
Testing Autonomous Cars for Feature Interaction Failures using
Many-Objective Search

Raja Ben Abdessalem
University of Luxembourg

Luxembourg
raja.benabdessalem@uni.lu

Annibale Panichella
University of Luxembourg,

Luxembourg
Delft University of Technology

Netherlands
a.panichella@tudelft.nl

Shiva Nejati
University of Luxembourg

Luxembourg
shiva.nejati@uni.lu

Lionel C. Briand
University of Luxembourg

Luxembourg
lionel.briand@uni.lu

Thomas Stifter
IEE S.A., Luxembourg

Luxembourg
thomas.stifter@iee.lu

ABSTRACT

Complex systems such as autonomous cars are typically built as
a composition of features that are independent units of function-
ality. Features tend to interact and impact one another’s behavior
in unknown ways. A challenge is to detect and manage feature
interactions, in particular, those that violate system requirements,
hence leading to failures. In this paper, we propose a technique to
detect feature interaction failures by casting this problem into a
search-based test generation problem. We de�ne a set of hybrid test
objectives (distance functions) that combine traditional coverage-
based heuristics with new heuristics speci�cally aimed at revealing
feature interaction failures. We develop a new search-based test
generation algorithm, called FITEST, that is guided by our hybrid
test objectives. FITEST extends recently proposed many-objective
evolutionary algorithms to reduce the time required to compute
�tness values. We evaluate our approach using two versions of an
industrial self-driving system. Our results show that our hybrid
test objectives are able to identify more than twice as many feature
interaction failures as two baseline test objectives used in the soft-
ware testing literature (i.e., coverage-based and failure-based test
objectives). Further, the feedback from domain experts indicates
that the detected feature interaction failures represent real faults in
their systems that were not previously identi�ed based on analysis
of the system features and their requirements.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Search-based software engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238192

KEYWORDS

Search-based Software Testing, Many-Objective Optimization, Au-
tomotive Systems, Feature Interaction Problem

ACM Reference Format:

Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand,
and Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interac-
tion Failures using Many-Objective Search. In Proceedings of the 2018 33rd

ACM/IEEE International Conference on Automated Software Engineering (ASE

’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3238147.3238192

1 INTRODUCTION

Feature-based development aims to build complex systems consist-
ing of units of functionality known as features. Individual features
are typically traceable to speci�c system requirements and are
mostly independent and separate from one another [37, 44, 63]. By
closely mirroring requirements, features make it easier for engi-
neers to develop complex systems iteratively and incrementally.
Self-driving cars, and in general automotive systems, are among
well-known examples of feature-based systems [11, 24, 76]. A self-
driving system, for example, may include the following features,
each automating an independent driving function: An automated
emergency braking (AEB), an adaptive cruise control (ACC) and a
tra�c sign recognition (TSR).

Although features are typically designed to be independent, they
may behave di�erently when composed with other features. A
feature interaction is a situation where one feature impacts the
behavior of another feature [17, 25, 44]. For example, in a self-
driving system, feature interactions are likely to arise when several
features control the same actuators. More speci�cally, in a self-
driving system, both ACC and AEB control the braking actuator. A
feature interaction may arise when a braking command issued by
AEB to immediately stop the car is overridden by ACC commanding
the car to maintain the same speed as that of the front car. Some
feature interactions are desirable, and some may result in violations
of system safety requirements and are therefore undesired. For
example, the above feature interaction between AEB and ACC may
lead to an accident, and hence, is undesirable.

The feature interaction problem has been extensively studied in

https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1145/3238147.3238192

ASE ’18, September 3–7, 2018, Montpellier, France R. Ben Abdessalem, S. Nejati, A. Panichella, L. C. Briand, and T. Sti�er

the literature [7, 17, 25, 44]. Some techniques focus on identifying
feature interactions at the requirements-level by analysis of formal
or semi-formal requirements models [15, 18, 75]. Several techniques
detect feature interaction errors in implementations using test cases
derived from feature models capturing features and their dependen-
cies [8, 35, 58, 61]. Other approaches devise design and architectural
resolution strategies to eliminate at runtime undesired feature in-
teractions identi�ed at the requirements-level [41, 44, 70, 76]. For
self-driving systems, however, feature interactions should be identi-
�ed as early as possible and before the implementation stage since
late resolution of undesired interactions can be too expensive and
may involve changing hardware components. Further, feature inter-
actions in self-driving systems are numerous, complex and depend
on several factors such as the characteristics of sensors and actua-
tors, car and pedestrian dynamics, weather condition, road tra�c
and sidewalk objects. Without e�ective and automated assistance,
engineers cannot detect undesired feature interactions within the
space of all possible interactions and cannot assess the impact of
complex environmental factors on feature interactions.

In this paper, we develop an automated approach to detect unde-
sired feature interactions in self-driving systems at an early stage.
Our approach identi�es undesired feature interactions based on
executable function models of self-driving systems embedded into
a realistic simulator capturing the self-driving system hardware
and environment. Building function models at an early stage is
standard practice in model-based development of control systems
and is commonly followed by the automotive and aerospace indus-
try [57, 72, 74]. Function modeling takes place after identi�cation of
system requirements and prior to software design and architecture
activities. Function models of control systems capture algorithmic
behaviors of software components and physic dynamics of hard-
ware components. Similar to the automotive and aerospace industry,
the function models and the simulator of the self-driving system
used in this paper are speci�ed in the Matlab/Simulink language [1].

In this paper, we cast the problem of detecting undesired feature
interactions into a search-based testing problem. Speci�cally, we
aim to generate test inputs that expose undesired feature interac-
tions when applied to executable function models of self-driving
systems. Search-based techniques have been successfully applied
to simulation-based testing of control systems and self-driving fea-
tures [3, 13, 14, 23, 53, 54] as well as various other testing problems
such as unit testing [38, 55, 69], regression testing [49, 73] and
optimizing machine learning components [66].

Contributions. Our contributions are as follows:
First, we de�ne novel hybrid test objectives that determine how

far candidate tests are from detecting undesired interactions. Our
test objectives combine three di�erent heuristics: (i) A branch cov-

erage heuristic [55] ensuring that the generated test cases exercise
all branches of the component(s) integrating features. (ii) A failure-

based heuristic based on system safety requirements ensuring that
test cases stress the system into breaking its safety requirements.
(iii) An unsafe overriding heuristic that aims to exhibit system be-
haviors where some feature output is overridden by other features
such that some system safety requirements may be violated.

Second, we introduce FITEST (Feature Interaction TESTing), a
new many-objective test generation algorithm to detect undesired

System Under Test (SUT)

.

.

.

sensors

cameras

feature 1

feature 2

feature n

 Integration

component actuators

Figure 1: Overview of a typical functionmodel capturing the

software subsystem (SUT) of a self-driving car.

feature interactions. We opt for a many-objective optimization al-
gorithm since test generation in our context is driven by many
competing test objectives resulting from the combination of heuris-
tics above. Speci�cally, FITEST builds on the recently proposed
many-objective genetic algorithms [59, 60] that e�ectively gener-
ate test cases satisfying a large number of test objectives. In our
work, computing test objectives is expensive. Hence, at each iter-
ation, FITEST dynamically selects the minimum number of test
cases closest to satisfying test objectives, thus reducing the total
number of �tness computations.

Third, we evaluate FITEST using two industrial self-driving sys-
tems from our partner company IEE [43]. Both systems represent a
(partial) self-driving car consisting of four features. The engineers
at IEE had developed alternative strategies to resolve the known fea-
ture interactions in these two systems. FITEST, however, was able
to identify, on average, 5.9 and 7.2 undesired feature interactions
in the two systems, respectively. The engineers con�rmed that the
detected interactions represent real faults that were not a priori
known to them1. Further, we compared our hybrid test objectives
used by FITEST with two baseline test objectives from the software
testing literature (namely, coverage-based [38, 55] and failure-based
test objectives [4, 13, 20, 23]). Our results show that our hybrid test
objectives are able to identify more than twice as many feature
interaction failures as the coverage-based and failure-based test
objectives.

Structure. Section 2 motivates our work. Section 3 presents our
approach. Section 4 describes our evaluation. Section 5 compares
with related work. Section 6 concludes the paper.

2 MOTIVATION

Figure 1 shows an overview of a typical function model capturing
the software subsystem of a self-driving car. The system under test
(SUT) consists of a set of self-driving features and a component
capturing the decision algorithm combining feature outputs. SUT
receives its inputs from sensors/cameras and sends its outputs to
actuators. Both inputs and outputs are sequences of timestamped
values. The entire SUT runs iteratively at regular time steps. At
every time step, the features receive sensor/camera values issued
in that step, and output values are computed and sent to actuators
by the end of the step. Each feature controls one or more actuators.
Actuators may receive commands frommore than one feature at the
same time step, and sometimes these commands are con�icting. The
integration component has to generate �nal outputs to actuators
after resolving con�icting feature outputs.

1The material we used to get the industry feedback is available online [2].

