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1. INTRODUCTION

Suppose we have two distributions over the same n-element set, such that we know
nothing about their structure and the only access we have to these distributions is
the ability to take independent samples from them. Suppose further that we want
to know whether these two distributions are close to each other in ℓ1 norm.1 A
first approach, which we refer to as the naive approach, would be to sample enough
elements from each distribution so that we can approximate the distribution and
then compare the approximations. It is easy to see (see Theorem 3.11 in Section 3.2)
that this naive approach requires the number of samples to be at least linear in n.

In this paper, we develop a method of testing that the distance between two
distributions is at most ǫ using considerably fewer samples. If the distributions
have ℓ1 distance at most max{ǫ4/3n−1/3/32, ǫn−1/2/4}, then the algorithm will
accept with probability at least 1 − δ. If the distributions have ℓ1 distance more
than ǫ then the algorithm will accept with probability at most δ. The number of
samples used is O(n2/3ǫ−8/3 log(n/δ)). In contrast, the methods of Valiant [2008],
fixing the incomplete arguments in the original conference paper (see Section 3),
yield an Ω(n2/3ǫ−2/3) lower bound for testing ℓ1 distance in this model.

Our test relies on a test for whether two distributions have small ℓ2 distance,
which is considerably easier to test: we give an algorithm with sample complexity
independent of n. However, small ℓ2 distance does not in general give a good
measure of the closeness of two distributions according to ℓ1 distance. For example,
two distributions can have disjoint support and still have ℓ2 distance of O(1/

√
n).

Still, we can get a very good estimate of the ℓ2 distance, say to within O(1/
√

n)
additive error, and then use the fact that the ℓ1 distance is at most

√
n times the

ℓ2 distance. Unfortunately, the number of queries required by this approach is too
large in general. Because of this, our ℓ1 test is forced to distinguish between two
cases.

For distributions with small ℓ2 norm, we show how to use the ℓ2 distance to get an
efficient test for ℓ1 distance. For distributions with larger ℓ2 norm, we use the fact
that such distributions must have elements which occur with relatively high proba-
bility. We create a filtering test that partitions the domain into those elements with
relatively high probability and all the other elements (those with relatively low prob-
ability). The test estimates the ℓ1 distance due to these high-probability elements
directly, using the naive approach mentioned above. The test then approximates
the ℓ1 distance due to the low-probability elements using the test for ℓ2 distance.
Optimizing the notion of “high probability” yields our O(n2/3ǫ−8/3 log(n/δ)) algo-
rithm. The ℓ2 distance test uses O(ǫ−4 log(1/δ)) samples.

Applying our techniques to Markov chains, we use the above algorithm as a basis
for constructing tests for determining whether a Markov chain is rapidly mixing.
We show how to test whether iterating a Markov chain for t steps causes it to reach
a distribution close to the stationary distribution. Our testing algorithm works by
following Õ(tn5/3) edges in the chain. When the Markov chain is dense enough
and represented in a convenient way (such a representation can be computed in
linear time and we give an example representation in Section 4), this test remains

1Half of ℓ1 distance between two distributions is also referred to as total variation distance.
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sublinear in the size of the Markov chain for small t. We then investigate two notions
of being close to a rapidly mixing Markov chain that fall within the framework of
property testing, and show how to test that a given Markov chain is close to a
Markov chain that mixes in t steps by following only Õ(tn2/3) edges. In the case
of Markov chains that come from directed graphs and pass our test, our theorems
show the existence of a directed graph that is both close to the original one and
rapidly mixing.

1.1 Related Work

1.1.1 Testing Properties of Distributions. The use of collision statistics in a
sample has been proposed as a technique to test whether a distribution is uniform
(see, for example, Knuth [1973]). Goldreich and Ron [2000] give the first formal
analysis that using O(

√
n) samples to estimate the collision probability yields an

algorithm which gives a very good estimate of the ℓ2 distance between the given
distribution and the uniform distribution. Their “collision count” idea underlies the
present paper. More recently, Paninski [2008] presents a test to determine whether
a distribution is far from the uniform distribution with respect to ℓ1 distance us-
ing Θ(

√
n/ǫ2) samples. Ma [1981] also uses collisions to measure the entropy of a

distribution defined by particle trajectories. After the publication of the prelimi-
nary version of this paper, a long line of publications appeared regarding testing
properties of distributions including independence, entropy, and monotonicity (see,
for example, [Batu et al. 2001; Batu et al. 2004; Batu et al. 2005; Brautbar and
Samorodnitsky 2007; Alon et al. 2007; Valiant 2008; Rubinfeld and Servedio 2009;
Raskhodnikova et al. 2009; Rubinfeld and Xie 2010; Adamaszek et al. 2010]).

1.1.2 Expansion, Rapid Mixing, and Conductance. Goldreich and Ron [2000]
present a test that they conjecture can be used to give an algorithm with O(

√
n)

query complexity which tests whether a regular graph is close to being an expander,
where by close they mean that by changing a small fraction of the edges they
can turn it into an expander. Their test is based on picking a random node and
testing whether random walks from this node reach a distribution that is close to
the uniform distribution on the nodes. Our tests for Markov chains are based on
similar principles. Mixing and expansion are known to be related [Sinclair and
Jerrum 1989], but our techniques only apply to the mixing properties of random
walks on directed graphs, since the notion of closeness we use does not preserve
the symmetry of the adjacency matrix. More recently, a series of papers [Czumaj
and Sohler 2007; Kale and Seshadhri 2008; Nachmias and Shapira 2007] answer
Goldreich and Ron’s conjecture in the affirmative. In a previous work, Goldreich
and Ron [1997] show that testing that a graph is close to an expander requires
Ω(n1/2) queries.

The conductance [Sinclair and Jerrum 1989] of a graph is known to be closely re-
lated to expansion and rapid-mixing properties of the graph [Kannan 1994; Sinclair
and Jerrum 1989]. Frieze and Kannan [1999] show, given a graph G with n vertices
and α, one can approximate the conductance of G to within additive error α in

time n ·2Õ(1/α2). Their techniques also yield an 2poly(1/ǫ)-time test that determines
whether the adjacency matrix of a graph can be changed in at most ǫ fraction of the
locations to get a graph with high conductance. However, for the purpose of testing
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whether an n-vertex, m-edge graph is rapid mixing, we would need to approximate
its conductance to within α = O(m/n2); thus, only when m = Θ(n2), would the
algorithm in [Frieze and Kannan 1999] run in O(n) time.

We now discuss some other known results for testing of rapid mixing through
eigenvalue computations. It is known that mixing [Sinclair and Jerrum 1989; Kan-
nan 1994] is related to the separation between the two largest eigenvalues [Alon
1986]. Standard techniques for approximating the eigenvalues of a dense n × n
matrix run in Θ(n3) floating-point operations and consume Θ(n2) words of mem-
ory [Golub and van Loan 1996]. However, for a sparse n × n symmetric matrix
with m nonzero entries, n ≤ m, “Lanczos algorithms” [Parlett 1998] accomplish
the same task in Θ(n(m + log n)) floating-point operations, consuming Θ(n + m)
storage. Furthermore, it is found in practice that these algorithms can be run for
far fewer, even a constant number, of iterations while still obtaining highly accurate
values for the outer and inner few eigenvalues.

1.1.3 Streaming. There is much work on the problem estimating the distance
between distributions in data streaming models where space rather than time is
limited (cf., [Gibbons and Matias 1999; Alon et al. 1999; Feigenbaum et al. 1999;
Fong and Strauss 2000]). Another line of work [Broder et al. 2000] estimates the dis-
tance in frequency count distributions on words between various documents, where
again space is limited. Guha et al. [2009] have extended our result to estimating
the closeness of distribution with respect to a range of f -divergences, which include
ℓ1 distance. Testing distributions in streaming data models has been an active area
of research in the recent years (see, for example, [Bhuvanagiri and Ganguly 2006;
Chakrabarti et al. 2006; Indyk and McGregor 2008; Guha et al. 2008; Chakrabarti
et al. 2010; Chien et al. 2010; Braverman and Ostrovsky 2010a; 2010b]).

1.1.4 Other Related Models. In an interactive setting, Sahai and Vadhan [1997]
show that, given distributions p and q generated by polynomial-size circuits, the
problem of distinguishing whether p and q are close or far in ℓ1 norm is complete
for statistical zero knowledge. Kannan and Yao [1991] outlines a program checking
framework for certifying the randomness of a program’s output. In their model,
one does not assume that samples from the input distribution are independent.

