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Testing constrained sequential
dominance models of neutrinos

Fredrik Björkeroth∗ and Stephen F. King†

School of Physics and Astronomy, University of Southampton,

Southampton, SO17 1BJ, United Kingdom

Constrained sequential dominance (CSD) is a natural framework for imple-
menting the see-saw mechanism of neutrino masses which allows the mixing
angles and phases to be accurately predicted in terms of relatively few input
parameters. We analyze a class of CSD(n) models where, in the flavour basis,
two right-handed neutrinos are dominantly responsible for the “atmospheric”
and “solar” neutrino masses with Yukawa couplings to (νe, νµ, ντ ) proportional
to (0, 1, 1) and (1, n, n− 2), respectively, where n is a positive integer. These
coupling patterns may arise in indirect family symmetry models based on A4.
With two right-handed neutrinos, using a χ2 test, we find a good agreement
with data for CSD(3) and CSD(4) where the entire PMNS mixing matrix is
controlled by a single phase η, which takes simple values, leading to accurate
predictions for mixing angles and the magnitude of the oscillation phase |δCP|.
We carefully study the perturbing effect of a third “decoupled” right-handed
neutrino, leading to a bound on the lightest physical neutrino mass m1 . 1
meV for the viable cases, corresponding to a normal neutrino mass hierarchy.
We also discuss a direct link between the oscillation phase δCP and leptogene-
sis in CSD(n) due to the same see-saw phase η appearing in both the neutrino
mass matrix and leptogenesis.

∗E-mail: F.Bjorkeroth@soton.ac.uk
†E-mail: king@soton.ac.uk
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1. Introduction

The astonishingly accurate measurement of the third lepton mixing angle, the so-called
reactor angle θ13 ≈ 8.5◦±0.2◦ [1], signals the start of the precision era for neutrino physics.
Over the coming years, all three lepton mixing angles are expected to be measured with
increasing precision. A first tentative hint for a value of the CP-violating phase δCP ∼
−π/2 has also been reported in global fits [2–4]. However the mass squared ordering
(normal or inverted), the scale (mass of the lightest neutrino) and nature (Dirac or
Majorana) of neutrino mass so far all remain unknown.1

On the theory side, there are many possibilities for the origin of light neutrino masses mi

and mixing angles θij. Perhaps the simplest and most elegant idea is the classical see-saw
mechanism, in which the observed smallness of neutrino masses is due to the heaviness
of right-handed Majorana neutrinos [5],

mν = mDM−1
R (mD)T , (1.1)

where mν is the light effective left-handed2 Majorana neutrino mass matrix (i.e. the
physical neutrino mass matrix), mD is the Dirac mass matrix (in LR convention) and
MR is the (heavy) Majorana mass matrix. Although the see-saw mechanism generally
predicts Majorana neutrinos, it does not predict the “mass hierarchy”, nor does it yield
any understanding of lepton mixing. In order to overcome these deficiencies, the see-saw
mechanism must be supplemented by other ingredients.

One attractive idea, depicted in Fig. 1, is that the Standard Model (SM) is supplemented
by three right-handed neutrinos which contribute sequentially to the light effective neu-
trino mass matrix. The idea of such a “sequential dominance” (SD) [6] is that one
dominant right-handed neutrino νatm

R of mass Matm is mainly responsible for the heaviest
atmospheric neutrino mass m3, while a second subdominant right-handed neutrino νsol

R

of mass Msol mainly gives the solar neutrino mass m2. A third, approximately decoupled,
right-handed neutrino νdec

R of mass Mdec is responsible for the lightest neutrino mass m1.
In the diagonal basis, MR = diag(Matm,Msol,Mdec) where the Dirac mass matrix is con-
structed from three columns mD = (mD

atm,m
D
sol,m

D
dec), applying the see-saw formula in

Eq. 1.1 gives,

mν =
mD

atm(m
D
atm)

T

Matm

+
mD

sol(m
D
sol)

T

Msol

+
mD

dec(m
D
dec)

T

Mdec

, (1.2)

where
(mD

atm)
†mD

atm

Matm

>
(mD

sol)
†mD

sol

Msol

≫ (mD
dec)

†mD
dec

Mdec

, (1.3)

leading immediately to the prediction of a normal mass hierarchy of physical neutrino
masses m3 > m2 ≫ m1.

1The first two attributes are commonly referred to jointly as the “mass hierarchy”, although really they
are separate questions.

2We have ignored the overall physically irrelevant phase of -1.
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Fig. 1: The Standard Model (SM) with three right-handed neutrinos defined as
(νatmR , νsolR , νdecR ) which in sequential dominance are mainly responsible for the
m3,m2,m1 physical neutrino masses, respectively.

The observed pattern of lepton mixing angles can be understood in the above SD frame-
work as follows. In the diagonal charged lepton and right-handed neutrino mass ba-
sis, if the dominant “atmospheric” right-handed neutrino νatm

R has couplings (mD
atm)

T =
(0, a1, a2) to (νe, νµ, ντ ), then this implies tan θ23 ∼ a1/a2 [6] and a bound θ13 . m2/m3 [7].
The subdominant “solar” right-handed neutrino νsol

R couplings (mD
sol)

T = (b1, b2, b3) to
(νe, νµ, ντ ) further yield tan θ12 ∼

√
2b1/(b2 − b3) [6, 7]. However in practice these esti-

mates are subject to large corrections beyond the SD approximation, and as we shall see
later, the atmospheric and reactor angle in particular depend sensitively on a choice of
phase. The lepton mixing angles are of course insensitive to the “decoupled” right-handed
neutrino couplings.