Testing Autonomous Cars for Feature Interaction Failures ASE ’18, September 3–7, 2018, Montpellier, France

As discussed in Section 1, our goal is to identify feature interac-
tions at the requirements-level and in terms of system functional
behavior. Hence, we base our analysis on function models specify-
ing algorithmic and control behaviors. Feature interaction failures
due to software architecture and design issues are not studied in
this paper.

We use a case study system, called SafeDrive, from our partner
company IEE. SafeDrive contains the following four self-driving
features: Autonomous Cruise Control (ACC), Tra�c Sign Recognition

(TSR), Pedestrian Protection (PP), and Automated Emergency Braking

(AEB). ACC automatically adjusts the car speed and direction to
maintain a safe distance from a car ahead (or a leading car). TSR
detects tra�c signs and applies appropriate braking, acceleration or
steering commands to follow the tra�c rules. PP detects pedestrians
in front of a car with whom there is a risk of collision and applies a
braking command if needed. AEB is the same as PP but it prevents
accidents with objects other than pedestrians. Once the risk of an
accident is over and the road is clear, both PP and AEB issue accel-
eration commands to bring back the car to the same speed that the
car had before their intervention. All the features generate braking
and acceleration commands to respectively control the brake and
the throttle actuators. TSR and ACC, additionally, generate steering
commands.

The SafeDrive features may issue con�icting commands to the
same actuators. For example, Scenario-1: ACC orders the car to
accelerate, while a pedestrian starts crossing the road. Hence, at the
same time, PP starts sending braking commands to avoid hitting
the pedestrian. Scenario-2: The car reaches an intersection while
the tra�c light turning from orange to red. ACC orders the car
to accelerate since the leading car has also accelerated to pass the
intersection while the light is orange. At the same time, TSR orders
to brake since it detects that a red light is about to come.

When feature interactions are known, engineers can develop
the decision logic of the integration component (see Figure 1) such
that the interactions do not lead to failures (e.g., using existing
feature interaction resolution techniques [44, 76]). For example, for
Scenario-1, engineers may decide to prioritize the braking command
of PP over the acceleration command of ACC to avoid hitting a
pedestrian. The resolution strategy for Scenario-2 can be prioritiz-
ing TSR if the car can safely stop by the tra�c light, and otherwise,
prioritizing ACC. However, feature interactions in SafeDrive are
numerous and many of them may not be known, particularly at
early development stages. Further, the feature interaction resolu-
tion strategies cannot always be determined statically and may
depend on complex environment factors. For example, deciding “if
the car can safely stop” in the resolution strategy for Scenario-2
depends on the speed and the position of the car, the distance to the
car behind, road topology and the weather condition. Therefore,
we need techniques that, at early development stages, (1) detect
undesired feature interactions in SafeDrive, and (2) test whether the
proposed resolution strategies can avoid failures under di�erent
environment conditions.

In the next sections, we present and evaluate a technique that
tests the functional behavior of autonomous cars to detect their
undesired feature interactions. Our technique accounts for the im-
pact of the environment factors on the self-driving system behavior.
It, further, ensures that feature interaction resolution strategies

SUT

Simulator

Model of the

(ego) car or

the physical

plant Pedestrians

Other cars

- Roads

- Traffic signs

- Weather

Outputs

Time-stamped vectors for:

- the SUT outputs

- the states of the physical

plant and the mobile

environment objects

sensors

cameras

actuators

Environment

mobile objects

static properties

Inputs

- the initial state of the

physical plant and the

mobile environment

objects

- the static environment

aspects

Figure 2: Early testing of control system functionmodels us-

ing simulators.

devised by engineers satisfy system safety requirements under dif-
ferent environment conditions. We note that in Section 3.3, we will
provide a precise formalization of the context upon which we build.
The formalism is generic and based on simple assumptions that
can be accommodated by many feature-based systems. Hence, in
addition to autonomous cars, our work applies to any feature-based
system expressible using our formalism.

3 APPROACH

In this section, we present our feature interaction detection tech-
nique. As discussed earlier, our technique generates test inputs for
function models of self-driving systems, exposing their undesired
feature interactions. Section 3.1 describes how we integrate the
function models into a high-�delity, physics-based simulator for
self-driving systems. Section 3.2 characterizes the test inputs and
outputs for self-driving systems. Section 3.3 introduces our hybrid
test objectives. Section 3.4 presents FITEST, our proposed many-
objective test generation algorithm that utilizes our test objectives
to generate test inputs revealing feature interaction failures.

3.1 Testing Feature-Based Control Systems

Testing Cyber-Physical Systems (CPSs) at early stages is generally
performed using simulators. To test the function model in Figure 1,
we connect the SUTmodel to a simulator such that it receives inputs
from the sensor and camera models of the simulator and sends its
outputs to the actuator models of the simulator (see Figure 2). The
sensor, camera and actuator models are within a physical model of
a car (or a physical plant according to general CPS terminology) in
the simulator. To run the simulator, we specify the initial state of the
simulator physical plant and mobile environment objects as well
as the static environment properties (e.g., weather condition and
road shapes for self-driving systems). The simulator can execute
the SUT in a feedback loop with the plant and the environment.
For SafeDrive, we use PreScan, a physics-based simulator for self-
driving systems [67]. PreScan relies on dynamic Simulink models to
compute movements of cars and pedestrians and is able to capture
the environment static properties such as the weather condition
and the road topology. Some examples of SafeDrive simulations are
available online [2].

3.2 Test Inputs and Outputs

The test inputs for a self-driving system are the inputs required
to execute the simulation framework in Figure 2. For example, to

ASE ’18, September 3–7, 2018, Montpellier, France R. Ben Abdessalem, S. Nejati, A. Panichella, L. C. Briand, and T. Sti�er

x
e

0
x
l

0
x
p

0

y
p

0

y
e

0
, y

l

0

θ
p

x
ts

x − axis

y − axis

~
v
p

0

~ve
0

~
v
l
0

X = (xp
0
, y

p
0
, θ

p
,
~
v
p
0
, ~ve

0
,
~
v
l
0
, x

l
0
, x

ts
, fg)Test input vector

Figure 3: Test inputs required to simulate SafeDrive, our case

study system.

test SafeDrive, we start by instantiating the simulation framework
so that the simulator is able to exercise the behaviors of the PP,
AEB, TSR and ACC features. Our simulation framework contains
the following objects: (1) An ego car equipped with SafeDrive, (2) a
leading car to test both the ACC and the AEB features of the ego
car, and (3) a pedestrian that crosses the road starting from an
initial position on the sidewalk and is used to exercise PP. The
simulation environment, further, includes one tra�c sign to test
the TSR feature. We only consider a stop sign or a speed limit sign
for our case study. This setup is meant to reduce the complexity of
simulations and was suggested by the domain experts.

The test inputs of SafeDrive are shown in Figure 3. They include
the following variables: (1) The initial position xe0 , y

e
0 and the initial

speed ve0 of the ego car. (2) The initial position x l0, y
l
0 and the initial

speedvl0 of the leading car. (3) The initial position x
p
0 , y

p
0 , the initial

speed v
p
0 and the orientation θp of the pedestrian. (4) The position

x ts of the tra�c sign that varies along the x-axis, but is �xed along
the y-axis. (5) The fog degree fg. In our simulator, among di�erent
weather-related properties (e.g., snow and rain), the fog level has
the largest impact on the object detection capabilities of SafeDrive.
Hence, we include the fog level in the test inputs.

All the above variables except for fg are �oat numbers varying
within ranges speci�ed by domain experts. The variable fg is an
enumeration specifying ten di�erent degrees of fog. In addition
to the domain value ranges, there are often some constraints over
test inputs to ensure that simulations start from a valid and mean-
ingful state. Speci�cally, we have the following two constraints
for SafeDrive: (i) The ego car starts behind the leading car with
a safety distance gap, denoted sd, and with a speed close to the
speed of the leading car. This constraint is speci�ed as follows:
sd −ϵ ≤ x l0 −x

e
0 ≤ sd +ϵ and |ve0 −v

l
0 | ≤ ϵ ′ where ϵ and ϵ ′ are two

small constants, and sd, which is the safety distance gap between
the ego and the leading cars, is determined based on the car speeds.
(ii) The tra�c sign is located within a su�ciently long distance
from the ego car to give enough time to the TSR feature to react
(i.e., |x ts − xe0 | < c where c is constant value). Finally, to simulate
the system, we need to specify the duration of the simulationT and
the simulation step size δ .

As shown in Figure 2, the simulator outputs are time-stamped
vectors specifying (1) SUT outputs, (2) states of the physical plants
and (3) states of any mobile environment object. All these outputs
are vectors with T

δ
elements where the element at position i spec-

i�es the output at time i · δ . For example, Figure 4 illustrates the
SUT outputs generated by simulating SafeDrive. Speci�cally, the

PP

AEB

b
PP

a
PP

TSR

a
AEB

b
AEB

a
TSR

b
TSR

s
TSR

ACC

sa

b

 : braking
 : acceleration
 : steering

b
a

s

if (condition)

IntC

T

δ

0

T

δ

0 40%(bAEB (0))

40%(bAEB (1))

80%(bPP (2))

80%(bPP (3))

80%(bPP (T/δ))

.