1.1.5 Computational Learning Theory. There is a vast literature on testing sta-
tistical hypotheses. In these works, one is given examples chosen from the same
distribution out of two possible choices, say p and q. The goal is to decide which
of two distributions the examples are coming from. More generally, the goal can
be stated as deciding which of two known classes of distributions contains the dis-
tribution generating the examples. This can be seen to be a generalization of our
model as follows: Let the first class of distributions be the set of distributions of
the form q × q. Let the second class of distributions be the set of distributions of
the form q1 × q2 where the ℓ1 difference of q1 and q2 is at least ǫ. Then, given
examples from two distributions p1,p2, create a set of example pairs (x, y) where
x is chosen according to p1 and y according to p2 independently. Bounds and an
optimal algorithm for the general problem for various distance measures are given
in [Cover and Thomas 1991; Neyman and Pearson 1933; Cressie and Morgan 1989;
Csiszár 1967; Lehmann 1986]. None of these give sublinear bounds in the domain
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size for our problem. The specific model of singleton hypothesis classes is studied
by Yamanishi [1995].

1.2 Notation

We use the following notation. We denote the set {1, . . . , n} with [n]. The notation
x ∈R [n] denotes that x is chosen uniformly at random from the set [n]. The ℓ1

norm of a vector v is denoted by ‖v‖1 and is equal to
∑n

i=1 |vi|. Similarly, the ℓ2

norm is denoted by ‖v‖2 and is equal to
√∑n

i=1 v2
i , and ‖v‖∞ = maxi |vi|. We

assume our distributions are discrete distributions over n elements, with labels in
[n], and will represent such a distribution as a vector p = (p1, . . . , pn), where pi is
the probability of outputting element i.

The collision probability of two distributions p and q is the probability that a
sample from each of p and q yields the same element. Note that, for two distribu-
tions p,q, the collision probability is p · q =

∑
i piqi. To avoid ambiguity, we refer

to the collision probability of p and p as the self-collision probability of p. Note
that the self-collision probability of p is ‖p‖2

2.

2. TESTING CLOSENESS OF DISTRIBUTIONS

The main goal of this section is to show how to test whether two distributions
p and q are close in ℓ1 norm in sublinear time in the size of the domain of the
distributions. We are given access to these distributions via black boxes which
upon a query respond with an element of [n] generated according to the respective
distribution. Our main theorem is:

Theorem 2.1. Given parameters δ and ǫ, and distributions p,q over a set of
n elements, there is a test which runs in time O(n2/3ǫ−8/3 log(n/δ)) such that, if

‖p− q‖1 ≤ max( ǫ4/3

32 3
√

n
, ǫ

4
√

n
), then the test accepts with probability at least 1 − δ

and, if ‖p− q‖1 > ǫ, then the test rejects with probability at least 1 − δ.

In order to prove this theorem, we give a test which determines whether p and q

are close in ℓ2 norm. The test is based on estimating the self-collision and collision
probabilities of p and q. In particular, if p and q are close, one would expect that
the self-collision probabilities of each are close to the collision probability of the
pair. Formalizing this intuition, in Section 2.1, we prove:

Theorem 2.2. Given parameter δ and ǫ, and distributions p and q over a set of
n elements, there exists a test such that, if ‖p−q‖2 ≤ ǫ/2, then the test accepts with
probability at least 1 − δ and, if ‖p− q‖2 > ǫ, then the test rejects with probability
at least 1 − δ. The running time of the test is O(ǫ−4 log(1/δ)).

The test used to prove Theorem 2.2 is given below in Figure 1. The number of
pairwise self-collisions in multiset F ⊆ [n] is the count of i < j such that the ith
sample in F is same as the jth sample in F . Similarly, the number of collisions
between Qp ⊆ [n] and Qq ⊆ [n] is the count of (i, j) such that the ith sample in Qp

is same as the jth sample in Qq.
We use the parameter m to indicate the number of samples needed by the test

to get constant confidence. In order to bound the ℓ2 distance between p and q

by ǫ, setting m = O( 1
ǫ4 ) suffices. By maintaining arrays which count the numbers
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ℓ2-Distance-Test(p, q, m, ǫ, δ)
Repeat O(log(1/δ)) times

(1) Let Fp and Fq be multisets of m samples from p and q, respectively. Let rp and rq be
the numbers of pairwise self-collisions in Fp and Fq, respectively.

(2) Let Qp and Qq be multisets of m samples from p and q, respectively. Let spq be
the number of collisions between Qp and Qq.

(3) Let r = 2m
m−1

(rp + rq). Let s = 2spq.

(4) If r − s > 3m2ǫ2/4, then reject the current iteration.

Reject if the majority of iterations reject, accept otherwise.

Fig. 1. Algorithm ℓ2-Distance-Test

of times, for example, Np(i) for Fp, that each element i is sampled and summing(
Np(i)

2

)
over all sampled i in the domain, one can achieve the claimed running

time bounds for computing an estimate of the collision probability. In this way,
essentially m2 estimations of the collision probability can be performed in O(m)
time.

Since ‖v‖1 ≤ √
n · ‖v‖2, a simple way to extend the above test to an L1 distance

test is by setting ǫ′ = ǫ/
√

n. This would give the correct output behavior for the
tester. Unfortunately, due to the order of the dependence on ǫ in the ℓ2 distance
test, the resulting running time is quadratic in n. It is possible, though, to achieve
sublinear running times if the input distributions are known to be reasonably evenly
distributed. We make this precise by a closer analysis of the variance of the esti-
mator in the test in Lemma 2.5. In particular, we analyze the dependence of the
variances of s and r on the parameter b = max(‖p‖∞, ‖q‖∞). There we show that
given p and q such that b = O(n−α), one can call ℓ2-Distance-Test with an error
parameter of ǫ√

n
and achieve running time of O(ǫ−4(n1−α/2 +n2−2α)). Thus, when

the maximum probability of any element is bounded, the ℓ2 distance test can in
fact yield a sublinear-time algorithm for testing closeness in L1 distance.

In the previous paragraph, we have noted that, for distributions with a bound on
the maximum probability of any element, it is possible to test closeness with time
and queries sublinear in the domain size. On the other hand, when the minimum
probability element is quite large, the naive approach that we referred to in the
introduction can be significantly more efficient. This suggests a filtering algorithm,
which separates the domain of the distributions being tested into two parts – the
big elements, or those elements to which the distributions assign relatively high
probability weight, and the small elements, which are all other elements. Then,
the naive tester is applied to the distributions restricted to the big elements, and
the tester that is based on estimating the ℓ2 distance is applied to the distributions
restricted to the small elements.

More specifically, we use the following definition to identify the elements with
large weights.

Definition 2.3 Big element. An element i is called big with respect to a distribu-
tion p if pi > (ǫ/n)2/3.

The complete test is given below in Figure 2. The proof of Theorem 2.1 is presented
in Section 2.2.
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ℓ1-Distance-Test(p,q, ǫ, δ)

(1) Let b = (ǫ/n)2/3.
(2) Sample p and q for M = O(ǫ−8/3n2/3 log(n/δ)) times.
(3) Let Sp and Sq be the sample sets obtained from p and q, respectively, by discarding

elements that occur less than (1 − ǫ/26)Mb times.
(4) If Sp and Sq are empty,

ℓ2-Distance-Test(p, q, O(n2/3/ǫ8/3), ǫ
2
√

n
, δ/2)

else
i. Let ℓpi (resp., ℓqi ) be the times element i appears in Sp (resp., Sq).
ii. Reject if

P

i∈Sp∪Sq |ℓpi − ℓqi | > ǫM/8.
iii. Define p′ as follows: Sample an element from p. If this sample is not in Sp ∪ Sq,

output it; otherwise, output an x ∈R [n]. Define q′ similarly.
iv. ℓ2-Distance-Test(p′, q′, O(n2/3/ǫ8/3), ǫ

2
√

n
, δ/2)

Fig. 2. Algorithm ℓ1-Distance-Test

2.1 Closeness in ℓ2 Norm

In this section, we analyze Algorithm ℓ2-Distance-Test and prove Theorem 2.2.
The statistics rp, rq and s in Algorithm ℓ2-Distance-Test are estimators for the
self-collision probability of p, of q, and of the collision probability between p and
q, respectively. If p and q are statistically close, we expect that the self-collision
probabilities of each are close to the collision probability of the pair. These proba-
bilities are exactly the inner products of these vectors. In particular, if the set Fp

of samples from p is given by {F 1
p , . . . , Fm

p }, then, for any pair i, j ∈ [m], i 6= j, we

have that Pr
[
F i

p = F j
p

]
= p · p = ‖p‖2

2. By combining these statistics, we show
that r − s is an estimator for the desired value ‖p− q‖2

2.
In order to analyze the number of samples required to estimate r − s to a high

enough accuracy, we must also bound the variance of the variables s and r used
in the test. One distinction to make between self-collisions and collisions between
p and q is that, for the self-collisions, we only consider samples for which i 6= j,
but this is not necessary for the collisions between p and q. We accommodate this
in our algorithm by scaling rp and rq appropriately. By this scaling and from the
above discussion we see that E [s] = 2m2(p · q) and that E [r − s] = m2(‖p‖2

2 +
‖q‖2

2 − 2(p · q)) = m2(‖p− q‖2
2).

