependence of repli-
cates, the asymptotic type I error rate of 0.025 shown for
the binary response in table 1 (sample size of 100) is simi-
lar to that shown in table 4 (0.022).

Power studies based on both simulated and real data
sets indicate an increase in power provided by haplotype-
based tests. The increase in power is less dramatic for the
real data. This is due to sparser map and smaller LD
between markers, as well as to limitations in genetic map
resolution, which may result in an incorrect order of some
of the markers. Results based on the chromosome 12 data
set (table 4) indicate that the permutational LRT and the
HTR have a similar power, with the permutational ver-
sion of HTR performing somewhat better than LRT. Nev-
ertheless, the HTR has at least two practical advantages:
(1) it is readily applied to continuous and binary pheno-
types providing unified approach for testing haplotype-
phenotype associations and (2) it is much faster as it does
not require haplotype frequency estimation at every shuf-
fling step. The second feature is particularly important as
the number of studies involving hundreds and thousands
of markers is increasing. Note that it is possible to tailor
HTR specifically to the binary phenotype by estimating
haplotype frequencies separately in cases and controls as
well as by using logistic regression instead of the ordinary
least squares technique. However, significance levels
would have to be obtained using the permutation test that
involves E-M estimation at each shuffling, as it is in the
case of the LRT. Future studies are needed to see if this
will result in a more powerful test. Another potential
improvement of the method would be to allow grouping
of ‘similar’ haplotype categories to reduce degrees of free-
dom. Such grouping can be based on phylogenetic similar-
ity between haplotypes and requires an evolutionary
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model. Seltman et al. [37] explored this approach in the
transmission/disequilibrium test framework.

Computer programs (written in C++) for the algo-
rithms described here are available from the first author
(DVZ) upon request. The programs are capable of han-
dling variable numbers of bi- or multiple-allelic markers
forming haplotypes. They also implement the overlapping
sliding window of markers approach for automatic pro-
cessing of large numbers of markers. Overall association
tests, tests for individual haplotypes, and mean response
values for haplotype classes are available with signifi-
cance levels obtained through either asymptotic tests or
tests based on permutation distributions.
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Appendix 1
The HTR and 2N-ANOVA Methods;
Asymptotic Comparisons

Here we show the general specification of the method and dem-
onstrate asymptotic equivalence to the double-N ANOVA approach
under H), thus establishing its validity. Then we will demonstrate
superiority of the HTR test under the hypothesis of association of
haplotype with response.

The 2N-Based ANOVA Model

Let X denote a haplotype that may take any one of L values. Indi-
vidual i has haplotypes X;; and Xj, and Y; is an associated pheno-
type. The ‘double-N> ANOVA model relating responses to haplotypes
is Y= Aa+e. Here AT = (A1, A1z, Aot, Ana, ..., Ant, Ay),where AlTj
is the 1 x L haplotype indicator vector for haplotype j of subject i.
For example, if Xj;= 2, then A];= (0 10.... 0), indicating that gamete j
has haplotype class 2. The elements of Y, denote corresponding phe-
notypic observations: Y(Td) = (Y1, Y1, Yo, Yo, ..., Yy, Yy), so that the
data are ‘doubled’. The test statistic for associating haplotype with
trait is the usual ANOVA F test

F = {SSANL—-1)}/{SSE/2N - L)}
with

SSA’ = Y(Td)<A(ATA)- IAT - %v Jon x 2N> Y
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and
SSE' =Y{, (Ly - A(ATA)-1AT)Y,)

where Joy x 2y denotes the 2N x 2N matrix of 1’s and I,y denotes the
2N x 2N identity matrix.