.

.

.

80%

80%

80%

80%

.

.

.

T

δ

0

PP
40%

40%

.

.

.

T

δ

0

b
ACC

a
ACC

s
ACC

T

δ

0

b
PP

20%

0%

60%

40%

Figure 4: Actuator command vectors generated at the

feature-level and at the system-level by simulating

SafeDrive. Vectors bf , af and sf indicate command vec-

tors generated by feature f for the braking, acceleration

and steering actuators, respectively. The IntC component

analyzes the command vectors generated by all the features

and issues the �nal command vectors b, a and s to the

braking, acceleration and steering actuators, respectively.

SUT outputs in that �gure include both the outputs of each feature
inside the SUT and the output of the integration component, i.e.,
the �nal command vector sent to the actuators.

3.3 Hybrid Test Objectives

Our test objectives aim to guide the test generation process to-
wards test inputs that reveal undesired feature interactions. We
�rst present our formal notation and assumptions and then we
introduce our test objectives. Note that since in this paper we are
primarily interested in the feature interaction problem, we design
our test objectives such that they focus on detecting failures that
arise due to feature interactions, but not failures that arise due to
an individual feature being faulty.

Notation.We de�ne a feature-based control system F as a tuple
(f1, . . . , fn , IntC) where f1, . . . , fn are features and IntC is an inte-
gration component. The system F controls a set Act of actuators.
Each feature fi controls a set Actfi ⊆ Act of actuators. Since we
are interested in identifying feature interaction failures and not
failures due to errors inside individual features, our approach does
not require any visibility into the internals of features. But, in our
work, IntC is a white-box component. The IntC behavior is typically
conditional where each condition checks a speci�c feature interac-
tion situation and resolves potential con�icts that may arise under
that condition. We assume F has a set of safety requirements such
that each requirement is related to one feature which is responsible
for the satisfaction of that requirement. For example, the second
column of Table 1 shows the safety requirements for SafeDrive. The
feature responsible for satisfying each requirement is shown in the
�rst column.

As discussed earlier, testing F is performed by connecting F to
a simulation framework (see Figure 2). A test case for F is a vector

Testing Autonomous Cars for Feature Interaction Failures ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Safety requirements and failure distance functions

for SafeDrive.

FeatureRequirement Failure distance functions (FD1, . . . ,FD5)

PP No collision with
pedestrians

FD1 (i) is the distance between the ego car and the
pedestrian at step i .

AEB No collision with
cars

FD2 (i) is the distance between the ego car and the
leading car at step i .

TSR Stop at a stop sign Let u (i) be the speed of the ego car at time step
i if a stop sign is detected, and let u (i) = 0 if
there is no stop sign. We de�ne FD3 (i) = 0 if
u (i) ≥ 5km/h; FD3 (i) =

1
u (i)

if u (i) , 0; and

otherwise, FD3 (i) = 1.
TSR Respect the speed

limit
Let u ′(i) be the di�erence between the speed of
the ego car and the speed limit at step i if a speed-
limit sign is detected, and let u ′(i) = 0 if there
is no speed-limit sign. We de�ne FD4 (i) = 0 if
u ′(i) ≥ 10km/h; FD4 (i) =

1
u′ (i)

if u ′(i) , 0; and

otherwise, FD4 (i) = 1.
ACC Respect the safety

distance
FD5 (i) is the absolute di�erence between the
safety distance sd and FD2 (i).

X of inputs required to execute the simulation framework into
which F is embedded (e.g., Figure 3 shows the test input vector

for SafeDrive). The test output of F includes: (1) a vector v
f
act

generated by every feature f and for every actuator act ∈ Actf ;
(2) a vector vact generated by IntC for each actuator act ∈ Act;
and (3) a trajectory vector for the physical plant and every mobile
environment object.

Test objectives. A key aspect in search-based software testing [40,
55] is the notion of distance functions D (.) that measure how far
a candidate test X is from reaching testing targets (e.g., covering
branches in white-box testing). Our testing targets aim to reveal
undesired feature interactions. An undesired feature interaction
is revealed when: (1) Some safety requirement r is violated such
that (2) the integration component (i.e., IntC) overrides the output
of the feature responsible for r . We note that if r is violated while
IntC selects the output of the feature responsible for r , then the
violation is likely to be due to the internals of that feature and
not due to feature interactions. Therefore, we de�ne two distance
functions, namely failure distance and unsafe overriding distance to
respectively capture the conditions (1) and (2) above. Further, we
ensure that the generated tests exercise all branches of IntC. Hence,
our third distance corresponds to the well-known distance used
in coverage-based testing [55]. In the following, we present each
distance separately and then we describe how we combine them to
build our test objectives.

Coverage distance. First, the generated test cases have to exercise
every branch of IntC. Given that IntC is white-box, we rely on two
widely-used heuristics in branch coverage, namely the approach
level [55] and the normalized branch distance [38, 55]. Each branch
bi in IntC has its own distance function BDi to minimize which is
de�ned according to the two heuristics above. The distance BDi

is equal to zero i� a candidate test case tc covers the associated
branch bi .

Failure distance: The failure distance evaluates how close the sys-
tem F is from violating its safety requirements at each simulation
time step. For each system safety requirement j ∈ {1, . . . ,m}, we

de�ne a failure distance FDj such that FDj (i) = 0 i� requirement j
is violated at time step i . FDj is a black-box heuristic, i.e., it relies
on system outputs only.

For example, the third column of Table 1 describes functions
FD1 (i) to FD5 (i) for the �ve safety requirements of SafeDrive in the
second column of that table. Since self-driving safety requirements
typically concern mobile environment objects and physical plants,
the failure distance is computed based on the trajectories of the
physical plant and the environment mobile objects generated by
simulation. Recall that for each safety requirement of F , there is
only one feature that is responsible for its satisfaction. Hence, each
FDj is related to a feature f of F such that f is the feature respon-
sible for satisfying j. When any of the FD1 (i) to FD5 (i) functions
in Table 1 yields a zero value at step i , it means that a requirement
failure corresponding to that function is detected. Further, small
or large values of these functions indicate that the system is, re-
spectively, close to or far from exhibiting a failure. For example,
function FD1 (i) related to PP measures the distance between the
ego car and the pedestrian. A search algorithm guided by FD1 gen-
erates simulations during which the distance between the ego car
and the pedestrian is minimized, hence increasing the likelihood of
an accident. As another example, the distance functions related to
the TSR requirements are de�ned as the inverse of the speed of the
ego car for the stop sign, and the inverse of the di�erence between
the speed of the ego car and the speed limit for the speed limit sign.
According to domain experts, the stop sign requirement is certainly
violated when the speed of the car never falls below 5km/h after
detecting the stop sign, and the speed limit sign requirement is
certainly violated when the speed of the car exceeds the speed limit
by more than 10km/h. For both cases we set the concerned failure
function to zero indicating that a safety violation has occurred.

Unsafe overriding distance: This distance function aims to pri-
oritize behaviors that violate safety requirements due to errors
inside IntC over the behaviors that fail due to errors inside features.
At each simulation time step, the IntC component prioritizes the
output of some feature and overrides those of the rest. Recall that
for each actuator act, IntC always generates the vact vector, and

every feature f generates v
f
act i� f controls act (i.e., act ∈ Actf).

If vact (i) = v
f
act (i), it means at time step i , IntC prioritizes f over

other features controlling act. Dually, if vact (i) , v
f
act (i), it means

at time step i , IntC overrides the command issued by f for act. For
example, in Figure 4, the IntC component of SafeDrive prioritizes
AEB over the other three features to control the braking actuator
at time steps 0 and 1.

For an actuator act and at time step i , we say IntC unsafely over-

rides f if the command at vact (i) is less safe than the command at

v
f
act (i) for act. We say a command c is less safe than a command

c ′ for an actuator act, when act executing c is more likely to break
some requirement compared to act executing c ′. For example, in the
SafeDrive system, a mild and late braking more likely leads to violat-
ing one of the requirements in Table 1 compared to a �rm and early
braking. Dually, the requirements in Table 1 are more likely to fail
when we accelerate faster than when we accelerate more slowly.

Note that test cases that violate safety requirements without IntC
unsafely overriding any feature do not fail due to faults in IntC. This

ASE ’18, September 3–7, 2018, Montpellier, France R. Ben Abdessalem, S. Nejati, A. Panichella, L. C. Briand, and T. Sti�er

is because, for such test cases, either IntC does not override any
decision of any individual feature or its decision to override a feature
does not increase the likelihood of violating a safety requirement.
Hence, such test cases fail due to a fault in a feature. For IntC

to be faulty, it is necessary that vact unsafely overrides v
f
act in

some simulation time step. For each feature f , we de�ne an unsafe

overriding distance UODf such that UODf = 0 i� IntC unsafely
overrides the output of f at least once during the simulation, and
otherwise, UODf > 0. Such a distance guides the search towards
generating tests that cause IntC to unsafely override f .