A complication which arises from this scheme is that the pairwise samples are
not independent. We use Chebyshev’s inequality (see Appendix A) to bound the
quality of the approximation, which in turn requires that we give a bound on the
variance, as we do in this section.

Our techniques extend the work of Goldreich and Ron [2000], where self-collision
probabilities are used to estimate ℓ2 norm of a vector, and in turn the deviation of
a distribution from uniform. In particular, their work provides an analysis of the
statistics rp and rq above through the following lemma.

Lemma 2.4 [Goldreich and Ron 2000]. Consider the random variable rp in
Algorithm ℓ2-Distance-Test. Then, E [rp] =

(
m
2

)
·‖p‖2

2 and Var (rp) ≤ 2(E [A])3/2.

We next present a tighter variance bound given in terms of the largest weight in
p and q.
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Lemma 2.5. There is a constant c such that

Var (rp) ≤ m2‖p‖2
2 + m3‖p‖3

2 ≤ c(m3b2 + m2b),

Var (rq) ≤ m2‖q‖2
2 + m3‖q‖3

2 ≤ c(m3b2 + m2b), and

Var (s) ≤ c(m3b2 + m2b),

where b = max(‖p‖∞, ‖q‖∞).

Proof. Let F be the set {1, . . . , m}. For (i, j) ∈ F × F , define the indicator
variable Ci,j = 1 if the ith element of Qp and the jth element of Qq are the same.
Then, the variable from the algorithm spq =

∑
i,j Ci,j . Also define the notation

C̄i,j = Ci,j − E [Ci,j ]. Given these definitions, we can write

Var


 ∑

(i,j)∈F×F

Ci,j


 = E


(

∑

(i,j)∈F×F

C̄i,j)
2




= E


 ∑

(i,j)∈F×F

(C̄i,j)
2 + 2

∑

(i,j) 6=(k,l)∈F×F

C̄i,jC̄k,l




≤ E


 ∑

(i,j)∈F×F

Ci,j


 + 2 · E


 ∑

(i,j) 6=(k,l)∈F×F

C̄i,jC̄k,l




= m2(p · q) + 2 · E


 ∑

(i,j) 6=(k,l)∈F×F

C̄i,jC̄k,l




To analyze the last expectation, we use two facts. First, it is easy to see, by the
definition of covariance, that E

[
C̄i,jC̄k,l

]
≤ E [Ci,jCk,l]. Secondly, we note that

Ci,j and Ck,l are not independent only when i = k or j = l. Expanding the sum,
we get

E




∑

(i,j),(k,l)∈F ×F

(i,j) 6=(k,l)

C̄i,jC̄k,l


 = E




∑

(i,j),(i,l)∈F ×F

j 6=l

C̄i,jC̄i,l +
∑

(i,j),(k,j)∈F ×F

i6=k

C̄i,jC̄k,j




≤ E




∑

(i,j),(i,l)∈F ×F

j 6=l

Ci,jCi,l +
∑

(i,j),(k,j)∈F ×F

i6=k

Ci,jCk,j




≤ cm3
∑

ℓ∈[n]

pℓq
2
ℓ + p2

ℓqℓ ≤ cm3b2
∑

ℓ∈[n]

qℓ ≤ cm3b2

for some constant c. Next, we bound Var (r) similarly to Var (s) using the argument
in the proof of Lemma 2.4 from [Goldreich and Ron 2000]. Consider an analogous
calculation to the preceding inequality for Var (rp) (similarly, for Var (rq)) where
Xij = 1 for 1 ≤ i < j ≤ m if the ith and jth samples in Fp are the same. Similarly
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to above, define X̄ij = Xij − E [Xij ]. Then, we get

Var (rp) = E





 ∑

1≤i<j≤m

X̄ij




2



=
∑

1≤i<j≤m

E
[
X̄2

i,j

]
+ 4

∑

1≤i<j<k≤m

E
[
X̄i,jX̄i,k

]

≤
(

m

2

)
·

∑

t∈[n]

p2
t + 4 ·

(
m

3

) ∑

t∈[n]

p3
t

≤ O(m2) · b + O(m3) · b2.

Thus, we get the upper bound for both variances.

Corollary 2.6. There is a constant c such that Var (r − s) ≤ c(m3b2 + m2b),
where b = max(‖p‖∞, ‖q‖∞).

Proof. Since variance is additive for independent random variables, we get
Var (r − s) ≤ c(m3b2 + m2b).

Now using Chebyshev’s inequality, it follows that if we choose m = O(ǫ−4), we
can achieve an error probability less than 1/3. It follows from standard techniques
that with O(log 1

δ ) iterations we can achieve an error probability at most δ.
Finally, we can analyze the behavior of the algorithm.

Theorem 2.7. Let p and q be two distributions such that b = max(‖p‖∞, ‖q‖∞)
and let m = Ω((b2+ǫ2

√
b)/ǫ4). If ‖p−q‖2 ≤ ǫ/2, then ℓ2-Distance-Test(p,q, m, ǫ, δ)

accepts with probability at least 1−δ. If ‖p−q‖2 > ǫ, then ℓ2-Distance-Test(p,q, m, ǫ, δ)
accepts with probability less than δ. The running time is O(m log(1/δ)).

Proof. For our statistic A = (r − s), we can say, using Chebyshev’s inequality
and Corollary 2.6, that for some constant c,

Pr [|A − E [A]| > ρ] ≤ c(m3b2 + m2b)

ρ2
.

Recalling that E [A] = m2(‖p−q‖2
2), we observe that the ℓ2-Distance-Test can

distinguish between the cases ‖p−q‖2 ≤ ǫ/2 and ‖p−q‖2 > ǫ if A is within m2ǫ2/4
of its expectation. We can bound the error probability by

Pr
[
|A − E [A] | > m2ǫ2/4

]
≤ 16c(m3b2 + m2b)

m4ǫ4
.

Thus, for m = Ω((b2 + ǫ2
√

b)/ǫ4), the probability above is bounded by a constant.
This error probability can be reduced to δ by O(log(1/δ)) repetitions.

2.2 Closeness in L1 Norm

The ℓ1-Distance-Test proceeds in two phases. The first phase of the algorithm
(lines 1–3 and 4(i)–(ii)) determines which elements of the domain are the big el-
ements (as defined in Definition 2.3) and estimates their contribution to the dis-
tance ‖p− q‖1. The second phase (lines 4(iii)–(iv)) filters out the big elements and
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invokes the ℓ2-Distance-Test on the filtered distribution with closeness parame-
ter ǫ/(2

√
n). The correctness of this subroutine call is given by Theorem 2.7 with

b = 2ǫ2/3n−2/3. With these substitutions, the number of samples m is O(ǫ−8/3n2/3).
The choice of threshold b in ℓ1-Distance-Test for the weight of the big elements
arises from optimizing the running-time trade-off between the two phases of the
algorithm.

We need to show that by using a sample of size O(ǫ−8/3n2/3 log(n/δ)), we can
estimate the weights of each of the big elements to within a multiplicative factor of
1 + O(ǫ), with probability at least 1 − δ/2.

Lemma 2.8. Let b = ǫ2/3n−2/3. In ℓ1-Distance-Test, given M = O(n2/3 log(n/δ)

ǫ8/3 )
samples from a distribution p, we define p̄i = ℓpi /M . Then, with probability at least
1 − δ/2, the following hold for all i: (1) if pi ≥ (1 − ǫ/13)b, then |p̄i − pi| <
ǫ
26 max(pi, b), (2) if pi < (1 − ǫ/13)b, then p̄i < (1 − ǫ/26)b.

Proof. We analyze two cases; we use Chernoff bounds to show that, for each i,
the following holds: If pi > b, then

Pr [|p̄i − pi| > ǫpi/26] < exp(−O(ǫ2Mpi)) < exp(−O(ǫ2Mb)) ≤ δ

2n
.

If pi ≤ b, then

Pr [|p̄i − pi| > ǫb/26] ≤ Pr

[
|p̄i − pi| >

ǫb

26pi
pi

]

< exp(−O(ǫ2b2M/pi))

≤ exp(−O(ǫ2Mb))

≤ δ

2n
.