In order to obtain sharp predictions for lepton mixing angles, the relevant Yukawa cou-
pling ratios need to be fixed, for example using vacuum alignment of family symmetry
breaking flavons (for reviews see e.g. [8–11]). The first attempt to use vacuum alignment
within an SU(3) family symmetry to predict maximal atmospheric mixing (tan θ23 ∼ 1)
from equal dominant right-handed neutrino couplings (mD

atm)
T = (0, a, a) was discussed

in [12]. Subsequently, constrained sequential dominance (CSD) [13] was proposed to ex-
plain tri-bimaximal (TB) mixing with a zero reactor angle by using vacuum alignment
to fix the subdominant “solar” right-handed neutrino couplings to (νe, νµ, ντ ) to also be
equal up to a sign,3 namely (mD

sol)
T = (b, b,−b).

From the point of view of discrete family symmetry models, the above approach is some-
times referred to as “indirect” since the required vacuum alignments completely break
the family symmetry [15]. Such “indirect” models are highly predictive and do not re-
quire such large discrete groups as the “direct” models which use only vacuum alignments
which preserve a subgroup Z2×Z2 in the neutrino sector (the so-called Klein symmetry)
and Z3 in the charged lepton sector, where such an approach requires ∆(6N2) for large
values of N [16–19].4

3Note that (0, a, a) · (b, b,−b) = 0. This orthogonality is related to the fact that CSD(1) respects
form dominance, since columns of the Dirac mass matrix in the flavour basis are proportional to the
columns of the unitary PMNS mixing matrix [14].

4An analogous approach based on ∆(6N2) has also been considered in the quark sector [20].
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In this paper we perform a dedicated analysis of the general class of CSD(n) models, inde-
pendently of any detailed model, allowing the positive integer n to take any value. Thus
we consider the dominant “atmospheric” right-handed neutrino and the subdominant
“solar” right-handed neutrino to have couplings to (νe, νµ, ντ ) given by:

CSD(n) : (mD
atm)

T = (0, a, a), (mD
sol)

T = (b, nb, (n− 2)b), (1.4)

where n is any positive integer. This is a generalisation of examples studied in the
literature so far for n = 2, 3, 4, including the original CSD identified here as CSD(1). After
the see-saw mechanism has been implemented, with just two right-handed neutrinos, the
light effective Majorana neutrino mass matrix depends on just two mass parameters ma

and mb and a relative phase η (three real input parameters). For each value of n we
perform a fit to five observed neutrino parameters: three mixing angles and two mass
squared differences.

We find good fits for the CSD(3) and CSD(4) parameters, with favoured values of η near
2π/3 and 4π/5, respectively, consistent with spontaneous CP violation of an Abelian
symmetry Z3N or Z5N symmetry, as previously observed [21, 22]. Unlike these earlier
studies, however, here we perform a global fit leading to more robust results which allow
the input phase to be determined from the data on the mixing angles. Indeed it is
reassuring to see the simple rational values of the input phase 2π/3 or 4π/5 emerge from
the fit.

The value of the CP phase δCP emerges as a genuine prediction. Moreover, with just two
right-handed neutrinos in CSD(n), there is a direct link between the oscillation phase δCP

and the leptogenesis phase since there is only one phase η in the see-saw matrices which is
responsible for both. The more general case with a third approximately decoupled right-
handed neutrino provides a close approximation to this situation. Therefore in both
cases, observation of leptonic CP violation in low energy neutrino oscillation experiments
is directly linked to cosmological CP violation, which both vanish in the same limit.

We shall consider the effect of a third almost decoupled right-handed neutrino giving
mD

dec ∝ (0, 0, 1), which introduces a further mass parameter mc and relative phase ξ, in
order to gauge the effect of having a non-zero lightest neutrino mass m1. For low values
of mc, this provides a perturbation to our previous results leading to an upper limit on
the lightest physical neutrino mass m1 . 1 meV for the viable cases.

Though our analysis here is independent of a specific model (such as a GUT), it is to be
understood that the CSD alignments are discussed with a mind to integration within a
more complete model that ideally can explain all fermionic mass and mixing. As such,
numerical results presented here give an important foundational step in an approach to
solving the flavour puzzle.

The remainder of the paper is set out as follows. Section 2 defines the see-saw conventions
and gives the CSD(n) neutrino mass matrices. In Section 3 we discuss a generic flavour
model framework, based on A4 family symmetry, where the CSD(n) vacuum alignments
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arise due to orthogonality conditions between flavons. In Section 4 we define a test-
statistic χ2 and outline the method for finding and evaluating the global minima in
parameter space. In Section 5 we present the results of our χ2 analysis, first for the case
of two right-handed neutrinos, then with three right-handed neutrinos, plotting the results
against n, the input phase η, and the mass of the lightest neutrino m1, for two choices
of relative phase between submatrices of the neutrino mass matrix. In subsection 5.3
we consider particular phase choices for CSD(3) and CSD(4), prompted by the results
of our fit and specific model considerations. In Section 6 we discuss the link between
the oscillation phase δCP and leptogenesis in CSD(n). Section 7 concludes the paper.
Appendix A discusses in more detail the χ2 distribution of the parameters.

2. See-saw conventions and CSD(n) mass matrices

The charged lepton and neutrino Yukawa matrices Y e, Y ν are defined in a LR convention
by5

LLR = −HdY e
ijL

i

Le
j
R −HuY ν

ijL
i

Lν
i
R + h.c. (2.1)

where i, j = 1, 2, 3 label the three families of lepton doublets Li, right-handed charged
leptons ejR and right-handed neutrinos νj

R; H
u, Hd are the electroweak Higgs doublets

which develop VEVs vu, vd. The physical effective neutrino Majorana mass matrix mν is
determined from the columns of Y ν via the see-saw mechanism,

mν = v2uY
νM−1

RRY
νT, (2.2)

where the light Majorana neutrino mass matrixmν is defined6 by LLL
ν = −1

2
mννLν

c
L+h.c.,

while the heavy right-handed Majorana neutrino mass matrix MR is defined by LRR
ν =

−1
2
MRRνc

RνR + h.c..