To compute UODf , we de�ne UOD
act
f

for each actuator act con-

trolled by f . For actuators where higher force values are safer (e.g.,

braking), IntC unsafely overrides f when v
f
act (i) > vact (i) (i.e.,

when, at step i , f orders to brake more strongly than IntC). We use
the traditional branch distance for the greater-than condition [47]
to translate this condition into a distance function. That is, for such
actuators, we de�ne UODact

f
at each simulation step i , as follows:

UODact
f

(i) =


vact (i) − v
f
act (i), if v

f
act (i) < vact (i)

0, otherwise

Dually, for actuators that lower force values are safer (e.g., ac-

celeration), IntC unsafely overrides f when vact (i) > v
f
act (i) (i.e.,

when the accelerating command of f is less than that of IntC at step
i). Following the traditional branch distance for the less-than condi-
tion [47], we de�ne UODact

f
for this kind of actuators as follows:

UODact
f

(i) =


v
f
act (i) − vact (i), if vact (i) < v

f
act (i)

0, otherwise

We computeUODf (i) =
∑
act∈Actf UOD

act
f

(i)where eachUODact
f

is de�ned as either one of the above equations depending on the
type of act. The UODf function is our unsafe overriding distance

function. Speci�cally, UODf (i) = 0 implies that IntC unsafely over-
rides the output of f at step i . Similarly, a small or large value of
UODf (i) indicates that a test case is, respectively, close to or far
from causing IntC to unsafely override f at step i .

Combined distances. We now describe how we combine the three
distance functions to obtain our �nal hybrid test objectives for de-
tecting undesired feature interactions. Note that coverage distance,
failure distance and unsafe overriding distance have di�erent units
of measure (e.g., km/h, meters) and di�erent ranges. Thus, we �rst
normalize these distances before combining them into one single
hybrid function. To this aim, we rely on the well-known rational
function ω1 (x) = x/(x + 1) since prior studies [9] have empiri-
cally shown that, compared to other normalization functions, it
provides better guidance to the search for minimization problems
(e.g., distance functions in our case). In the following, we denote
the normalized forms of the functions above as FD, UOD and BD,
respectively.

To maximize the likelihood of detecting undesired feature inter-
actions, we aim to execute every branch of IntC such that while
executing that branch, IntC unsafely overrides every feature f , and
further, its outputs violate every safety requirement related to f .
Therefore, for every branch j of IntC, every safety requirement l of

F , and every simulation time step i , we de�ne a hybrid distance
Ωj,l (i) as follows:

Ωj,l (i) =



BDj (i) + UODmax + FDmax (1) If j is not covered (BDj (i) > 0)

UODf (i) + FDmax (2) If j is covered, but f is not unsafely

overridden (BDj (i) = 0 ∧ UODf (i) > 0)

FDl (i) (3) Otherwise (BDj (i) = 0 ∧ UODf (i) = 0)

where f is the feature responsible for the requirement l , while
FDmax = 1 and UODmax = 1, indicating the maximum value of the
normalized functions.

Each hybrid distance function Ωj,l (i) is de�ned for each simu-
lation step i . Corresponding to each hybrid distance function, we
de�ne a test objective Ωj,l for the entire simulation time interval as
follows: Ωj,l = Min{Ωj,l (i)}0≤i≤ T

δ

. Given a test case tc, each test

objective Ωj,l (tc) always yields a value in [0..3]; Ωj,l (tc) > 2 indi-
cates that tc has not covered branch j; 2 ≥ Ωj,l (tc) > 1 indicates
that tc has covered branch j, but has not caused IntC to unsafely
override some feature f related to requirement l ; 1 ≥ Ωj,l (tc) > 0
indicates that tc has covered branch j, and has caused IntC to un-
safely override some feature f related to requirement l , but has
not violated requirement l ; and �nally, Ωj,l (tc) is zero when tc has
covered branch j , has caused IntC to unsafely override some feature
f related to l and has violated requirement l .

3.4 Search Algorithm

When testing a system we do not know a priori which safety re-
quirements may be violated. Neither do we know in which branches
of IntC the violations may be detected. Therefore, we search for any
violation of system safety requirements that may arise when exercis-
ing any branch of IntC . This leads to k ×n test objectives where k is
the number of branches of IntC andn is the number of safety require-
ments.More formally, given a feature-based control systemF under
test, our test generation problem can be formulated as follows:

De�nition. Let Ω =
{
Ω1,1, . . . ,Ωk,n

}
be the set of test objectives

for F , where k is the number of branches in IntC and n is the number

of safety requirements of F . Find a test suite that covers as many

objectives Ωi,j as possible.

Our problem is many-objective as we attempt to optimize a
relatively large number of test objectives. As a consequence, we
have to considermany-objective optimization algorithms, which are
a class of search algorithms suitably de�ned for problems with more
than three objectives. Various many-objective metaheuristics have
been proposed in the literature, such as NSGA-III [33], HypE [12].
These algorithms are designed to produce di�erent alternative trade-
o�s that can be made among the search objectives [48].

Recently, Panichella et al. [59, 60] argued that the purpose of
test case generation is to �nd test cases that separately cover in-
dividual test objectives rather than �nding solutions capturing
well-distributed and diverse trade-o�s among the search objectives.
Hence, they introduced a new search algorithm, namelyMOSA [59],
that (i) rewards test cases that cover at least one objective over
those that yield a low value on several objectives without covering
any; (ii) focuses the search on the yet uncovered objectives; and
(iii) stores all tests covering one or more objectives into an archive.
MOSA has been introduced in the context of white-box unit testing
and has shown to outperform alternative search algorithms [59, 60].

Testing Autonomous Cars for Feature Interaction Failures ASE ’18, September 3–7, 2018, Montpellier, France

Algorithm 1: Feature Interaction Testing (FITEST)

Input: Ω: Set of objectives
Result: A: Archive

1 begin
2 P ←− ADAPTIVE-RANDOM-POPULATION(| Ω |)
3 W ←− CALCULATE-OBJECTIVES(P , Ω)
4 [Ωc

,Tc]←− GET-COVERED-OBJECTIVE(P ,W)
5 A←− Tc
6 Ω ←− Ω − Ω

c

7 while not (stop_condition) do
8 Q ←− RECOMBINE(P)
9 Q ←− CORRECT-OFFSPRINGS(Q)

10 W ←− CALCULATE-OBJECTIVES(Q , Ω)
11 [Ωc

,Tc]←− GET-COVERED-OBJECTIVE(P ,W)
12 A←− A ∪Tc // Update the archive

13 Ω ←− Ω − Ω
c // Update the set of objectives

14 F0 ←− ENVIRONMENTAL-SELECTION(P ∪Q, Ω)

15 P ←− F0 // New population

16 return A

In this paper, we introduce FITEST, a novel search algorithm that
extends MOSA and adapts it to testing feature-based self-driving
systems. Below, we describe the main loop of FITESTwhose pseudo-
code is shown in Algorithms 1. We then discuss the di�erences
between FITEST and MOSA.

Main loop. As Algorithm 1 shows, FITEST starts by generating
an initial set P of randomly generated test cases (line 2), called
population. Each test case X ∈ P is a vector of inputs required to
simulate the SUT (e.g., see Figure 3). After simulating each test
X ∈ P , the test objectives Ωj,l for X are computed based on the
simulation results (see Section 3.3). Next, tests are evolved through
subsequent iterations (loop in lines 7-16), called generations. In each
generation, the binary tournament selection [34] is used to select
pairs of �ttest test cases for reproduction. During reproduction
(line 8), two tests (parents) are recombined to form new test cases
(o�springs) using the crossover and mutation operators. Finally,
�ttest tests are selected among the parents and o�springs to form
the new population for the next generation (line 14). Below, we
describe the new and speci�c features of FITEST.

Initialization. The size of the initial population in FITEST is
equal to the number of test objectives. This is because, in our con-
text, running each single test case is expensive, taking up to few
minutes, as it requires running computationally intensive simula-
tions. Hence, in FITEST, we aim to cover each test objective at most
once by at most one test case. Therefore, we do not need to start the
search with a population larger than the number of test objectives.

We select the initial population such that it includes a diverse
and randomly selected set of test input vectors. This is because we
aim to include di�erent tra�c situations, (e.g., di�erent trajectory
angles and speeds of pedestrians) in our initial population. To do
so, we use an adaptive random search algorithm [51], which is an
extension of the naive random search that attempts to maximize
the Euclidean distance between the vectors selected in the input
space. In contrast to FITEST, the initial population in MOSA is a set
of randomly generated tests without any diversity mechanism, and
the size of the population is an input parameter of the algorithm.

Genetic recombination. Since our test inputs (i.e., X) are vec-
tors of �oat values (see Figure 3), we use two widely-used genetic

operators proposed for real number solution encodings: the sim-

ulated binary crossover [30] (SBX) and the gaussian mutation [32].
Prior studies [32, 42] show that, for numerical vectors, these opera-
tors outperform the more classical ones. In contrast, MOSA uses the
classical single-point crossover and uniform mutation implemented
in EvoSuite [38] to handle di�erent types of test data, e.g., strings,
Java objects, etc.