The lemma follows by the union bound.

Now we are ready to prove our main theorem.

Theorem 2.9. For ǫ ≥ 1/
√

n, ℓ1-Distance-Test accepts distributions p,q such

that ‖p− q‖1 ≤ max( ǫ4/3

32 3
√

n
, ǫ

4
√

n
), and rejects when ‖p− q‖1 > ǫ, with probability

at least 1 − δ. The running time of the test is O(ǫ−8/3n2/3 log(n/δ)).

Proof. Suppose items (1) and (2) from Lemma 2.8 hold for all i, and for both
p and q. By Lemma 2.8, this event happens with probability at least 1 − δ/2.

Let S = Sp∪Sq. By our assumption, all the big elements of both p and q are in
S, and no element that has weight less than (1 − ǫ/13)b in both distributions is in
S. Let ∆1 be the ℓ1 distance attributed to the elements in S; that is,

∑
i∈S |pi−qi|.

Let ∆2 = ‖p′ − q′‖1 (in the case that S is empty, ∆1 = 0, p = p′ and q = q′). Note
that ∆1 ≤ ‖p− q‖1. We can show that ∆2 ≤ ‖p− q‖1, and ‖p− q‖1 ≤ 2∆1 +∆2.

Next, we show that the algorithm estimates ∆1 in a brute-force manner to within
an additive error of ǫ/9. By Lemma 2.8, the error on the ith term of the sum is
bounded by

ǫ

26
(max(pi, b) + max(qi, b)) ≤

ǫ

26
(pi + qi + 2ǫb/13),
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where the last inequality follows from that pi and qi are at least (1−ǫ/13)b. Consider
the sum over i of these error terms. Notice that this sum is over at most 2/((1 −
ǫ/13)b) elements in S. Hence, the total additive error is bounded by

∑

i∈S

ǫ

26
(pi + qi + 2ǫb/13) ≤ ǫ

26
(2 + 4ǫ/(13 − ǫ)) ≤ ǫ/9

since ǫ ≤ 2.
Note that max(‖p′‖∞, ‖q′‖∞) ≤ b + n−1 ≤ 2b for ǫ ≥ 1/

√
n. So, we can use the

ℓ2-Distance-Test on p′ and q′ with m = O(ǫ−8/3n2/3) as shown by Theorem 2.7.

If ‖p− q‖1 < ǫ4/3

32 3
√

n
, then so are ∆1 and ∆2. The first phase of the algorithm

clearly accepts. Using the fact that, for any vector v, ‖v‖2
2 ≤ ‖v‖1 · ‖v‖∞, we get

‖p′ − q′‖2 ≤ ǫ
4
√

n
. Therefore, the ℓ2-Distance-Test accepts with probability at

least 1 − δ/2. Similarly, if ‖p− q‖1 > ǫ, then either ∆1 > ǫ/4 or ∆2 > ǫ/2. Either
the first phase of the algorithm or the ℓ2-Distance-Test will reject.

To see the running time bound, note that the running time for the first phase is
O(n2/3ǫ−8/3 log(n/δ)) and that for ℓ2-Distance-Test is O(n2/3ǫ−8/3 log 1

δ ). It is
easy to see that our algorithm makes an error either when it makes a bad estimation
of ∆1 or when ℓ2-Distance-Test makes an error. So, the probability of error is
bounded by δ.

The next theorem improves this result by looking at the dependence of the vari-
ance calculation in Section 2.1 on L∞ norms of the distributions separately.

Theorem 2.10. Given two black-box distributions p,q over [n], with ‖p‖∞ ≤
‖q‖∞, there is a test requiring O((n2‖p‖∞‖q‖∞ǫ−4 +n

√
‖q‖∞ǫ−2) log(1/δ)) sam-

ples that (1) if ‖p− q‖1 ≤ ǫ2
3
√

n
, it accepts with probability at least 1 − δ and (2) if

‖p− q‖1 > ǫ, it rejects with probability at least 1 − δ.

2.3 Testing ℓ1 Distance from Uniformity

A special case of Theorem 2.2 gives a constant-time algorithm which provides an
additive approximation of the ℓ2 distance of a distribution from the uniform distri-
bution. For the problem of testing that p is close to the uniform distribution in ℓ1

distance (i.e., testing closeness when q is the uniform distribution), one can get a
better sample complexity dependence on n.

Theorem 2.11. Given ǫ ≤ 1 and a black-box distribution p over [n], there is a
test that takes O(ǫ−4 · √n · log (1/δ)) samples, accepts with probability at least 1− δ
if ‖p− U[n]‖1 ≤ ǫ/

√
3n, and rejects with probability at least 1−δ if ‖p− U[n]‖1 > ǫ.

The proof of Theorem 2.11 relies on the following lemma, which can be proven using
techniques from Goldreich and Ron [2000] (see also Lemma 2.5 in this paper).

Lemma 2.12. Given a black-box distribution p over [n], there is an algorithm
that takes O(ǫ−2 · √n · log (1/δ)) samples and estimates ‖p‖2

2 within an error of
ǫ‖p‖2

2, with probability at least 1 − δ.

Proof of Lemma 2.12. Consider the random variable rp from the ℓ2-Distance-
Test. Since E [rp] =

(
m
2

)
·‖p‖2

2, we only need to show that it does not deviate from its
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Uniformity-Distance-Test(p,m, ǫ, δ)

(1) Accept if GR-Uniformity-ℓ2-Distance-Test(p, ǫ2/5) returns an estimate at most
(1 + 3ǫ2/5)/n.

(2) Otherwise, reject.

Fig. 3. Algorithm Uniformity-Distance-Test

expectation too much with high probability. Again, using Chebyshev’s inequality
and Lemma 2.5,

Pr [|rp − E [rp] | > ǫE [rp]] ≤
O(m2‖p‖2

2 + m3‖p‖3
2)

ǫ2m4‖p‖4
2

≤ 1

4
,

where the last inequality follows for m = O(ǫ−2
√

n) from the fact that ‖p‖2 ≥
n−1/2. The confidence can be boosted to 1 − δ using O(log(1/δ)) repetitions.

We note that, for an additive approximation of ‖p‖2, an analogous argument to
the proof above will yield an algorithm that uses O(ǫ−4) samples.

Proof of Theorem 2.11. The algorithm, given in Figure 3, estimates ‖p‖2
2

within ǫ2‖p‖2
2/5 using the algorithm from Lemma 2.12 and accepts only if the

estimate is below (1 + 3ǫ2/5)/n.
First, observe the following relationship between the ℓ2 distance to the uniform

distribution and the collision probability.

‖p− U[n]‖2
2 =

∑

i

(pi −
1

n
)2 =

∑
p2

i −
2

n
·
∑

pi +
1

n
= ‖p‖2

2 −
1

n
(1)

If ‖p− U[n]‖1 ≤ ǫ/
√

3n, then ‖p − U[n]‖2
2 ≤ ǫ2/3n. Using (1), we see that

‖p‖2
2 ≤ (1 + ǫ2/3)/n. Hence, for ǫ ≤ 1, the estimate will be below (1 + ǫ2/5)(1 +

ǫ2/3)/n ≤ (1 + 3ǫ2/5)/n with probability at least 1 − δ.
Conversely, suppose the estimate of ‖p‖2

2 is below (1+3ǫ2/5)/n. By Lemma 2.12,
‖p‖2

2 ≤ (1 + 3ǫ2/5)/((1− ǫ2/5)n) ≤ (1 + ǫ2)/n for ǫ ≤ 1. Therefore, by (1), we can
write

‖p− U[n]‖2
2 = ‖p‖2

2 −
1

n
≤ ǫ2/n.

So, we have ‖p−U[n]‖2 ≤ ǫ/
√

n. Finally, by the relation between ℓ1 and ℓ2 norms,
‖p− U[n]‖1 ≤ ǫ.

The sample complexity of the procedure will be O(ǫ−4 · √n · log (1/δ)), arising
from the estimation of ‖p‖2

2 within ǫ2‖p‖2
2/5.

3. LOWER BOUNDING THE SAMPLE COMPLEXITY

In this section we consider lower bounds on the sample complexity of testing close-
ness of distributions. In a previous version of this paper [Batu et al. 2000], we
claimed an almost matching Ω(n2/3) lower bound on the sample complexity for
testing the closeness of two arbitrary distributions. Although it was later deter-
mined that there were gaps in the proofs, recent results of [Valiant 2008] have shown
that the in fact the almost matching lower bounds do hold. Although new proof
techniques were needed, certain technical ideas such as “Poissonization” and the
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characterization of “canonical forms of testing algorithms” that first appeared in
the earlier version of this work did in fact turn out to be useful in the correct lower
bound proof of [Valiant 2008]. We will outline those ideas in this section.