In the above conventions, the CSD(n) mass matrices are defined as in Eq. 1.4,

mD = Y νvu =





0 b 0
a nb 0
a (n− 2)b c



 , MR =





Matm 0 0
0 Msol 0
0 0 Mdec



 . (2.3)

Applying the see-saw in Eq. 1.1 for these matrices gives a light neutrino mass matrix,

mν
(n) = mae

iα





0 0 0
0 1 1
0 1 1



+mbe
iβ





1 n n− 2
n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2



+mce
iγ





0 0 0
0 0 0
0 0 1



 ,

(2.4)

5This LR convention for the Yukawa matrix differs by an Hermitian conjugation compared to that used
in the MPT package [23] due to the RL convention used there.

6Note that this convention for the light effective Majorana neutrino mass matrix mν differs by an overall
complex conjugation compared to that used in the MPT package [23].
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where ma = |a|2/Matm, mb = |b|2/Msol and mc = |c|2/Mdec are real and positive combina-
tions of other physical parameters, with the phases displayed explicitly as α = arg(a2),
β = arg(b2) and γ = arg(c2). An overall unphysical phase α may be factored out and
then dropped in order to make the term proportional to ma is real, wherein we make the
redefinitions η = β − α and ξ = γ − α. Hence η = arg(b2/a2) and ξ = arg(c2/a2).

The neutrino mass matrix mν is diagonalised by

UνLm
νUT

νL
=





m1 0
0 m2 0
0 0 m3



 . (2.5)

The PMNS matrix is then given by UPMNS = UeLU
†
νL
, where UeL is given by

UeLY
eU †

eR
=





ye 0 0
0 yµ 0
0 0 yτ



 . (2.6)

We use the standard PDG parameterization [24] UPMNS = Rl
23U

l
13R

l
12PPDG in terms of

sij = sin θij, cij = cos θij, the Dirac CP violating phase δCP and further Majorana phases

contained in PPDG = diag(1, ei
α21

2 , ei
α31

2 ). We shall assume that Y e is diagonal, hence
UeL is the identity matrix up to diagonal phase rotations, and that UPMNS = U †

νL
, i.e.

simply the matrix that diagonalises the neutrino mass matrix, up to charged lepton phase
rotations. We will now show how a diagonal charged lepton Yukawa matrix and a neutrino
Yukawa matrix with CSD(n) structure can be achieved in a generic model based on A4

family symmetry.

3. CSD(n) from A4

Following the measurement of the reactor angle, various types of CSD have been proposed,
with the dominant right-handed “atmospheric” couplings as above,

(mD
atm)

T = (0, a, a), (3.1)

and hence an approximate maximal atmospheric angle tan θ23 ∼ a1/a2 ∼ 1, while propos-
ing alternative subdominant “solar” right-handed neutrino couplings as follows:

• CSD(2): (mD
sol)

T = (b, 2b, 0) [25].

• CSD(3): (mD
sol)

T = (b, 3b, b) [21].

• CSD(4): (mD
sol)

T = (b, 4b, 2b) [21, 22].

All these examples maintain an approximate trimaximal value for the solar leptonic angle
tan θ12 ∼

√
2b1/(b2− b3) ∼ 1/

√
2, while switching on the reactor angle. Since experiment

indicates that the bound θ13 . m2/m3 is almost saturated, these schemes also require
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certain phase choices arg(b/a) in order to achieve the desired reactor angle, leading to
predictions for the CP-violating phase δCP.

7 Our goal in this paper is generalise and then
systematically study such patterns of couplings, which we refer to as CSD(n) defined in
Eq.1.4. But first we should justify such a pattern of couplings and show how it may arise
from a more fundamental theory based on a non-Abelian family symmetry.

The basic starting point is to consider some family symmetry such as A4 which admits
triplet representations. The family symmetry is broken by triplet flavons φi whose vacuum
alignment will control the structure of the Yukawa couplings. Consider for example a
supersymmetric model, where the relevant superpotential terms that produce the correct
Yukawa structure in the neutrino sector are

1

Λ
Hu(L · φatm)ν

c
atm +

1

Λ
Hu(L · φsol)ν

c
sol +

1

Λ
Hu(L · φdec)ν

c
dec, (3.2)

where L is the SU(2) lepton doublet, assumed to transform as a triplet under the family
symmetry, while νc

atm, ν
c
sol, ν

c
dec are CP conjugates of the right-handed neutrinos and Hu is

the electroweak scale up-type Higgs field, the latter being family symmetry singlets but
distinguished by some additional quantum numbers. In the charged-lepton sector,

1

Λ
Hd(L · φe)e

c +
1

Λ
Hd(L · φµ)µ

c +
1

Λ
Hd(L · φτ )τ

c, (3.3)

where ec, µc, τ c are the CP conjugated right-handed electron, muon and tau respectively.
The right-handed neutrino Majorana superpotential is typically chosen to give a diagonal
mass matrix,

MR = diag(Matm,Msol,Mdec). (3.4)

Details of the construction of this superpotential (e.g. in terms of flavons), the relative
values of Matm,Msol,Mdec as well as the inclusion of any off-diagonal terms in MR will all
depend on the additional specifications of the model.