Correction operator. Recall from Section 3.2 that our test in-
puts are characterized by constraints. Hence, genetic operators may
yield invalid tests (e.g., a test input where the leading car is behind
the ego car). To modify and correct such cases, FITEST applies cor-
rection operators (line 9 in Algorithm 1). For example, in SafeDrive,
if after applying genetic operators, the leading car position (x l0)

and speed (vlo), and the tra�c sign position (x ts) violate any of
the constraints described in Section 3.2, we discard their values
and randomly select new values for these variables within ranges
enforced by the ego car position (xe0) and speed (ve0).

Archive. Similar to MOSA, every time new tests are generated
and evaluated (either at the beginning or during the search), FITEST
uses the GET-COVERED-OBJECTIVE routine to identify newly cov-
ered objectives and the test cases covering them. These objectives
are removed from the set of test objectives (line 6, 13) to not be
used by the environmental selection in the subsequent iterations.
Further, test cases covering the removed test objectives are put in
an archive [59, 60, 64] (i.e., A). The archive at the end contains the
FITEST results. Each test case in the archive covers one of the test
objectives being satis�ed during the search. Note that some test
objectives may not be covered within the search time or they may
be infeasible (unreachable).

Environmental selection. In FITEST, at each iteration, a new
population with a size not necessarily the same as the previous pop-
ulation size is formed (line 15 in Algorithm 1) by selecting, for each
uncovered test objective Ωi,j , the test case in P ∪Q that is closest
to covering that objective (preference criterion [59]). The population
size at each iteration is lower than the number of objectives. It can
even be less than the number of test objectives because a single test
case may be selected as the closest (�ttest) test for multiple objec-
tives. Further, the population size is likely to decrease over iterations
since, at each iteration, test objectives are covered and excluded
from the environmental selection in the subsequent iterations.

The population size represents the main di�erence between
FITEST and similar search-based test generation algorithms. In
classical many-objective search algorithms, the environment selec-
tion chooses a �xed number N of tests (i.e., to maintain a constant
population size) from o�springs and their parents (i.e., from P ∪Q)
using the Pareto optimality [31, 34] (i.e., selecting solutions that
are non-dominated by any other solutions in P ∪ Q). In MOSA,
the population size is kept constant as well but the selection is
performed by �rst selecting the test cases in the �rst front F0 built
using the preference criterion; then, if the size of F0 is less than
N , MOSA uses the Pareto optimality criterion to select enough test
cases such that in total N test cases are selected.

In contrast, FITESTminimizes the number of test cases generated
at each search iteration by evolving only test cases that are closest to
satisfying uncovered objectives, i.e., those in F0. This helps reducing
the search computation time compared to existing many-objective

ASE ’18, September 3–7, 2018, Montpellier, France R. Ben Abdessalem, S. Nejati, A. Panichella, L. C. Briand, and T. Sti�er

search algorithms that typically maintain and evolve a �xed number
of solutions at each iteration. This is particularly important in the
context of our work, since running each test case is expensive.

4 EVALUATION

In this section, we evaluate our approach to detecting undesired
feature interactions using real-world automotive systems.

4.1 Research Questions

The goal of our study is to assess how e�ectively our hybrid test
objectives (hereafter referred to as Hybrid) guide the search toward
revealing feature interaction failures. As described in Section 3.3,
Hybrid builds on three distance functions: (1) coverage, (2) fail-
ure and (3) unsafe overriding. Among these, coverage distance is a
well-known heuristic that has been extensively used in white-box
testing [38, 39, 55]. For example, Fraser and Arcuri [39] showed
that pure coverage-based distance can be used to generate unit tests
capable of detecting real faults. Variations of the failure distance
have also been used in di�erent contexts to generate tests revealing
requirements violations [4, 13, 20]. Therefore, we want to assess
whether Hybrid provides any bene�ts compared to pure coverage-
based and failure-based objectives. In particular, we formulate the
following research questions:

RQ. Does Hybrid reveal more feature interaction failures compared

to coverage-based and failure-based test objectives?

Coverage based-objectives, hereafter referred to as Cov, corre-
spond to the BD functions described in Section 3.3 and are computed
as the sum of the approach level [56] and the normalized branch
distance [56]. Therefore, Cov aims to execute as many branches of
IntC as possible.

Failure-based test objectives, hereafter referred as to Fail, aim to
generate test cases that execute asmany branches of IntC as possible
while violating as many system safety requirements as possible
when executing each branch. Thus, Fail is de�ned by combining
branch distance BD and failure distance FD functions described in
Section 3.3. More precisely, for each branch j of IntC and every
safety requirement l of F , a failure-based test objective is de�ned
as Min{Fail j,l (i)}0≤i≤ T

δ

where

Fail j,l (i) =

BDj (i) + FDmax if j is not covered

FDl (i) otherwise

In this paper, we focus our empirical evaluation on comparing
Hybrid with alternative test objectives, but we do not compare
FITEST with alternative many-objective search algorithms because,
as discussed in Section 3.4, our changes to MOSA are primarily
motivated by the practical needs of (1) using genetic operators for
numerical vectors (often called real-coded operators [32, 42]) and (2)
lowering the running time of our algorithm by reducing the number
of (expensive) �tness computations at each generation. In our pre-
liminary experiments, running MOSA with its default population
size of 50 [59] required more than 24 hours for only 10 generations.
Further, previous studies showed thatMOSA,which is the algorithm
underlying FITEST, outperforms other search-based algorithms in
unit testing, such as random search [26], whole suite search [26, 59],
and other many-objective evolutionary algorithms [60].

4.2 Case Study Systems

We evaluate our approach by applying it to two case study sys-
tems developed by IEE. Both systems contain the four self-driving
features introduced in Section 2. However since engineers had de-
veloped two alternative sets of rules to prioritize these features and
to resolve their undesired interactions, they developed two di�erent
function models for the integration component (i.e., IntC). Due to
con�dentiality reasons, we do not share the details of the IntC mod-
els used in these two systems. Both systems are developed in Mat-
lab/Simulink and can be integrated into PreScan, the simulator used
in this paper.We refer to these systems as SafeDrive1 and SafeDrive2.

4.3 Experimental Settings

For the genetic operators used in FITEST, we use the parameter
values suggested in the literature [21, 29, 34]: We use the simulated

binary crossover (SBX) with a crossover probability 0.60, as the
recommended interval is [0.45,0.95] [21, 29]. The gaussianmutation
changes the test inputs by adding a random value selected from a
normal distributionG (µ,σ) with mean µ = 0 and variance σ 2

= 1.0.
As the guidelines suggest [34], the mutation probability is set to 1/l
where l is the length of test inputs (chromosomes). In FITEST, we do
not need to manually set the population size since, as described in
Section 3.4, it is dynamically updated at each generation. The search
stops when all the objectives are covered or when the timeout of 12
hours is reached. We set a timeout of 12 hours because as we will
discuss in Section 4.4, the search results start to stabilize and reach
a plateau within this time budget. Further, according to domain
experts, longer search time budgets are not practical.

To account for the randomness of the search algorithm, FITEST
was executed 20 times on each case study system and with each of
the three test objectives. The total duration of the experiment was
20 (repetitions) × 2 (systems) × 3 (test objectives) × 12 (hours) =
1440 hours (60 days). All experiments were executed on the same
machine with a 2.5 GHz Intel Core i7-4870HQ CPU and 16 GB
DDR3 memory.

We use the number of feature interaction failures that each of the
test objectives in our study can reveal as our evaluation metric. We
compute this metric by automatically checking test cases generated
by each test objective to determine whether or not they reveal a
feature interaction failure. A test case reveals a feature interaction
failure i�: (1) it violates some system safety requirement in Table 1
when it is applied to a system consisting of multiple features, but (2)
it does not violate that same safety requirement when it is applied
to the feature responsible for the satisfaction of that requirement.
Speci�cally, a test case tc reveals a feature interaction if FDi (tc) = 0
for some safety requirement i when tc is applied to SafeDrive1

or SafeDrive2, but FDi (tc) > 0 when tc is applied to the feature
responsible for requirement i .