We begin by discussing a characterization of canonical algorithms for testing
properties of distributions. Then we describe a pair of families of distributions
that were suggested in the earlier version of this work, and were in fact used by
Valiant [2008] in showing the correct lower bound. Next, we investigate the required
dependence on ǫ. Finally, we briefly consider naive learning algorithms, which
can be defined as algorithms that, given samples from a distribution, output a
distribution with small distance to the input distribution. We show that naive
learning algorithms require Ω(n) samples. We also note that, more recently, the
dependency of testing uniformity on distance parameter ǫ and n has been tightly
characterized to be Θ(

√
n/ǫ2) by Paninski [2008].

3.1 Characterization of Canonical Algorithms for Testing Properties of Distributions

In this section, we characterize canonical algorithms for testing properties of distri-
butions defined by permutation-invariant functions. The argument hinges on the
irrelevance of the labels of the domain elements for such a function. We obtain
this canonical form in two steps, corresponding to the two lemmas below. The first
step makes explicit the intuition that such an algorithm should be symmetric, that
is, the algorithm would not benefit from discriminating among the labels. In the
second step, we remove the use of labels altogether, and show that we can present
the sample to the algorithm in an aggregate fashion. Raskhodnikova et al. [2009]
use this chararecterization of canonical algorithms for proving lower bounds on the
sample complexity of distribution support size and element distinctness problems.

Characterizations of property testing algorithms have been studied in other set-
tings. For example, using similar techniques, Alon et al. [1999] show a canonical
form for algorithms for testing graph properties. Later, Goldreich and Trevisan
[2001] formally prove the result by Alon et al. In a different setting, Bar-Yossef
et al. [2001] show a canonical form for sampling algorithms that approximate sym-
metric functions of the form f : An → B where A and B are arbitrary sets. In
the latter setting, the algorithm is given oracle access to the input vector and takes
samples from the coordinate values of this vector.

Next, we give the definitions of basic concepts on which we build a character-
ization of canonical algorithms for testing properties of distributions. Then, we
describe and prove our characterization.

Definition 3.1 Permutation of a distribution. For a distribution p over [n] and
a permutation π on [n], define π(p) to be the distribution such that for all i,
π(p)π(i) = pi.

Definition 3.2 Symmetric Algorithm. Let A be an algorithm that takes samples
from k discrete black-box distributions over [n] as input. We say that A is symmetric
if, once the distributions are fixed, the output distribution of A is identical for any
permutation of the distributions.

Definition 3.3 Permutation-invariant function. A k-ary function f on distribu-
tions over [n] is permutation-invariant if for any permutation π on [n], and all
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distributions (p(1), . . . ,p(k)),

f(p(1), . . . ,p(k)) = f(π(p(1)), . . . , π(p(k))).

Lemma 3.4. Let A be an arbitrary testing algorithm for a k-ary property P
defined by a permutation-invariant function. Suppose A has sample complexity
s(n), where n is the domain size of the distributions. Then, there exists a symmetric
algorithm that tests the same property of distributions with sample complexity s(n).

Proof. Given the algorithm A, construct a symmetric algorithm A′ as follows:
Choose a random permutation of the domain elements. Upon taking s(n) samples,
apply this permutation to each sample. Pass this (renamed) sample set to A and
output according to A.

It is clear that the sample complexity of the algorithm does not change. We need
to show that the new algorithm also maintains the testing features of A. Suppose
that the input distributions (p(1), . . . ,p(k)) have the property P . Since the property
is defined by a permutation-invariant function, any permutation of the distributions
maintains this property. Therefore, the permutation of the distributions should be
accepted as well. Let Sn denote the set of all permutations on [n]. Then,

Pr
[
A′ accepts (p(1), . . . ,p(k))

]
=

∑

π∈Sn

1

n!
Pr

[
A accepts (π(p(1)), . . . , π(p(k)))

]
,

which is at least 2/3 by the accepting probability of A.
An analogous argument on the failure probability for the case of the distributions

(p(1), . . . ,p(k)) that should be rejected completes the proof.

In order to avoid introducing additional randomness in A′, we can try A on all
possible permutations and output the majority vote. This change would not affect
the sample complexity, and it can be shown that it maintains correctness.

Definition 3.5 Fingerprint of a sample. Let S1 and S2 be multisets of at most
s samples taken from two black-box distributions over [n], p and q, respectively.
Let the random variable Cij , for 0 ≤ i, j ≤ s, denote the number of elements that
appear exactly i times in S1 and exactly j times in S2. The collection of values
that the random variables {Cij}0≤i,j≤s take is called the fingerprint of the sample.

For example, let sample sets be S1 = {5, 7, 3, 3, 4} and S2 = {2, 4, 3, 2, 6}. Then,
C10 = 2 (elements 5 and 7), C01 = 1 (element 6), C11 = 1 (element 4), C02 = 1
(element 2), C21 = 1 (element 3), and for remaining i, j’s, Cij = 0.

Lemma 3.6. If there exists a symmetric algorithm A for testing a binary property
of distributions defined by a permutation-invariant function, then there exist an
algorithm for the same task that gets as input only the fingerprint of the sample
that A takes.

Proof. Fix a canonical order for Cij ’s in the fingerprint of a sample. Let us
define the following transformation on the sample: Relabel the elements such that
the elements that appear exactly the same number of times from each distribution
(i.e., the ones that contribute to a single Cij in the fingerprint) have consecutive
labels and the labels are grouped to conform to the canonical order of Cij ’s. Let us
call this transformed sample the standard form of the sample. Since the algorithm
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A is symmetric and the property is defined by a permutation-invariant function,
such a transformation does not affect the output of A. So, we can further assume
that we always present the sample to the algorithm in the standard form.

It is clear that given a sample, we can easily write down the fingerprint of the
sample. Moreover, given the fingerprint of a sample, we can always construct a
sample (S1, S2) in the standard form using the following algorithm: (1) Initialize
S1 and S2 to be empty, and e = 1, (2) for every Cij in the canonical order, and for
Cij = kij times, include i and j copies of the element e in S1 and S2, respectively,
then increment e. This algorithm shows a one-to-one and onto correspondence
between all possible sample sets in the standard form and all possible {Cij}0≤i,j≤s

values.
Consider the algorithm A′ that takes the fingerprint of a sample as input. Next,

by using algorithm from above, algorithm A′ constructs the sample in the standard
form. Finally, A′ outputs what A outputs on this sample.

Remark 3.7. Note that the definition of the fingerprint from Definition 3.5 can
be generalized for a collection of k sample sets from k distributions for any k. An
analogous lemma to Lemma 3.6 can be proven for testing algorithms for k-ary
properties of distributions defined by a permutation-invariant function. We fixed
k = 2 for ease of notation.

3.2 Towards a Lower Bound on the Sample Complexity of Testing Closeness

In this section, we present techniques that were later used by Valiant [2008] to
prove a lower bound on the sample complexity of testing closeness in ℓ1 distance
as a function of the size n of the domain of the distributions. We give a high-
level description of the proof, indicate where our reasoning breaks down and where
Valiant [2008] comes in.

Theorem 3.8 [Valiant 2008]. Given any algorithm using only o(n2/3) sam-
ples from two discrete black-box distributions over [n], for all sufficiently large n,
there exist distributions p and q with ℓ1 distance 1 such that the algorithm will be
unable to distinguish the case where one distribution is p and the other is q from
the case where both distributions are p.

By Lemma 3.4, we may restrict our attention to symmetric algorithms. Fix a
testing algorithm A that uses o(n2/3) samples from each of the input distributions.

Let us assume, without loss of generality, that n is a multiple of four and n2/3 is
an integer. We define the distributions p and q as follows: (1) For 1 ≤ i ≤ n2/3,
pi = qi = 1

2n2/3 . We call these elements the heavy elements. (2) For n/2 < i ≤
3n/4, pi = 2

n and qi = 0. We call these element the light elements of p. (3) For
3n/4 < i ≤ n, qi = 2

n and pi = 0. We call these elements the light elements of q.
(4) For the remaining i’s, pi = qi = 0. Note that these distributions do not depend
on A.

The ℓ1 distance of p and q is 1. Now, consider the following two cases:

Case 1: The algorithm is given access to two black-box distributions:
both of which output samples according to the distribution p.