The CSD(n) vacuum alignments arise from effective operators involving three flavon fields
φatm, φsol, and φdec which are triplets under the flavour symmetry and acquire VEVs. The
subscripts are chosen by noting that φatm correlates with the atmospheric neutrino mass
m3, φsol with the solar neutrino mass m2, and φdec with the lightest neutrino mass m1,
which in CSD is light enough that the associated third right-handed neutrino can, to
good approximation, be thought of as decoupled from the theory [6]. CSD(n) is defined
to be the choice of vacuum alignments,

〈φatm〉 ∝





0
1
1



 , 〈φsol〉 ∝





1
n

n− 2



 , 〈φdec〉 ∝





0
0
1



 , (3.5)

7Note that CSD(4), when implemented in unified models with Y u = Y ν , with the second column
proportional to (1, 4, 2), predicts a Cabibbo angle θC ≈ 1/4 in the diagonal Y d ∼ Y e basis. Pati-
Salam models have been constructed along these lines [26].
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where n is a positive integer, and the only phases allowed are in the overall proportionality
constants.8 Such vacuum alignments arise from symmetry preserving alignments together
with orthogonality conditions [21, 22], as discussed below.

The starting point for understanding the alignments in Eq. 3.5 are the symmetry pre-
serving vacuum alignments of A4, namely:





1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





±1
±1
±1



 , (3.6)

which each preserve some subgroup of A4 in a basis where the 12 group elements in
the triplet representation are real (i.e. each alignment in Eq. 3.6 is an eigenvector of at
least one non-trivial group element with eigenvalue +1). In a flavour model the above
alignments would also arise from the VEVs of triplet flavons, which however do not couple
to fermions. As such, their immediate role beyond producing the CSD(n) alignments is
unclear, though they may have an impact on early universe physics, for example in flavon
inflation [27]. The first alignment in Eq. 3.5, which completely breaks the A4 symmetry,
arises from the orthogonality conditions





0
1
1



 ⊥





1
1
−1



 ,





1
0
0



 (3.7)

involving two symmetry preserving alignments selected from Eq. 3.6. The following sym-
metry breaking alignment may be obtained which is orthogonal to the alignment in Eq. 3.7
and one of the symmetry preserving alignments,





2
−1
1



 ⊥





1
1
−1



 ,





0
1
1



 (3.8)

The CSD(n) alignment in Eq. 3.5 is orthogonal to the above alignment in Eq. 3.8,





1
n

n− 2



 ⊥





2
−1
1



 (3.9)

where the orthogonality in Eq. 3.9 is maintained for any value of n (not necessarily
integer). To pin down the value of n and show that it is a particular integer requires a
further orthogonality condition.9

8In general also the elements of flavon VEVs can have relative signs as in the last alignment in Eq. 3.6.
However, for a given choice of such alignment, orthogonality fixes the relative signs of the elements
of subsequent alignments with only an overall complex proportionality factor remaining.

9We could simply use the alignment in Eq. 3.9, where n is a real number to be fitted. However, we
prefer to fix n to be a small positive integer to increase predictivity.
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For example, for n = 3, the desired alignment is obtained from the two orthogonality
conditions,





1
3
1



 ⊥





2
−1
1



 ,





1
0
−1



 (3.10)

where the first condition above is a particular case of Eq. 3.9 and the second condition
involves a new alignment, obtained from two of the symmetry preserving alignments in
Eq. 3.6,





1
0
−1



 ⊥





1
1
1



 ,





0
1
0



 (3.11)

Using Eq. 3.2, the vacuum alignments in Eq. 3.5 make up the columns of the Dirac
neutrino Yukawa matrix Y ν ∝ (〈φatm〉 , 〈φsol〉 , 〈φdec〉), giving a Dirac mass matrix

mD = Y νvu =





0 b 0
a nb 0
a (n− 2)b c



 , (3.12)

which is consistent with Eq. 1.4 where mD = (mD
atm,m

D
sol,m

D
dec) and the coefficients a, b,

and c are generally complex. The charged-lepton Yukawa matrix is chosen to be diago-
nal (up to model-dependent corrections, assumed small), corresponding to the existence
of three flavons φe, φµ and φτ in the charged-lepton sector which acquire VEVs with
alignments [21, 22]

〈φe〉 ∝





1
0
0



 〈φµ〉 ∝





0
1
0



 〈φτ 〉 ∝





0
0
1



 . (3.13)

Given this choice, it is clear that Y e is diagonal, hence UeL is the identity matrix up to
diagonal phase rotations, and that UPMNS = U †

νL
, i.e. simply the matrix that diagonalises

the neutrino mass matrix, up to charged lepton phase rotations.

4. Our fitting method

4.1. The test function χ2

We first clarify that we do not use raw experimental data. Instead our “data” corresponds
to global fit values µi to true experimental data, where

µi ∈ {sin2 θ12, sin
2 θ23, sin

2 θ13,∆m2
21,∆m2

31}.

We are not performing a global fit to the data, but instead are fitting our model param-
eters, which are collected into a vector x, to the existing results of a global fit. For each

8



value of the input vector x we obtain a set of predicted values Pi which may be compared
to the global best fit values µi. We want to use the test function χ2 to determine the
optimum input parameters x corresponding to the predictions Pi which yield the lowest
χ2. For definiteness, all “data” µi is taken from just one of the global fits, namely that
in [2], which is reproduced in Table 1 for the case of a normal mass squared ordering
predicted by CSD(n) models. Bounds exist for the CP-violating phase δCP at 1σ, but
it is completely undetermined at 3σ, and so is left as a pure prediction, as are the two
Majorana phases.