The HTR Model
This model is an N-dimensional regression model Y = DS + ¢,
where Y, is the trait value for individual i,

Y= (Y, Yy, ..., Yy),
DT: (Dl’ D2> wees DN)’ D,T = (Dil> DiZa () D[L)a
and where

1 if ith subject is homozygous for haplotype j
D;=4 1/2 ifith subject is heterozygous including haplotype j
0  otherwise

The test statistic for associating haplotype with trait is the usual
regression model F test

F" ={SSA”/(L-1)}/{SSE"/(N-L)}
with

SSA” = YT <D(DT]))_ ID7 - %JN X N)Y

and
SSE” =Y!(Iy- D(DTD)-'DY)Y

The haplotype regression model is that of Weir and Cockerham
[35] in the case of no dominance deviations. Specifically, these
authors assume the mean phenotypic response for genotype (j,k) is
Uik = 1+ o+ i + djy., where ¢ and oy denote additive effects and dj is
the dominance deviation.

Asymptotic Equivalence of HTR and 2N-ANOVA under H,

Letting & denote convergence in probability, we show that
F'—F % 0under H,.

The sum of the Y; corresponding to occurrences of haplotype j (4)) is

=23 v+3 T %,

iDN;; k#j iDN,

where Nj; denotes the set of individuals who are homozygous for 7,
and where Nj; denotes the set of individuals who are heterozygous (4,
hi). The corresponding ‘haplotype average’ is Y/* = Yi*/nj, where 7;is
Jjth haplotype count. Using this model, it can be seen that Y/* = u; +
0p(1) = 1+ a5+ 0,(1) where 0,(1) denots:s a term that converges to zero
in probability, and that NV2(Y* - n) S U where Y* denotes the vec-
tor of haplotype averages, U denotes a multivariate normal L vector,
and 5 is convergence in distribution. We also have that YZY/N 5
U® < oo and that MSE” % ¢®>0. Note that
o pr o MSE'MSA"~ MSE"MSA’
MSE”MSE’ ’
therefore if we can show MSA” — MSA’" = o,(1); MSE” - MSE’ =
oy(1); MSA” — Q for some random variable Q, then we can write
_0(1) MSA’ + 0,(1) MSE" _

F'-F = 0,(1)
MSE'(MSE’ + 0,(1))
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to establish asymptotic equivalence under Hy. The H, condition
implies that u, = u and for the remainder we assume without loss of
generality that g = 0, since all quadratic forms in previous expres-
sions are invariant to u. To verify MSE difference conditions, it will
suffice to show that corresponding differences in mean squares con-
verge in probability to zero. Considering SSA’ first, we note that
Y*=(ATA)-!ATY(,. Letting Do = ATA = diag{n}, we have
Y/ JAATA)~'ATY 4 = (Y*)'D,4Y*. Noting that J; x oxY(g) = 22Y; =
2J x nY, and that J; , ;DY = 2XY;, we have

1 1 — —
— YT, Ion s an Yoy = — (YD I o LDAY*.
Sy Y@dwona 2N( VD x 1Ds

Thus
— 1 —
SSA’ = Y+T<D‘——DJ D)Y+
(YY) A N I L x LDy
Dy DyJrx1JixiDy
2N 2N
- 2(N1/2(Y+)7) Ay (N1/2Y+)

and under HWE we have Ay = P — pp” + 0,(1), where P = diag{p;} and
p’ = (py, ..., pr), With p; denoting the population proportion of haplo-
type j. Now, considering SSA”, note that D'Y = DY, so that

= 2(N1/2(?+)’1) ( ) (N1/2Y+)

SSA” = (YH)T <DA(DTD)‘ D, - %VDAJL x LDA>Y+

- 2(N1/2(Y+)T)<E (@) 1Dy 1 M) (N12Y)
2N 2N 2N 2N 2N
=2 ( N1 /2(?+)’1)B 1\( N1/2Y+)

To find the limit of By, we first calculate that

1 HWE
—DTD'="P +ppT=0,1).
v pp’ = 0,(1)

Since P + pp! is invertable (positive definite in fact), under the ran-
dom union of haplotypes we have

ANMDTD)-"EE (P 4 pp7)-1 4+ 0,(1) =P~ - %JL i+ 0y1)
Thus
BN= P(P‘1 —%JL XL) P—%ppT+ Op(l)

=P -pp’ +0,1)

Hence, Ay - By = 0,(1). Using this and the result that N2(Y* - ) 4
U we see that

SSA’ = SSA” = 2NVAYH)T) [0,(1)] (NV2Y*) = 0,(1).