Case 2: The algorithm is given access to two black-box distributions:
the first one outputs samples according to the distribution p and
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the second one outputs samples according to the distribution q.

To get a sense of why these distributions should be hard for any distance testing
algorithm, note that when restricted to the heavy elements, both distributions are
identical. The only difference between p and q comes from the light elements, and
the crux of the proof is to show that this difference will not change the relevant
statistics in a statistically significant way. For example, consider the statistic which
counts the number of elements that occur exactly once from each distribution. One
would like to show that this statistic has a very similar distribution when generated
by Case 1 and Case 2, because the expected number of such elements that are light
is much less than the standard deviation of the number of such elements that are
heavy.

Our initial attempts at formalizing the intuition above were incomplete. However,
completely formalizing this intuition, Valiant [2008] subsequently showed that a
symmetric algorithm with sample complexity o(n2/3) can not distinguish between
these two cases. By Lemma 3.4, the theorem follows.

Poissonization. For simplifying the proof, it would be useful to have the fre-
quency of each element be independent of the frequencies of the other elements.
To achieve this, we assume that algorithm A first chooses two integers s1 and s2

independently from a Poisson distribution with the parameter λ = s = o(n2/3).
The Poisson distribution with the positive parameter λ has the probability mass
function p(k) = exp(−λ)λk/k!. Then, after taking s1 samples from the first distri-
bution and s2 samples from the second distribution, A decides whether to accept
or reject the distributions. In the following, we give an overview of the proof that
A cannot distinguish between Case 1 and Case 2 with success probability at least
2/3. Since both s1 and s2 will have values larger than s/2 with probability at least
1 − o(1) and the statistical distance of the distributions of two random variables
(i.e., the distributions on the samples) is bounded, it will follow that no symmetric
algorithm with sample complexity s/2 can.

Let Fi be the random variable corresponding to the number of times the element
i appears in the sample from the first distribution. Define Gi analogously for
the second distribution. It is well known that Fi is distributed identically to the
Poisson distribution with parameter λ = sr, where r is the probability of element
i (cf., Feller [1968], p. 216). Furthermore, it can also be shown that all Fi’s are
mutually independent. Thus, the total number of samples from the heavy elements
and the total number of samples from the light elements are independent.

Canonical Testing Algorithms. Recall the definition of the fingerprint of a sample
from Section 3.1. The random variable Cij , denotes the number of elements that
appear exactly i times in the sample from the first distribution and exactly j times
in the sample from the second distribution. We can then assume that the algorithm
is only given the fingerprint of the sample, and apply Lemma 3.6.

Arguing in this way can lead to several subtle pitfalls, which Valiant’s proof [2008]
circumvents by developing a body of additional, very nontrivial, technical machin-
ery to show that the distributions on the fingerprint when the samples come from
Case 1 or Case 2 are indistinguishable.
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3.3 Other Lower Bounds

In this section, we first give two lower bounds for the sample complexity of testing
closeness in terms of the distance parameter ǫ. Then, we show that a naive learning
algorithm for distributions require Ω(n) samples.

By appropriately modifying the distributions p and q from the proof, we can
give a stronger version of Theorem 3.8 with a dependence on ǫ.

Corollary 3.9. Given any test using only o(n2/3/ǫ2/3) samples, there exist
distributions a and b of ℓ1 distance ǫ such that the test will be unable to distinguish
the case where one distribution is a and the other is b from the case where both
distributions are a.

We can get a lower bound of Ω(ǫ−2) for testing the ℓ2 distance with a rather
simple proof.

Theorem 3.10. Given any test using only o(ǫ−2) samples, there exist distribu-
tions a and b of ℓ2 distance ǫ such that the test will be unable to distinguish the case
where one distribution is a and the other is b from the case where both distributions
are a.

Proof. Let n = 2, a1 = a2 = 1/2 and b1 = 1/2 − ǫ/
√

2 and b2 = 1/2 + ǫ/
√

2.
Distinguishing these distributions is exactly the question of distinguishing a fair
coin from a coin of bias Θ(ǫ) which is well known to require Θ(ǫ−2) coin flips.

The next theorem shows that learning a distribution using sublinear number of
samples is not possible.

Theorem 3.11. Suppose we have an algorithm that draws o(n) samples from
some unknown distribution b and outputs a distribution c. There is some distri-
bution b for which the output c is such that b and c have ℓ1 distance close to
one.

Proof. (Sketch) Let AS be the distribution that is uniform over S ⊆ {1, . . . , n}.
Pick S at random among sets of size n/2 and run the algorithm on AS . The
algorithm only learns o(n) elements from S. So with high probability the ℓ1 distance
of whatever distribution the algorithm output will have ℓ1 distance from AS of
nearly one.

4. APPLICATIONS TO MARKOV CHAINS

Random walks on Markov chains generate probability distributions over the states
of the chain, induced by the endpoints of the random walks. We employ ℓ1-

Distance-Test, described in Section 2, to test mixing properties of Markov Chains.
This application of ℓ1-Distance-Test is initially inspired by the work of Gol-

dreich and Ron [2000], which conjectured an algorithm for testing expansion of
bounded-degree graphs. Their algorithm is based on comparing the distribution of
the endpoints of random walks on a graph to the uniform distribution via collisions.
Subsequently to this work, Czumaj and Sohler [2007], Kale and Seshadhri [2008],
and Nachmias and Shapira [2007] have independently concluded that the algorithm
of Goldreich and Ron is provably a test for expansion property of graphs.
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4.1 Preliminaries and Notation

Let M be a Markov chain represented by the transition probability matrix M. The
point distribution uth state of M corresponds to an n-vector eu = (0, . . . , 1, . . . , 0),
with a one in only the uth location and zeroes elsewhere. The distribution generated
by t-step random walks starting at state u is denoted as a vector-matrix product
euM

t.
Instead of computing such products in our algorithms, we assume that our ℓ1-

Distance-Test has access to an oracle, next node which on input of the state
u responds with the state v with probability M(u, v). Given such an oracle, the
distribution eT

uMt can be generated in O(t) steps. Furthermore, the oracle itself can
be realized in O(log n) time per query, given linear preprocessing time to compute

the cumulative sums Mc(j, k) =
∑k

i=1 M(j, i). The oracle can be simulated on
input u by producing a random number α in [0, 1] and performing binary search over
the uth row of Mc to find v such that Mc(u, v) ≤ α ≤ Mc(u, v+1). It then outputs
state v. Note that when M is such that every row has at most d nonzero terms,
slight modifications of this yield an O(log d) implementation consuming O(n + m)
words of memory if M is n × n and has m nonzero entries. Improvements of the
work given in [Walker 1977] can be used to prove that in fact constant query time
is achievable with space consumption O(n+m) for implementing next node, given
linear preprocessing time.

We define a notion of closeness between states u and v, based on the distributions
of endpoints of t step random walks starting at u and v respectively.

Definition 4.1. We say that two states u and v are (ǫ, t)-close if the distribution
generated by t-step random walks starting at u and v are within ǫ in the L1 norm,
i.e. ‖euM

t − evM
t‖1 < ǫ. Similarly we say that a state u and a distribution s are

(ǫ, t)-close if ‖euM
t − s‖1 < ǫ.

We say M is (ǫ, t)-mixing if all states are (ǫ, t)-close to the same distribution:

Definition 4.2. A Markov chain M is (ǫ, t)-mixing if a distribution s exists such
that for all states u, ‖euM

t − s‖1 ≤ ǫ.

For example, if M is (ǫ, O(log n log 1/ǫ))-mixing, then M is rapidly-mixing [Sinclair
and Jerrum 1989]. It can be easily seen that if M is (ǫ, t0)-mixing then it is (ǫ, t)-
mixing for all t > t0.

We now make the following definition:

Definition 4.3. The average t-step distribution, sM,t of a Markov chain M with
n states is the distribution

sM,t =
1

n

∑

u

euM
t.

This distribution can be easily generated by picking u uniformly from [n] and
walking t steps from state u. In an (ǫ, t)-mixing Markov chain, the average t-step
distribution is ǫ-close to the stationary distribution. In a Markov chain that is not
(ǫ, t)-mixing, this is not necessarily the case.

Each test given below assumes access to an ℓ1 distance tester ℓ1-Distance-

Test(u, v, ǫ, δ) which given oracle access to distributions eu, ev over the same n
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Mixing(M, t, ǫ, δ)

(1) For each state u in M
Reject if ℓ1-Distance-Test(euMt, sM,t, ǫ, δ/n) rejects.

(2) Otherwise, accept.

Fig. 4. Algorithm Mixing

AlmostMixing(M, t, ǫ, δ, ρ)
Repeat O(1/ρ · ln(1/δ)) times

(1) Pick a state u in M uniformly at random.