We define the function χ2 to serve as a test-statistic for the goodness-of-fit of a chosen
vector x = (ma,mb,mc, η, ξ) in input parameter space in analogy to [28],

χ2 =
N
∑

i=1

(

Pi(x)− µi

σi

)2

, (4.1)

where N = 5, µi are the current global best fit values to the experimental data, and
σi are the 1σ deviations for each of the five physical predictions Pi made, i.e. for the
(squared sines of) three PMNS mixing angles θij and two mass-squared differences ∆m2

21

and ∆m2
31. Note that σi is equivalent to the standard deviation of the global best fit

values if the global fit distribution of the observable is Gaussian. This is essentially the
case for most fitted observables, except for the atmospheric angle θ23. As seen in [2], the
∆χ2 distribution for θ23 has two minima on either side of 45◦, with a slight preference for
θ23 < 45◦ for Normal Ordering (42.3◦, to be precise). This is reflected in the asymmetric
error +3.0◦

−1.6◦ which in terms of sin2 θ23 is +0.052
−0.028 (see Table 1 below). So as to not overstate

the error (and consequently underestimate χ2), we assume the distribution is Gaussian
about the best fit, setting σsin2 θ23 = 0.028. For best fit values larger than 42.3◦ this will
overestimate the χ2, so we are being very conservative in presenting our results when the
global fit “data” we are using is not Gaussian.

One may compare the resulting values of χ2 to the number of excess degrees of freedom
ν ≡ N − NI where N = 5 is the number of “data points” (in our case interpreted as
the number of measured parameters) while NI is the number of input parameters. In
standard χ2 analyses, the χ2 per excess degree of freedom for a good fit has an expectation
value of 〈χ2/ν〉 = 1, although there are subtleties associated with this interpretation here,
as we will discuss, some of which have already been mentioned above.

4.2. Minimising method

Initially, a coarse Monte-Carlo was used to examine the (5-dimensional) parameter space.
A random vector x = (ma,mb,mc, η, ξ) is chosen, all PMNS parameters are calculated
numerically using the Mixing Parameter Tools (MPT) package for Mathematica [29], and
χ2 is evaluated. A large-N search of this type reveals the existence of two collections of
global minima. These regions in parameter space are characterised by having the same

9



Parameter
(from [2])

bfp ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270 → 0.344

θl12 (
◦) 33.48 +0.78

−0.75 31.29 → 35.91

sin2 θ23 0.452+0.052
−0.028 0.382 → 0.643

θl23 (
◦) 42.3 +3.0

−1.6 38.2 → 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186 → 0.0250

θl13 (
◦) 8.5 +0.20

−0.21 7.85 → 9.10

δl (◦) 306 +39
−70 0 → 360

∆m2
21

10−5
eV2 7.50 +0.19

−0.17 7.02 → 8.09

∆m2
31

10−3
eV2 +2.457 +0.047

−0.047 +2.317 → +2.607

Table 1: Table of current best fits to experimental data for neutrino mixing angles and
masses in the case of normal mass squared ordering, taken from [2], with 1σ and
3σ uncertainty ranges. These are the values that we use in the CSD(n) fits, apart
from δCP which we leave as a prediction since its non-zero value has not yet been
firmly established experimentally.

approximate values of ma and mb, while mc and ξ are allowed to take a broad range of
values (in fact ξ can take any value at all in [−π, π]).

Meanwhile η is constrained only up to a sign – the two minima then correspond to equal
and opposite values of η. Refining the input parameter space by allowing only η ∈ (0, π)
leaves a single global minimum region. This minimum is well-defined and generally stable,
meaning our χ2 statistic is a good test for goodness-of-fit over this space; this is true for all
CSD(n). For more details on the behaviour of χ2 near the global minimum, see Appendix
A. Once the single global minimum is confirmed, numerical minimisation is performed in
Mathematica by the method of differential evolution.

5. Results

This section details results for the properties of general CSD(n) vacuum alignments,
wherein we have simplified the analysis by considering only two planes of fixed ξ, i.e. the
cases where ξ = 0 (phase aligned with dominant mass matrix) or ξ = η (phase aligned
with subdominant mass matrix). This simplification is predicated on the underlying
assumption from CSD that the contribution from the mc term in Eq. 2.2 is small; indeed,
a stable minimum of the same order in χ2 can be found for any value of ξ. Such a
constraint on ξ may also arise directly from a model, such as in [26].

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
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angle or neutrino mass, while thin solid gridlines show the 1σ limits, and thin dashed
gridlines show the 3σ range.

5.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to

mν
(n) = ma





0 0 0
0 1 1
0 1 1



+mbe
iη





1 n n− 2
n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2



 , (5.1)

where we have defined η = β − α and removed an overall unphysical phase α. This case
immediately predicts the lightest physical neutrino mass to be zero, m1 = 0. For a given
choice of alignment n, there are three real input parameters ma, mb and η from which
two light physical neutrino masses m2, m3, three lepton mixing angles, the CP-violating
phase δCP and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and δCP is only tentatively constrained by experiment, this leaves five
presently measured observables, namely the two neutrino mass squared differences and
the three lepton mixing angles, from only three input parameters.

n
ma

(meV)

mb

(meV)

η
(rad)

θ12
(◦)

θ13
(◦)

θ23
(◦)

|δCP|
(◦)

m2

(meV)

m3

(meV)
χ2

1 24.8 2.89 3.14 35.3 0 45.0 0 8.66 49.6 485

2 19.7 3.66 0 34.5 7.65 56.0 0 8.85 48.8 95.1

3 27.3 2.62 2.17 34.4 8.39 44.5 92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 142 8.53 50.0 33.8

6 55.0 1.29 3.13 34.2 9.30 31.6 179 8.46 50.2 65.2

7 63.0 1.12 3.14 34.1 9.68 31.0 180 8.35 50.6 100

8 71.0 0.984 3.14 34.0 9.96 30.6 180 8.25 50.8 135

9 79.0 0.880 3.14 33.9 10.2 30.3 180 8.17 51.0 168

Table 2: Table of best fit parameters for two right-handed neutrino CSD(n) model for
1 ≤ n ≤ 9. The fitted three input parameters ma, mb and η yield nine physi-
cal predictions, but only six physical outputs are shown. The undisplayed outputs
arem1 = 0 in each case and the two Majorana phases which are difficult to measure
for a normal hierarchy.