4.4 Results

In this section, we answer our research question by comparing
Hybrid, Fail and Cov test objectives. Speci�cally, we run FITEST
with Hybrid, Fail and Cov as test objectives separately and repeat
each run for 20 times. Figures 5(a) and (b) compare the number of
feature interaction failures identi�ed over di�erent runs of FITEST
with Hybrid, Fail and Cov applied to SafeDrive1 and SaveDrive2,

Testing Autonomous Cars for Feature Interaction Failures ASE ’18, September 3–7, 2018, Montpellier, France

4 80 2 6 10 12
Time (h)

(a) SafeDrive1

N
u

m
b

e
r

o
f

fe
a

tu
re

 i
n

te
ra

c
ti

o
n

 f
a

il
u

re
s

0

2

8

10

4

6

Hybrid (mean)

Fail (mean)

Cov (mean)

(b) SafeDrive2

0

2

8

10

4

6

Figure 5: The number of feature interaction failures found

by Hybrid, Fail and Cov over time for (a) SafeDrive1 and (b)

SafeDrive2 systems.

respectively. We show the results at every one-hour interval from
0 to 12h. As shown in the two �gures, the average number of fea-
ture interaction failures computed using Hybrid is always larger
than those identi�ed by Fail and Cov. Speci�cally, after 12h, on
average, Hybrid is able to �nd 5.9 and 7.2 feature interaction fail-
ures for SafeDrive1 and SaveDrive2, respectively. In contrast, Fail
uncovers, on average, 2.1 and 2.8 feature interaction failures for
SafeDrive1 and SaveDrive2, respectively; and Cov only uncovers, on
average, 0.4 and 1.8 feature interaction failures for SafeDrive1 and
SaveDrive2, respectively. Further, after executing the algorithms
for 10h, the results obtained by the three test objective alternatives
reach a plateau.

Note that every run of FITESTwithHybrid, Fail andCov achieved
100% branch coverage on the function model of the integration
component (i.e., IntC) for both SafeDrive1 and SafeDrive2. Hence,
Fail and Cov, despite being able to exercise all branches of IntC,
perform poorly in terms of the number of feature interaction failures
that they can reveal. Further, we note that, among the Hybrid,
Fail and Cov test objectives, only Cov was fully achieved by the
generated test suites, while the Hybrid and Fail test objectives
were only partially achieved. This is expected since, as discussed
in Section 3.4, Hybrid and Fail search for violations of every safety
requirement at every branch of IntC. Some of these test objectives
may be infeasible (uncoverable) because not all safety requirements
may be violated at every branch of IntC. However, we cannot know
a priori which objectives are infeasible, and hence, we include all
of them in our search.

We compare the results in Figure 5 using a statistical test. Fol-
lowing existing guidelines [10], we use the non-parametric pair-
wise Wilcoxon rank sum test [27] and the Vargha-Delaney’s Â12

e�ect size [71]. Table 2 reports the results of the statistical tests ob-

Table 2: Statistical test results comparing the number of fea-

ture interaction failures found by Hybrid, Fail and Cov over

time for SafeDrive1 and SafeDrive2 systems (see Figure 5).

SafeDrive1 SafeDrive2

Hybrid vs. Cov Hybrid vs. Fail Hybrid vs. Cov Hybrid vs. Fail

time p-value Â12 p-value Â12 p-value Â12 p-value Â12

1h NA 0.5 (N) NA 0.5 (N) NA 0.5 (N) NA 0.5 (N)
2h 0.663 0.53 (N) 0.663 0.53 (N) 0.33 0.58 (S) 0.33 0.58 (S)
3h 8.83e-6 0.89 (L) 5.16e-5 0.86 (L) 0.003 0.77 (L) 0.009 0.73 (L)
4h 7.02e-8 0.98 (L) 4.68e-6 0.91 (L) 1.97e-7 0.97 (L) 5.27e-7 0.95 (L)
5h 3.08e-8 0.99 (L) 4.71e-7 0.95 (L) 9.97e-8 0.99 (L) 1.65e-7 0.98 (L)
6h 3.2e-8 1 (L) 1.43e-7 0.98 (L) 7.14e-8 0.99 (L) 1.0e-7 0.98 (L)
7h 3.32e-8 1 (L) 1.02e-7 0.98 (L) 5.52e-8 0.99 (L) 6.65e-8 0.99 (L)
8h 3.25e-8 1 (L) 7.78e-8 0.99 (L) 5.40e-8 1 (L) 4.74e-8 1 (L)
9h 2.9e-8 1 (L) 4.3e-8 1 (L) 5.54e-8 1 (L) 4.86e-8 1 (L)
10h 2.84e-8 1 (L) 4.16e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)
11h 2.96e-8 1 (L) 4.4e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)
12h 2.96e-8 1 (L) 4.23e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)

tained when comparing the number of feature interaction failures
uncovered by Hybrid, Fail and Cov, over time for SafeDrive1 and
SafeDrive2. As shown in the table, the p-values related to the results
produced when the search time ranges between 3h and 12h are all
lower than 0.05 and the Â12 statistics show large e�ect sizes. Hence,
the number of feature interaction failures obtained by Hybrid is
signi�cantly higher (with a large e�ect size) than those obtained
by Fail and Cov.

The answer to RQ is that our proposed test objectives (Hybrid)
reveals signi�cantly more feature interaction failures compared
to coverage-based and failure-based test objectives. In particular,
on average, Hybrid identi�es more than twice as many feature
interaction failures as the coverage-based and failure-based test
objectives.

Feedback from domain experts. We conclude this section by
summarizing the qualitative feedback of the domain experts from
IEE with whom we have been collaborating on the research pre-
sented in this paper. During two meetings, we presented to our
domain experts four test scenarios revealing di�erent feature in-
teraction failures. The four test scenarios were selected randomly
among the ones detected by our approach. Each test scenario tc

was presented by showing: (1) a video simulation of tc generated
by PreScan based on one of our case study systems (SafeDrive1 or
SafeDrive2) and violating one of the safety requirements in Table 1
and (2) a video simulation of tc generated by PreScan based on
running only the feature related to the violated requirement. Note
that since tc reveals a feature interaction failure, the latter simu-
lation videos (i.e., the ones based on running individual features)
do not exhibit any requirements violation. After presenting the
simulations, we discussed with our domain experts each failure, its
root causes and whether or how it can be addressed by modifying
the current feature interaction resolution rules implemented in IntC.
We drew the following conclusions from our discussions: (1) Our
domain experts agreed with us that the four failures were due to
interactions between the features and were not caused by faults in
individual features, (2) they con�rmed that the failures were not
previously known to them and (3) they identi�ed ways to modify
or extend the integration component (IntC) to avoid the failures.
The simulations and the detailed failure descriptions used in our
meetings are available online [2].

ASE ’18, September 3–7, 2018, Montpellier, France R. Ben Abdessalem, S. Nejati, A. Panichella, L. C. Briand, and T. Sti�er

5 RELATED WORK
In this section, we discuss and compare with di�erent strands of
related research in the areas of testing autonomous cars, and testing
and model checking feature-based systems.
Testing autonomous cars. Search-based approaches have been
used for black-box testing of driver-assistance features [13, 14, 22,
23]. Bühler and Wegener use a single-objective search algorithm to
test a vehicle-to-vehicle braking assistance [23] and an autonomous
parking feature [22]. Ben Abdessalem et. al. rely on multi-objective
search [13] and learnable evolutionary algorithms [14] to generate
test cases violating safety requirements of self-driving systems. Re-
cently, Tian et. al. [68] proposed a notion of neuron coverage and
used it to guide the generation of tests for neural networks used in
autonomous cars. None of these approaches study the feature in-
teraction problem in autonomous cars. We advance the research on
testing autonomous cars by devising test objectives that speci�cally
detect feature interaction failures. Our test objectives combine ex-
isting software testing heuristics (i.e., branch-coverage [38, 55, 69]
and failure-based [4, 13, 20, 23]) with our proposed unsafe over-
riding heuristic. Further, we tailor existing many-objective search
algorithms [59, 60] to detect feature interaction failures in our con-
text.
Feature interactions in software product lines. In the context
of software product lines (SPL), testing approaches are proposed
to ensure product implementations satisfy their feature speci�ca-
tions [50, 58, 61]. These approaches largely follow a model-based
testing paradigm [6]. For example, they use combinatorial testing
to drive test cases and oracles from feature models to verify individ-
ual products [58, 61]. Our work, in contrast, is model testing [19].
Speci�cally, we take advantage of the availability of executable
function models and test executable function models of the sys-
tem and its environment. Further, in contrast to the SPL testing
work, our approach does not need descriptions of features and their
dependencies to be provided.