(2) Reject if ℓ1-Distance-Test(euMt, sM,t, ǫ, δρ) rejects.

Accept if none of the tests above rejected.

Fig. 5. Algorithm AlmostMixing

element set decides whether ‖eu − ev‖1 ≤ f(ǫ) or if ‖eu − ev‖1 > ǫ with confi-
dence 1 − δ. The time complexity of L1 test is T (n, ǫ, δ), and f is the gap of the
tester. The implementation of ℓ1-Distance-Test given earlier in Section 2 has gap
f(ǫ) = ǫ/(4

√
n), and time complexity T = O(ǫ−8/3n2/3 log n

δ ).

4.2 A Test for Mixing and a Test for Almost-Mixing

We show how to decide if a Markov chain is (ǫ, t)-mixing; then, we define and solve
a natural relaxation of that problem.

In order to test whether M is (ǫ, t)-mixing, one can use ℓ1-Distance-Test to
compare each distribution euM

t with sM,t, with error parameter ǫ and confidence
δ/n. The running time is O(nt · T (n, ǫ, δ/n)). The algorithm is given in Figure 4.

The behavior of the test is as follows: If every state is (f(ǫ)/2, t)-close to some
distribution s, then sM,t is f(ǫ)/2-close to s. Therefore every state is (ǫ, t)-close to
sM,t and the tester passes. On the other hand, if there is no distribution that is
(ǫ, t)-close to all states, then, in particular, sM,t is not (ǫ, t)-close to at least one
state and so the tester fails. Thus, we have shown the following theorem.

Theorem 4.4. Let M be a Markov chain. Given ℓ1-Distance-Test with time
complexity T (n, ǫ, δ) and gap f and an oracle for next node, there exists a test
with time complexity O(nt · T (n, ǫ, δ/n)) with the following behavior: If M is
(f(ǫ)/2, t)-mixing then Pr [M is accepted] > 1 − δ; if M is not (ǫ, t)-mixing then
Pr [M is accepted] < δ.

For the implementation of ℓ1-Distance-Test given in Section 2, the running time
of Mixing algorithm is O(ǫ−8/3n5/3t log n

δ ). It distinguishes between chains which
are ǫ/(4

√
n) mixing and those which are not ǫ-mixing. The running time is sublinear

in the size of M if t ∈ o(n1/3/ log(n)).
A relaxation of this procedure is testing that most starting states reach the same

distribution after t steps. If (1 − ρ) fraction of the states u of a given M satisfy
‖~s − euM

t‖1 ≤ ǫ, then we say that M is (ρ, ǫ, t)-almost mixing. The algorithm in
Figure 5 tests whether a Markov chain is (ρ, ǫ, t)-almost mixing.

Thus, we obtain the following theorem.

Theorem 4.5. Let M be a Markov chain. Given ℓ1-Distance-Test with time
complexity T (n, ǫ, δ) and gap f and an oracle for next node, there exists a test
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with time complexity O( t
ρT (n, ǫ, δρ) log 1

δ ) with the following behavior: If M is

(ρ, f(ǫ)/2, t)-almost mixing then Pr [M is accepted] > 1 − δ; If M is not (ρ, ǫ, t)-
almost mixing then Pr [M is accepted] < δ.

4.3 A Property Tester for Mixing

The main result of this section is a test that determines if a Markov chain’s matrix
representation can be changed in an ǫ fraction of the non-zero entries to turn it
into a (4ǫ, 2t)-mixing Markov chain. This notion falls within the scope of property
testing [Rubinfeld and Sudan 1996; Goldreich et al. 1996; Goldreich and Ron 1997;
Ergün et al. 1998; Parnas and Ron 1999], which in general takes a set S with
distance function ∆ and a subset P ⊆ S and decides if an elements x ∈ S is in P or
if it is far from every element in P , according to ∆. For the Markov chain problem,
we take as our set S all matrices M of size n × n with at most d non-zero entries
in each row. The distance function is given by the fraction of non-zero entries in
which two matrices differ, and the difference in their average t-step distributions.

4.3.1 Preliminaries. We start with defining a distance function on a pair of
Markov chains on the same state space.

Definition 4.6. Let M1 and M2 be n-state Markov chains with at most d non-
zero entries in each row. Define distance function ∆(M1,M2) = (ǫ1, ǫ2) if and only
if M1 and M2 differ on ǫ1dn entries and ‖sM1,t − sM2,t‖1 = ǫ2. We say that M1

and M2 are (ǫ1, ǫ2)-close if ∆(M1,M2) ≤ (ǫ1, ǫ2).
2

A natural question is whether all Markov chains are ǫ-close to an (ǫ, t)-mixing
Markov chain, for certain parameters of ǫ. For example, given a strongly connected
and dense enough Markov chain, adding the edges of a constant-degree expander
graph and choosing t = Θ(log n) yields a Markov chain which (ǫ, t)-mixes. How-
ever, for sparse Markov chains or small ǫ, such a transformation does not work.
Furthermore, the situation changes when asking whether there is an (ǫ, t)-mixing
Markov chain that is close both in the matrix representation and in the average t-
step distribution: specifically, it can be shown that there exist constants ǫ, ǫ1, ǫ2 < 1
and Markov chain M for which no Markov chain is both (ǫ1, ǫ2)-close to M and
(ǫ, log n)-mixing. In fact, when ǫ1 is small enough, the problem becomes nontrivial
even for ǫ2 = 1. The Markov chain corresponding to random walks on the n-cycle
provides an example which is not (t−1/2, 1)-close to any (ǫ, t)-mixing Markov chain.

Overview. As before, our algorithm proceeds by taking random walks on the
Markov chain and comparing final distributions by using the ℓ1-Distance-Test.
We define three types of states. First, a normal state is one from which a random
walk arrives at nearly the average t-step distribution. In the discussion which
follows, t and ǫ denote constant parameters fixed as input to the algorithm.

Definition 4.7. Given a Markov Chain M, a state u of the chain is normal if it
is (ǫ, t)-close to sM,t. That is if ‖euM

t − sM,t‖1 ≤ ǫ. A state is bad if it is not
normal.

2We say (x, y) ≤ (a, b) if x ≤ a and y ≤ b.
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TestMixing(M, t, ǫ)

(1) Let k = Θ(1/ǫ).
(2) Choose k states u1, . . . , uk uniformly at random.
(3) Choose k states uk+1, . . . , u2k independently according to sM,t.
(4) For i = 1 to 2k

(a) u = ~eui .
(b) For w = 1 to O(1/ǫ) and j = 1 to 2t

i. u = next node(M, u)
ii. ℓ1-Distance-Test(euMt, sM,t, ǫ,

1
6t

)

(c) For τ = t to 2t, ℓ1-Distance-Test(~euiM
τ , sM,t, ǫ,

1
3t

)
(5) Pass if all tests pass.

Fig. 6. Algorithm TestMixing

Testing normality requires time O(t · T (n, ǫ, δ)). Using this definition, the first two
algorithms given in this section can be described as testing whether all (resp. most)
states in M are normal. Additionally, we need to distinguish states which not only
produce random walks which arrive near sM,t but which have low probability of
visiting a bad state. We call such states smooth states.

Definition 4.8. A state eu in a Markov chain M is smooth if (a) u is (ǫ, τ)-close
to sM,t for τ = t, . . . , 2t and (b) the probability that a 2t-step random walk starting
at eu visits a bad state is at most ǫ.

Testing smoothness of a state requires O(t2 · T (n, ǫ, δ)) time. Our property test
merely verifies by random sampling that most states are smooth.

4.3.2 The Test. We present below algorithm TestMixing in Figure 6, which
on input Markov chain M and parameter ǫ determines whether at least (1 − ǫ)
fraction of the states of M are smooth according to two distributions: uniform
and the average t-step distribution. Assuming access to ℓ1-Distance-Test with
complexity T (n, ǫ, δ), this test runs in time O(ǫ−2t2T (n, ǫ, 1

6t )).
The main lemma of this section says that any Markov chain that is accepted by

our test is (2ǫ, 1.01ǫ)-close to a (4ǫ, 2t)-mixing Markov chain. First, we describe the
modification of M that we later show is (4ǫ, 2t)-mixing.

Definition 4.9. F is a function from n× n matrices to n× n matrices such that

F (M) returns M̃ by modifying the rows corresponding to bad states of M to eu,
where u is any smooth state.

An important feature of the transformation F is that it does not affect the distri-
bution of random walks originating from smooth states very much.

Lemma 4.10. Given a Markov chain M and any state u ∈ M which is smooth.