Table 2 shows all fitted parameters with respect to n. Fig. 2 shows the best fit values
of χ2 with respect to vacuum alignment n. Both CSD(3) and CSD(4) have χ2 < 10,
while all others have significantly higher values, generally increasing with n. With five
values N fitted to three input parameters NI , this gives us two excess degrees of freedom,
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Fig. 2: Best fit χ2 with respect to n.

i.e. ν ≡ N − NI = 2. Recalling that in standard χ2 analyses, 〈χ2/ν〉 = 1 for a good
fit, for the most promising model, CSD(3), we have χ2/ν = 1.99. We view this as a
good fit, particularly in light of the fact that it can naturally predict a CP phase δCP

close to the current experimental preferred value of ∼ −π/2. Similarly the fit for CSD(4)
shows promise for model-building, with 〈χ2/ν〉 = 4.41 and a prediction |δCP| = 120◦. For
n ≥ 4, the largest contribution to χ2 is typically θ23, while for n = 3 there is no dominant
contribution.

In Fig. 3 and Fig. 4 we show the variation of physical masses and neutrino mixing angles
with respect to n in the two right-handed neutrino CSD(n) model. Note that, in our
conventions defined earlier, a positive value of η, namely η ∈ (0, π), yields a negative
CP-violating angle, i.e. δCP ∈ (0,−π), while the mirror global minimum for η ∈ (−π, 0)
corresponds uniquely to δCP ∈ (π, 0). As η is unconstrained (unless some model explicitly
restricts its domain), only the absolute value of δCP can be predicted by this analysis. In
Table 2 we only show positive η values, for which δCP is negative.

As discussed in Appendix A, the two input massesma,mb fix the two light neutrino masses
m2, m3 after which the entire PMNS matrix is determined from only one parameter,
namely the phase η. A priori, CSD(n) need not lead to low χ2 values for any choice of
n, due to the sensitivity of the predictions to the phase η, yet in fact the results show
that it gives very good fits to the leptonic mixing angles for n = 3, 4, for special values
of η, yielding a value of |δCP| (which is taken to be unconstrained by data) as a genuine
prediction, along with preferred values for the lepton angles.

This is illustrated in Fig. 5 which shows the variation of χ2 with η, for CSD(n) with
1 ≤ n ≤ 9. It is clear that η is quite strongly constrained, even for CSD(3) and CSD(4),
which can give good fits; with CSD(3), the values (in radians) of η that give χ2 < 10 are
2.08 . η . 2.27, which is a range of approximately 11◦. This range happens to include
the value 2π/3. Such a value could be produced in a model with a discrete symmetry
such as Z3N .

The neutrino masses are also tightly constrained. Recalling the best fit values given in
Table 2, any fit that yields χ2 . 50 will correspond to values of ma and mb that are within
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Fig. 3: Best-fit PMNS mixing angles and CP-violating phase with respect to n, for the
two right-handed neutrino CSD(n) model. We emphasise that |δCP| is a genuine
prediction here since have not used the one sigma hint from experiment as an input
constraint. It is striking that both CSD(3) and CSD(4) both yield predictions within
the preferred range |δCP| ∼ 90◦ ± 45◦ but may be distinguished by their differing
predictions for the atmospheric angle θ23 ≈ 45◦ and θ23 ≈ 38◦, respectively.

±10-15% of their best fit value. This is true for all CSD(n). In other words, the ranges of
acceptable values for the input masses scale with the best fit value. This is also confirmed
for models with three right-handed neutrinos, discussed below, and is discussed further
in Appendix A.

To make the link between χ2 minimisation and physical prediction more concrete, we
examine in Fig. 6 the variation in the three mixing angles with η, for the physically
most interesting cases of CSD(n) with n = 3, 4, 5. We see that although θ12 is largely

2 3 4 5 6 7 8 9
8.0

8.2

8.4

8.6

8.8

9.0

n

m2

(meV)

2 3 4 5 6 7 8 9

48

49

50

51

n

m3

(meV)

Fig. 4: Best-fit light neutrino masses with respect n, for the two right-handed neutrino
CSD(n) model. Since m1 = 0 in this case m2 =

√

∆m2
21 and m3 =

√

∆m2
31.