Some SPL approaches are proposed to automatically derive fea-
ture dependencies specifying valid feature combinations [7, 36, 46].
For example, interactions between observable feature behaviors
(i.e., external feature interactions [7]) have been identi�ed by static
analysis of software code [36, 46]. In contrast, our approach detects
feature interactions prior to any software coding. It dynamically
detects undesired feature interactions by testing function models
capturing the SUT and its environment.
Feature interaction detection via model checking. Several ap-
proaches are proposed to detect feature interactions by model
checking requirements or design artifacts against formal speci�ca-
tions [8, 11, 45, 62, 65]. For example, Apel et. al. [8] verify features
described in a formal feature-oriented language against temporal
logic properties [28]. Arora et. al. verify features de�ned as state
machines against live sequence charts speci�cations. Dominguez
et. al. [45] verify features captured as StateFlows, and Sobotka and
J. Novak [65] specify features in timed automata [5]. Similar to
our work, these approaches verify early requirements and design
models against system requirements. However, our work di�ers
with this line of research in the following ways: First, most of these
approaches identify pairwise feature interactions only. We can,
however, identify feature interactions between an arbitrary num-
ber of features. Second, these techniques model system features

only. However, to analyze autonomous cars, we have to capture, in
addition to features, system’s sensors and actuators, and the system
environment. Third, in contrast to these approaches, our approach
does not require additional formal modeling. We take advantage of
the availability of function models, which are developed anyway in
the CPS domain, to test the system in its environment. Fourth, our
function models use numerical and continuous Matlab/Simulink
computations to capture dynamics of cars and pedestrians. These
models are not, in general, amenable to model checking due to scala-
bility and incompatibility issues [3, 52, 54]. Therefore, as suggested
in the recent research on testing CPS models [3, 52, 54, 78], instead
of model checking, we rely on simulation-based testing guided by
meta-heuristics to analyze our function models.
Feature interaction resolution. Several approaches are proposed
to devise resolution strategies to eliminate undesired feature in-
teractions, for example, by proposing speci�c feature-oriented ar-
chitectures [44, 70], by statically prioritizing features [41, 77] or
using runtime resolutionmechanisms [16, 76]. These techniques are
complementary to our approach. They can be used to develop the
integration component (IntC) to resolve undesired feature interac-
tions, but our approach is still necessary to test the system behavior
and to determine if the proposed resolution strategy can eliminate
undesired behaviors under di�erent environment conditions.

6 CONCLUSION

We presented a technique for detecting feature interaction failures
in the context of autonomous cars. Our technique is based on ana-
lyzing executable function models typically developed in the cyber
physical domain to specify system behaviors at early development
stages. Our contributions over prior work include: (1) casting the
problem of detecting undesired feature interactions into a search-
based testing problem, (2) de�ning a test guidance that combines
existing search-based test objectives with new heuristics speci�cally
aimed at revealing feature interaction failures, (3) tailoring existing
many-objective search algorithms [59, 60] to automatically reveal
feature interaction failures in a scalable way, and (4) evaluating our
approach using two versions of an industrial self-driving system
and demonstrating signi�cant improvement in feature interaction
failure identi�cation compared to baseline search-based testing
approaches. Finally, we note that our research was motivated and
carried out in the context of a partnership with IEE. The feedback
from domain experts from IEE indicates that the detected feature
interaction failures represent real faults in their systems that were
not previously identi�ed based on analysis of the system features
and their requirements.

In future, we plan to devise strategies to use feature interaction
failures to localize faults and help engineers e�ectively debug and
re�ne their feature interaction resolution strategies.

ACKNOWLEDGMENTS

Wegratefully acknowledge the funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 694277) and from
IEE S.A. Luxembourg.

Testing Autonomous Cars for Feature Interaction Failures ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] 2018. Matlab/Simulink. https://nl.mathworks.com/products/simulink.html.

(2018).
[2] 2018. Supplementary Materials. https://�gshare.com/s/50193ea5652147d2f036.

(2018).
[3] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo Ivančić,

and Aarti Gupta. 2013. Probabilistic temporal logic falsi�cation of cyber-physical
systems. ACM Transactions on Embedded Computing Systems (TECS) 12, 2s (2013),
95.

[4] Wasif Afzal, Richard Torkar, and Robert Feldt. 2009. A systematic review of
search-based testing for non-functional system properties. Information and
Software Technology 51, 6 (2009), 957–976.

[5] Rajeev Alur. 1999. Timed automata. In Proceedings of the International Conference
on Computer Aided Veri�cation (CAV’99). Springer, Trento, Italy, 8–22.

[6] Paul Ammann and Je� O�utt. 2008. Introduction to Software Testing (1 ed.).
Cambridge University Press, New York, NY, USA.

[7] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. 2013. Exploring feature interactions in the wild: the new feature-
interaction challenge. In Proceedings of the International Workshop on Feature-
Oriented Software Development (FOSD’13). ACM, Indianapolis, USA, 1–8.

[8] Sven Apel, Alexander Von Rhein, Thomas ThüM, and Christian KäStner. 2013.
Feature-interaction detection based on feature-based speci�cations. Computer
Networks 57, 12 (2013), 2399–2409.

[9] Andrea Arcuri. 2013. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Veri�cation and Reliability 23,
2 (2013), 119–147. https://doi.org/10.1002/stvr.457

[10] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Veri�cation and Reliability 24, 3 (2014), 219–250.

[11] Silky Arora, Prahlad Sampath, and S Ramesh. 2012. Resolving uncertainty in
automotive feature interactions. In Proceedings of the International Requirements
Engineering Conference (RE’12). Chicago, Illinois, USA, 21–30.

[12] Johannes Bader and Eckart Zitzler. 2011. HypE: An algorithm for fast
hypervolume-based many-objective optimization. IEEE Transactions on Evo-
lutionary computation 19, 1 (2011), 45–76.

[13] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2016.
Testing advanced driver assistance systems using multi-objective search and
neural networks. In Proceedings of the International Conference on Automated
Software Engineering (ASE’16). IEEE, Singapore, 63–74.

[14] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018.
Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms.
In Proceedings of the International Conference on Software Engineering (ICSE’18).
ACM, Gothenburg, Sweden, to appear.

[15] Johan Blom, Bengt Jonsson, and Lars Kempe. 1994. Using Temporal Logic for
Modular Speci�cation of Telephone Services. In Proceedings of the International
Workshop on Feature Interactions in Telecommunications Systems (FIW’94). IOS
Press, Amsterdam, Netherlands, 197–216.

[16] Cecylia Bocovich and Joanne M Atlee. 2014. Variable-speci�c resolutions for
feature interactions. In Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’14). ACM, Hong Kong, China, 553–
563.

[17] Kenneth H. Braithwaite and Joanne M. Atlee. 1994. Towards automated de-
tection of feature interactions. In Proceedings of the International Workshop on
Feature Interactions in Telecommunications Systems (FIW’94). IOS Press, Amster-
dam, Netherlands, 36–59.

[18] J. Bredereke. 2000. Families of formal requirements in telephone switching.
In Proceedings of the International Workshop on Feature Interactions in Telecom-
munications and Software Systems(FIW’00). IOS Press, Glasgow, Scotland, UK,
257–273.

[19] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli. 2016.
Testing the untestable: model testing of complex software-intensive systems. In
Proceedings of the International Conference on Software Engineering Companion
(ICSE’16). ACM, Austin, TX, US, 789–792.

[20] Lionel C Briand, Yvan Labiche, and Marwa Shousha. 2006. Using genetic algo-
rithms for early schedulability analysis and stress testing in real-time systems.
Genetic Programming and Evolvable Machines 7, 2 (2006), 145–170.

[21] Lionel C. Briand, Yvan Labiche, and Marwa Shousha. 2006. Using Genetic Algo-
rithms for Early Schedulability Analysis and Stress Testing in Real-time Systems.
Genetic Programming and Evolvable Machines 7, 2 (2006), 145–170.

[22] Oliver Bühler and Joachim Wegener. 2004. Automatic testing of an autonomous
parking system using evolutionary computation. Technical Report. SAE Technical
Paper.

[23] Oliver Bühler and Joachim Wegener. 2008. Evolutionary functional testing.
Computers & Operations Research 35, 10 (2008), 3144–3160.

[24] Stan BÃĳhne, Kim Lauenroth, and Klaus Pohl. 2004. Modelling Features for
Multi-Criteria Product-Lines in the Automotive Industry.. In Proceedings of the
International Workshop on Software Engineering for Automotive Systems (SEAS’04),
co-located at ICSE’04. Edinburgh, UK, 9–16.

[25] Mu�y Calder, Mario Kolberg, Evan H Magill, and Stephan Rei�-Marganiec. 2003.
Feature interaction: a critical review and considered forecast. Computer Networks
41, 1 (2003), 115–141.

[26] José Campos, Yan Ge, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. 2017. An
Empirical Evaluation of Evolutionary Algorithms for Test Suite Generation. In
Proceedings of the International Symposium on Search Based Software Engineering
(SSBSE’17). Paderborn, Germany, 33–48.

[27] J. Anthony Capon. 1991. Elementary Statistics for the Social Sciences: Study Guide.
Wadsworth Publishing Company, Belmont, CA, USA.

[28] EdmundM. Clarke, Jr., Orna Grumberg, and DoronA. Peled. 1999.Model Checking.
MIT Press.

[29] Helen G. Cobb and John J. Grefenstette. 1993. Genetic Algorithms for Tracking
Changing Environments. In Proceedings of the International Conference on Genetic
Algorithms (ICGA’93). Morgan Kaufmann Publishers, San Francisco, CA, USA,
523–530.

[30] Kalyanmoy Deb. 1995. Simulated binary crossover for continuous search space.
Complex systems 9 (1995), 115–148.

[31] Kalyanmoy Deb. 2014. Multi-objective Optimization. In Search Methodologies.
Springer US, 403–449. https://doi.org/10.1007/978-1-4614-6940-7_15

[32] Kalyanmoy Deb and Debayan Deb. 2014. Analysing Mutation Schemes for Real-
parameter Genetic Algorithms. International Journal of Arti�cial Intelligence and
Soft Computing 4, 1 (Feb 2014), 1–28. https://doi.org/10.1504/IJAISC.2014.059280

[33] Kalyanmoy Deb and Himanshu Jain. 2014. An evolutionary many-objective opti-
mization algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints. IEEE Transactions on Evolutionary
Computation 18, 4 (2014), 577–601.