If M̃ = F (M), then, for any time t ≤ τ ≤ 2t, ‖euM
τ − euM̃

τ‖1 ≤ ǫ and

‖sM,t − euM̃
τ‖1 ≤ 2ǫ.

Proof. Define Γ as the set of all walks of length τ from u in M. Partition
Γ into ΓB and Γ̄B where ΓB is the subset of walks which visit a bad state. Let
χw,i be an indicator function which equals 1 if walk w ends at state i, and 0
otherwise. Let weight function W (w) be defined as the probability that walk w

occurs. Finally, define the primed counterparts Γ′, etc. for the Markov chain M̃.
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Now the ith element of euM
τ is

∑
w∈ΓB

χw,i · W (w) +
∑

w∈Γ̄B
χw,i · W (w). A

similar expression can be written for each element of euM̃
τ . Since W (w) = W ′(w)

whenever w ∈ Γ̄B it follows that ‖euM
τ − euM̃

τ‖1 ≤ ∑
i

∑
w∈ΓB

χw,i|W (w) −
W ′(w)| ≤

∑
i

∑
w∈ΓB

χw,iW (w) ≤ ǫ.
Additionally, since ‖sM,t − euM

τ‖1 ≤ ǫ by the definition of smooth, it follows

that ‖sM,t − euM̃
τ‖1 ≤ ‖sM,t − euM

τ‖1 + ‖euM
τ − euM̃

τ‖1 ≤ 2ǫ.

We can now prove the main lemma.

Lemma 4.11. If according to both the uniform distribution and the distribution
sM,t, (1−ǫ) fraction of the states of a Markov chain M are smooth, then the matrix

M is (2ǫ, 1.01ǫ)-close to a matrix M̃ which is (4ǫ, 2t)-mixing.

Proof. Let M̃ = F (M). M̃ and M differ on at most ǫn(d+1) entries. This gives
the first part of our distance bound. For the second we analyze ‖sM,t − sfM,t

‖1 =
1
n

∑
u ‖euM

t − euM̃
t‖1 as follows. The sum is split into two parts, over the nodes

which are smooth and those nodes which are not. For each of the smooth nodes u,

Lemma 4.10 says that ‖euM
t − euM̃

t‖1 ≤ ǫ. Nodes which are not smooth account
for at most ǫ fraction of the nodes in the sum, and thus can contribute no more
than ǫ absolute weight to the distribution sfM,t

. The sum can be bounded now by

‖sM,t − sfM,t
‖1 ≤ 1

n ((1 − ǫ)nǫ + ǫn) ≤ 2ǫ.

In order to show that M̃ is (4ǫ, 2t)-mixing, we prove that for every state u,
‖sM,t − euM

2t‖1 ≤ 4ǫ. The proof considers three cases: u smooth, u bad, and u
normal. The last case is the most involved.

If u is smooth in the Markov chain M, then Lemma 4.10 immediately tells us

that ‖sM,t − euM̃
2t‖1 ≤ 2ǫ. Similarly if u is bad in the Markov chain M, then in

the chain M̃ any path starting at u transitions to a smooth state v in one step.

Since ‖sM,t − evM̃
2t−1‖1 ≤ 2ǫ by Lemma 4.10, the desired bound follows.

If eu is a normal state which is not smooth, then we need a more involved analysis

of the distribution euM̃
2t. We divide Γ, the set of all 2t-step walks in M starting

at u, into three sets, which we consider separately.
For the first set take ΓB ⊆ Γ to be the set of walks which visit a bad node

before time t. Let db be the distribution over endpoints of these walks, that is,
let db assign to state i the probability that any walk w ∈ ΓB ends at state i. Let
w ∈ ΓB be any such walk. If w visits a bad state at time τ < t, then in the new

Markov chain M̃, w visits a smooth state v at time τ + 1. Another application

of Lemma 4.10 implies that ‖evM̃
2t−τ−1 − sM,t‖1 ≤ 2ǫ. Since this is true for all

walks w ∈ ΓB, we find ‖db − sM,t‖1 ≤ 2ǫ.
For the second set, let ΓS ⊆ Γ \ ΓB be the set of walks not in ΓB which visit a

smooth state at time t. Let ds be the distribution over endpoints of these walks.

Any walk w ∈ ΓS is identical in the chains M and M̃ up to time t, and then in the

chain M̃ visits a smooth state v at time t. Thus since ‖evM̃
t − sM,t‖1 ≤ 2ǫ, we

have ‖ds − sM,t‖1 ≤ 2ǫ.
Finally, let ΓN = Γ \ (ΓB ∪ ΓS), and let dn be the distribution over endpoints of

walks in ΓN . ΓN consists of a subset of the walks from a normal node u which do
not visit a smooth node at time t. By the definition of normal, u is (ǫ, t)-close to
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sM,t in the Markov chain M. By assumption at most ǫ weight of sM,t is assigned
to nodes which are not smooth. Therefore |ΓN |/|Γ| is at most ǫ + ǫ = 2ǫ.

Now define the weights of these distributions as ωb, ωs and ωn. That is ωb is the
probability that a walk from u in M visits a bad state before time t. Similarly ωs

is the probability that a walk does not visit a bad state before time t, but visits a
smooth state at time t, and ωn is the probability that a walk does not visit a bad
state but visits a normal, non-smooth state at time t. Then, ωb + ωs + ωn = 1.

Finally, ‖euM̃
2t − sM,t‖1 = ‖ωbdb + ωsds + ωndn − sM,t‖1 ≤ ωb‖db − sM,t‖1 +

ωs‖ds − sM,t‖1 + ωn‖dn − sM,t‖1 ≤ (ωb + ωs)max{‖db − sM,t‖1, ‖ds − sM,t‖1} +
ωn‖dn − sM,t‖1 ≤ 4ǫ.

Given this, we finally can show our main theorem.

Theorem 4.12. Let M be a Markov chain. Given ℓ1-Distance-Test with time
complexity T (n, ǫ, δ) and gap f and an oracle for next node, there exists a test
such that if M is (f(ǫ), t)-mixing then the test accepts with probability at least 2/3.

If M is not (2ǫ, 1.01ǫ)-close to any M̃ which is (4ǫ, 2t)-mixing then the test rejects
with probability at least 2/3. The runtime of the test is O( 1

ǫ2 · t2 · T (n, ǫ, 1
6t )).

Proof. Since in any Markov chain M which is (ǫ, t)-mixing all states are smooth,
M accepts this test with probability at least (1−δ). Furthermore, any Markov chain
with at least (1− ǫ) fraction of smooth states is (2ǫ, 1.01ǫ)-close to a Markov chain
which is (4ǫ, 2t)-mixing, by Lemma 4.11.

4.4 Extension to Sparse Graphs and Uniform Distributions

The property test can also be made to work for general sparse Markov chains by
a simple modification to the testing algorithms. Consider Markov chains with
at most m ≪ n2 nonzero entries, but with no nontrivial bound on the num-
ber of nonzero entries per row. Then, the definition of the distance should be
modified to ∆(M1, M2) = (ǫ1, ǫ2) if M1 and M2 differ on ǫ1 · m entries and the
‖sM1,t − sM2,t‖1 = ǫ2. The above test does not suffice for testing that M is (ǫ1, ǫ2)-

close to an (ǫ, t)-mixing Markov chain M̃ , since in our proof, the rows corresponding

to bad states may have many nonzero entries and thus M and M̃ may differ in a
large fraction of the nonzero entries. However, let D be a distribution on states in
which the probability of each state is proportional to cardinality of the support set
of its row. Natural ways of encoding this Markov chain allow constant time genera-
tion of states according to D. By modifying the algorithm to also test whether most
states according to D are smooth, one can show that M is close to an (ǫ, t)-mixing

Markov chain M̃ .
Because of our ability to test ǫ-closeness to the uniform distribution in O(n1/2ǫ−2)

steps [Goldreich and Ron 2000], it is possible to speed up our test for mixing for
those Markov chains known to have uniform stationary distribution, such as Markov
chains corresponding to random walks on regular graphs. An ergodic random walk
on the vertices of an undirected graph instead may be regarded (by looking at it
“at times t + 1/2”) as a random walk on the edge-midpoints of that graph. The
stationary distribution on edge-midpoints always exists and is uniform. So, for
undirected graphs we can speed up mixing testing by using a tester for closeness to
the uniform distribution.
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A. CHEBYSHEV’S INEQUALITY

Chebyshev’s inequality states that for any random variable A, and ρ > 0,

Pr [ |A − E[A]| ≥ ρ] ≤ Var (A)

ρ2
.
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