Next, consider

msgr = 2N (Y{wa) _ Y{mA(ATA)-lATY(m)
2N-L 2N N
Y'Y (Y9 D:ﬁ*}
= (1 +op(1 |:—— S Sl
(I +0,1)) % o
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and

i =1+ o1y [ Y TV DAODY DT

N
the difference is
D,(D’D)-'Dy _ &

MSE” - MSE' = 0,(1) + Y+T[
(1) + (Y) N N

+ 1 +
=0,(1) + (Y)T [Z(P - EppT) -P+ o,,(l)] Y}

= o0)(1) + (Y)T [P -pp’] Y}
=0y(1)

since Y5 & 0. Now, MSA” 4 O follows by noting that N'2Y* con-
verges in distribution and that the elements of By converge in proba-
bility, establishing equivalence of HTR and 2N-ANOVA tests under
H,.

Superiority of HTR over 2N-ANOVA under the Alternative
Denote V, = X pja; - (£ pja;)>. Then

L sS4 = (¥ BT L w(P-pp =V,
2N
and
1 ~ i P
— 884’ =(YHTANY* S 7,
N ( ) N a
Hence, SSA” — SS4’ % 1. Now when we take the ratio,

MSE' _MSE' -MSE" _ » Va
MSE” MSE"” *

2

. . F
implying the result 7 2 const>1.

Appendix 2
Power Loss due to Haplotype Phase
Uncertainty

Generally, statistical techniques used to recover phase informa-
tion will cause decrease in power as compared to the situation when
haplotype phase is directly observed. Douglas et al. [9] studied the
decrease of information due to phase uncertainty in the case of com-
plete LE. The power may also be adversely affected by the specifics of
statistical techniques used to relate traits with the haplotype informa-
tion. The probabilistic assignment of haplotype pairs to individuals
conditioned on sample frequency estimates may lead to some bias,
especially in the case-control samples where frequencies in two
groups can be substantially different. We investigated the loss of
power under a phenotype model driven by haplotypes. The mean
phenotypic response for genotype (j,k) was given by . = o; + ay,
where ¢; and ¢y denote effects of two haplotypes. These effects were
sampled from N(0,1) distribution [28] for each simulation run, form-
ing a normal distribution of population effects across simulations.
The phenotype value for jith individual in each sample was con-
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Fig. 5. Power values against the sample size for observed and E-M-
inferred three marker haplotypes (HTR tests).

structed as Y; = mj; + g, with & ~ N(0,2). Population frequencies of
haplotypes were sampled from a symmetric Dirichlet distribution.
The common parameter was obtained empirically to form the aver-
age population distribution of Lewontin’s D’ with the mean value of
0.36. We studied 3- and 5-SNP haplotypes. Multinomial samples of
multilocus genotypes were obtained assuming population HWE.
Prior to analysis, phenotypic values were dichotomized about the
sample mean, thus leading to a case-control design. In the case of
observed haplotypes and binary response, the HTR reduces to a test
that compares allele frequencies between two categories and at least

1.0
A )
A o)
o)
0.8 1
A
~ 0.6+
$ o
[e]
o
A
0.4+
o)
0.2 A A Observed
® O E-M-inferred
5
T T T T T T T 1
25 50 100 150 250 350 500 750
Sample size

Fig. 6. Power values against the sample size for observed and E-M-
inferred five marker haplotypes (HTR tests).

as powerful as the LRT (data not shown). Power values for different
sample sizes (based on at least 8,500 simulations for each sample
size) were obtained using samples of 50-1,500 haplotypes (fig. 5, 6).
Triangles on the graphs show power values for the ‘ideal’ situation
when haplotypes are directly observed, so the haplotypes are treated
simply as multiallelic markers. Circles represent power values of
HTR obtained for the same data sets. As expected, some power is lost
for the range of sample sizes that result in intermediate power values.
The loss is not great. The graphs illustrate that less than 100 extra
individuals are required to match the power.
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