[34] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2000. A
Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6 (2000), 182–197.

[35] Stefan Ferber, Jürgen Haag, and Juha Savolainen. 2002. Feature interaction and
dependencies: Modeling features for reengineering a legacy product line. In
Proceedings of the International Conference on Software Product Lines (SPLC’02).
Springer, San Diego, CA, USA, 235–256.

[36] Gabriel Ferreira, Christian Kästner, Jürgen Pfe�er, and Sven Apel. 2015. Charac-
terizing complexity of highly-con�gurable systems with variational call graphs:
analyzing con�guration options interactions complexity in function calls. In
Proceedings of the Symposium and Bootcamp on the Science of Security (HotSoS’15).
ACM, Urbana, IL, USA, 17.

[37] K. Fisler and S. Krishnamurthi. 2005. Decomposing Veri�cation by Features. In
Proceedings of the International Conference on Veri�ed Software: Theories, Tools
and Experiments (VSTTE’05). Zurich, Switzerland.

[38] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[39] Gordon Fraser and Andrea Arcuri. 2015. 1600 faults in 100 projects: automatically
�nding faults while achieving high coverage with EvoSuite. Empirical Software
Engineering 20, 3 (2015), 611–639.

[40] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
Software Engineering: Trends, Techniques and Applications. Comput. Surveys
45, 1, Article 11 (Dec 2012), 61 pages. https://doi.org/10.1145/2379776.2379787

[41] Jonathan D Hay and Joanne M Atlee. 2000. Composing features and resolving
interactions. In ACM SIGSOFT Software Engineering Notes (SEN’00), Vol. 25. ACM,
110–119.

[42] F. Herrera, M. Lozano, and A. M. SÂůnchez. 2003. A taxonomy for the crossover
operator for real-coded genetic algorithms: An experimental study. International
Journal of Intelligent Systems 18, 3 (2003), 309–338. https://doi.org/10.1002/int.
10091

[43] IEE. 2018. International Electronics & Engineering. https://www.iee.lu/. (2018).
[44] M. Jackson and P. Zave. 1998. Distributed Feature Composition: a Virtual Archi-

tecture for Telecommunications Services. IEEE TSE 24, 10 (1998), 831–847.
[45] Alma L Juarez-Dominguez, Nancy A Day, and Je�rey J Joyce. 2008. Modelling

feature interactions in the automotive domain. In Proceedings of the International
Workshop on Modeling in Software Engineering (MISE’08). ACM, Leipzig, Germany,
45–50.

[46] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Sven Apel. 2017.
On the Relation of External and Internal Feature Interactions: A Case Study.
arXiv preprint arXiv:1712.07440 (2017).

[47] Bogdan Korel. 1990. Automated software test data generation. IEEE Transactions
on Software Engineering 16, 8 (1990), 870–879.

[48] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. 2015. Many-objective evolutionary
algorithms: A survey. ACM Computing Surveys (CSUR) 48, 1 (2015), 13.

[49] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on Software Engineering 33,
4 (2007).

[50] Malte Lochau, Sebastian Oster, Ursula Goltz, and Andy Schürr. 2012. Model-
based pairwise testing for feature interaction coverage in software product line
engineering. Software Quality Journal 20, 3-4 (2012), 567–604.

[51] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu, Fairfax, Virginie,
USA. https://cs.gmu.edu/\simsean/book/metaheuristics/

https://nl.mathworks.com/products/simulink.html
https://figshare.com/s/50193ea5652147d2f036
https://doi.org/10.1002/stvr.457
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1504/IJAISC.2014.059280
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1002/int.10091
https://doi.org/10.1002/int.10091
https://www.iee.lu/
https://cs.gmu.edu/$\sim $sean/book/metaheuristics/

ASE ’18, September 3–7, 2018, Montpellier, France R. Ben Abdessalem, S. Nejati, A. Panichella, L. C. Briand, and T. Sti�er

[52] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann. 2018. Test Generation and
Test Prioritization for SimulinkModels with Dynamic Behavior. IEEE Transactions
on Software Engineering (2018), to appear.

[53] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude
Poull. 2015. Search-based automated testing of continuous controllers: Frame-
work, tool support, and case studies. Information and Software Technology 57
(2015), 705–722.

[54] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.
Automated test suite generation for time-continuous simulink models. In Pro-
ceedings of the International Conference on Software Engineering (ICSE’16). ACM,
Austin, TX, US, 595–606.

[55] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Veri�cation and reliability 14, 2 (2004), 105–156.

[56] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
Testing Veri�cation and Reliability Journal 14, 2 (2004), 105–156.

[57] N. S. Nise. 2004. Control Systems Engineering, 4th ed. John-Wiely Sons.
[58] Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik. 2011. Pairwise

feature-interaction testing for SPLs: potentials and limitations. In Proceedings
of the International Software Product Line Conference, Volume 2 (SPLC’11). ACM,
Munich, Germany, 6.

[59] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Re-
formulating Branch Coverage as a Many-Objective Optimization Problem. In
Proceedings of the International Conference on Software Testing, Veri�cation and
Validation, (ICST’15). Graz, Austria, 1–10.

[60] Annibale Panichella, Fitsum Mesheha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (Feb 2018), 122–158.

[61] Sachin Patel, Priya Gupta, and Vipul Shah. 2013. Feature interaction testing of
variability intensive systems. In Proceedings of the International Workshop on
Product Line Approaches in Software Engineering (PLEASE’13). IEEE, San Francisco,
CA, USA, 53–56.

[62] Malte Plath and Mark Ryan. 2001. Feature integration using a feature construct.
Science of Computer Programming 41, 1 (2001), 53–84.

[63] C. Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects. In Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP’97).
JyvÃďskylÃď, Finland, 419–443.

[64] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2017. A
detailed investigation of the e�ectiveness of whole test suite generation. Em-
pirical Software Engineering 22, 2 (2017), 852–893. https://doi.org/10.1007/

s10664-015-9424-2
[65] Jan Sobotka and Jiri Novak. 2013. Automation of automotive integration testing

process. In Proceedings of the International Conference on Intelligent Data Acquisi-
tion and Advanced Computing Systems (IDAACS’13), Vol. 1. IEEE, Berlin, Germany,
349–352.

[66] Thorsten Suttorp and Christian Igel. 2006. Multi-objective optimization of support
vector machines. In Multi-objective machine learning. Springer, -, 199–220.

[67] TASS-International. 2018. PreScan. https://www.tassinternational.com/prescan.
(2018).

[68] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-Neural-Network-driven Autonomous Cars. In Proceedings of the
International Conference on Software Engineering (ICSE’18). ACM, Gothenburg,
Sweden, to appear.

[69] Paolo Tonella. 2004. Evolutionary testing of classes. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’04),
Vol. 29. ACM, Boston, MA, USA, 119–128.

[70] Rob van der Linden. 1994. Using an architecture to help beat feature interaction.
In Proceedings of the International Workshop on Feature Interactions in Telecom-
munications Systems (FIW’94). IOS Press, Amsterdam, Netherlands, 24–35.

[71] András Vargha and Harold D. Delaney. 2000. A critique and improvement of
the CL common language e�ect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[72] Gabriel A Wainer. 2009. Discrete-event modeling and simulation: a practitioner’s
approach. CRC press.

[73] Shin Yoo and Mark Harman. 2007. Pareto e�cient multi-objective test case selec-
tion. In Proceedings of tthe ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’07). ACM, London, UK, 140–150.

[74] Justyna Zander, Ina Schieferdecker, and Pieter J Mosterman. 2017. Model-based
testing for embedded systems. CRC press.

[75] Pamela Zave. 1993. Feature interactions and formal speci�cations in telecommu-
nications. Computer 26, 8 (Aug 1993), 20–28.

[76] M Hadi Zibaeenejad, Chi Zhang, and Joanne M Atlee. 2017. Continuous variable-
speci�c resolutions of feature interactions. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (ESEC/FSE’17). ACM, Paderborn, Germany,
408–418.

[77] P Ann Zimmer and Joanne M Atlee. 2012. Ordering features by category. Journal
of Systems and Software 85, 8 (2012), 1782–1800.

[78] Paolo Zuliani, André Platzer, and Edmund M Clarke. 2013. Bayesian statistical
model checking with application to State�ow/Simulink veri�cation. Formal
Methods in System Design 43, 2 (2013), 338–367.

https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1007/s10664-015-9424-2
https://www.tassinternational.com/prescan

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Testing Feature-Based Control Systems
	3.2 Test Inputs and Outputs
	3.3 Hybrid Test Objectives
	3.4 Search Algorithm

	4 Evaluation
	4.1 Research Questions
	4.2 Case Study Systems
	4.3 Experimental Settings
	4.4 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