13



n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8
n = 9

π
6

π
3

π
2

2π
3

5π
6

π
5

10

50

100

500

1000

η

χ2

Fig. 5: Variation of χ2 with phase η in a model with two right-handed neutrinos.

unaffected by η, there is a complicated dependence of the other two mixing angles on η,
which is different for different n. These plots demonstrate what the χ2 value suggests:
for some small set of values η, the predicted mixing angles converge on the experimental
best fit values for CSD(3) and CSD(4). Meanwhile for CSD(5) we begin to see tension
between the fits to θ13 and θ23; this tension grows with large n.
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(b) CSD(4)
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Fig. 6: Variation of the three lepton mixing angles with phase η in models with two right-
handed neutrinos. Shaded regions represent the ±1σ range for each mixing angle (in
colours corresponding to the drawn curve for θij). The reactor angle θ13 has been
multiplied by a factor 5 for the sake of visual ease (there is no physical relevance of
the number 5).
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5.2. CSD(n) with three right-handed neutrinos

We now extend the analysis to the case of three right-handed neutrinos,

mν
(n) = ma





0 0 0
0 1 1
0 1 1



+mbe
iη





1 n n− 2
n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2



+mce
iξ





0 0 0
0 0 0
0 0 1



 , (5.2)

where the overall unphysical phase α in Eq. 2.4 has been factored out and dropped. The
immediate effect of including a third right-handed neutrino is to switch on a non-zero
value for the lightest physical neutrino mass m1, where previously for the case of two
right-handed neutrinos we had m1 = 0.

Since the contribution from the “decoupled” right-handed neutrino is assumed to be a
perturbation to the case of two right-handed neutrinos considered in the previous sub-
section, the detailed structure of the third matrix is irrelevant, and it is sufficient to only
keep the most important term in the third matrix, which we have assumed to be in the
(3,3) entry, since in unified models where Y u = Y ν this entry is responsible for the top
quark Yukawa coupling [26]. However the third term brings in a further undetermined
relative phase ξ which complicates the analysis somewhat. Since the results are compar-
atively less sensitive to this phase ξ, particularly for the physically interesting cases of
n = 3, 4, we have taken the approach of fixing it to take two simple values, namely ξ = 0
and ξ = η, in order to illustrate the sensitivity of the results to this phase without over-
complicating the analysis. These two examples also correspond to the values appearing
in certain realistic models [26].

Once the existence of a single stable minimum has been confirmed, Tables 3 and 4 show
the results for the best fit or optimal χ2 and its corresponding input and output values,
for CSD(n) with 1 ≤ n ≤ 9, for each of the two sub-subdominant phases considered,
i.e. ξ = 0 and ξ = η. As in the two right-handed neutrino case, CSD(3) and CSD(4)
can achieve χ2 < 10. More generally for each CSD(n), the raw χ2 values are slight
improvements over the two neutrino case, which is expected as we have added a free
parameter mc.

Evaluating the number of excess degrees of freedom ν = N − NI is non-trivial. We
have added two input parameters mc and ξ, giving nominally NI = 5 and hence ν = 0.
However in practice we have fixed ξ to some convenient values (since the fit is insensitive
to ξ) so this gives NI = 4 and hence ν = 1. Moreover, mc is constrained by the SD
assumption that the third right-handed neutrino is nearly decoupled from the theory.
Therefore it may be more reasonable to compare the expected χ2 value to some finite
value rather than zero, but the precise value is debatable. One may cautiously regard χ2

values between unity and, say, up to 10 as encouraging, bearing in mind also that we do
not include δCP in the fit, and also that we are conservative with the asymmetric error
in the atmospheric angle, as discussed earlier. On the other hand the n itself in CSD(n)
may be regarded as a further discrete parameter. In the light of all of the above, we
should interpret χ2 values with care.
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n
ma

(meV)

mb

(meV)

mc

(meV)

η
(rad)

θ12
(◦)

θ13
(◦)

θ23
(◦)

|δCP|
(◦)

m1

(meV)

m2

(meV)

m3

(meV)
χ2

1 23.3 2.81 5.77 1.62 33.5 0.293 41.4 245 0.874 8.71 49.6 474

2 19.7 3.66 0 0 34.5 7.65 56.0 0 0 8.85 48.8 95.1

3 26.0 2.60 1.77 2.1 33.6 8.37 44.6 81.3 0.278 8.69 49.5 2.59

4 32.3 1.94 4.75 2.48 33.0 8.70 38.8 89.1 0.692 8.64 49.7 6.51

5 38.3 1.52 7.10 2.65 32.4 8.92 35.6 89.2 0.964 8.62 49.9 25.1

6 44.5 1.25 9.81 2.74 31.8 9.04 33.6 88.6 1.12 8.61 50.0 43.1

7 50.7 1.06 10 2.81 31.3 9.12 32.3 87.9 1.22 8.61 50.1 58.1

8 57.3 0.92 10 2.85 31.0 9.29 32.0 87.5 1.23 8.57 50.1 70.9

9 64.0 0.82 10 2.88 30.7 9.44 32.1 86.9 1.22 8.54 50.2 82.4

Table 3: Table of best fit parameters for CSD(n) for 1 ≤ n ≤ 9 and ξ = 0.

n
ma

(meV)

mb

(meV)

mc

(meV)

η
(rad)

θ12
(◦)

θ13
(◦)

θ23
(◦)

|δCP|
(◦)

m1

(meV)

m2

(meV)

m3

(meV)
χ2

1 24.5 2.75 1.26 0 33.3 0.069 44.2 180 0.197 8.66 49.6 477

2 19.7 3.66 0 0 34.5 7.65 56.0 0 0 8.85 48.8 95.1

3 27.3 2.61 0.558 2.16 33.7 8.37 44.8 92.7 0.092 8.69 49.5 3.14

4 36.8 1.93 1.30 2.63 33.0 8.67 39.0 123 0.215 8.62 49.7 5.53

5 46.5 1.52 1.85 2.91 32.5 8.93 35.2 149 0.307 8.55 50.0 27.6

6 55.4 1.27 2.15 3.14 32.1 9.27 33.1 180 0.356 8.46 50.2 56.8

7 63.4 1.10 2.2 3.14 32.0 9.66 32.6 180 0.364 8.34 50.6 92.4

8 71.4 0.97 2.16 3.14 32.0 9.95 32.1 180 0.358 8.24 50.9 129

9 79.3 0.87 2.05 3.14 32.0 10.2 31.7 180 0.341 8.15 51.1 163

Table 4: Table of best fit parameters for CSD(n) for 1 ≤ n ≤ 9 and ξ = η.

As n increases, the global fit prefers a stronger hierarchy of input neutrino masses ma

and mb, while the contribution from mc becomes stronger. The fits select the input
mass parameters ma, mb and mc which are allowed to be free apart from an upper limit
imposed on mc < 10 meV in order not to violate the condition of sequential dominance
as discussed in the Introduction. In the case of ξ = 0, mc reaches the soft upper bound
of 10 meV for CSD(n ≥ 7).10 However for the successful cases CSD(3) and CSD(4),
the best fit value of mc are comfortably below 10 meV, so these cases naturally prefer a
quite decoupled third right-handed neutrino for which the upper limit of mc is irrelevant.
Consequently, restricting our analysis to only examine two values of ξ is justified for small
n. For larger n, the overall contribution from the third matrix proportional to mce

iξ is
larger, yet nevertheless fails to significantly improve the (poor) fit to data.

10Note that a fit that requires a large mc is not CSD. For example, a proper analysis of such a non-
CSD model necessarily includes contributions from elements of the sub-subdominant mass matrix
other than the largest (3,3) element, which have been neglected thus far. This would destroy the
predictivity of the scheme which makes CSD(n) so appealing. This justifies imposing the chosen
upper bound on mc.
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Among physical parameters, of particular note is the CP-violating phase |δCP|, which is
close to 90◦ for CSD(3) for both choices of ξ. Furthermore, the alignment of ξ with the
dominant or subdominant mass matrix appears to greatly affect the prediction for δCP.
The most likely source of this behaviour is a close relationship between η and δCP. Notice
that when ξ = η, the best fit of both is 180◦ for n ≥ 6. The observed plateaus in δCP

are believed to be physical rather than artefacts of numerical minimisation, though an
analytic treatment would be required for a deeper understanding of their origin. Note,
however, that this behaviour only appears for CSD(n ≥ 6) with poor fits.

In Fig. 7 and Fig. 8 we display the variation of the best fit physical parameters – mixing
angles and neutrino masses – as a function of n. In Fig. 7 we see that the reactor angle
increases with n while the atmospheric and solar angles decrease. Examining the 3σ
ranges (dashed lines) we also see that θ23 is typically worst fit (only CSD(3) lies within
the 1σ bounds), and is also least sensitive to the choice of sub-subdominant phase ξ,
which can otherwise improve the fit of θ12 or θ13 at large n.

We note the similarities between the mixing angle predictions in Fig. 7-8 and the matching
figures for models with two neutrinos (Fig. 3-4). The primary difference when a third
neutrino is introduced is that θ12 is pushed to a lower value. The best fit values of m1

in Fig. 8 indicates that it can vary greatly with n for some phase choices. It is however
unlikely that this can be used to constrain models in the near future, as the mass scale
is well below current experimental bounds of

∑

mν < 0.23 eV [30].
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Fig. 7: Best-fit PMNS mixing angles and the CP-violating phase δCP for CSD(n) with three
right-handed neutrinos as a function of n. The cases ξ = 0 (ξ = η) correspond to
yellow (blue) dots.

The variation of χ2 with respect to the phase η and the third input neutrino mass mc
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Fig. 8: Best-fit light neutrino masses for CSD(n) with three right-handed neutrinos as a
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√
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dots.

is shown in Fig. 9. As in the case for models with two neutrinos, η is quite tightly
constrained. Meanwhile, mc typically has a larger range of acceptable values (particularly
when ξ = 0), and does not appear strongly correlated with η. Similarly the best fit values
of the physical lightest neutrino mass m1 lie in rather shallow minima of χ2 as shown in
Fig. 10.

In Fig. 11 we show the variation of input parameters with lightest neutrino mass m1,
for the three best fit cases 3 ≤ n ≤ 5, while Fig. 12 and 13 show the dependence on m1

for the predicted mixing angles and neutrino masses, respectively. In all these plots the
dashed line is the ξ = 0 case, while the solid line is the ξ = η case.

We observe that the choice of sub-subdominant phase ξ has a small effect on the value of
the global minimum, but can noticeably shift its location in parameter space. Naturally
the largest effect is on the best fit value and range of validity of mc, but it also contributes
to interference between the three mass matrices in Eq. 2.4. The practical effect is that
each of the three vacuum alignments contribute in varying amounts to each of the three
PMNS mixing angles depending on the relative phase between the matrices, which can
be seen particularly in Fig. 12, where the choice of ξ alters the shape of the variation of
the mixing angles.
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More specifically, the addition of a third neutrino appears to most dramatically affect the
solar angle θ12, in contrast to the two neutrino model, where it is essentially constant.
The physical neutrino masses in Fig. 13 are comparatively far less sensitive to changes
in ξ.
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Fig. 9: Best fit χ2 with respect to the phase η and third input neutrino mass mc. Note that
the cases with ξ = 0 (left column) typically allow for a larger range of mc values that
give acceptable fits, when compared to the ξ = η cases. In these plots, the dark blue
region corresponds to χ2 ≤ 5, while the surrounding regions correspond to χ2 ≤ 20
and χ2 ≤ 50. The best fit points are indicated by stars.
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Fig. 10: Best fit χ2 plotted with respect to the lightest neutrino mass m1. The dashed lines
refer to the ξ = 0 case, while the solid lines refer to the ξ = η case.
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Fig. 11: The variation with m1 of the best fit input parameters. Note that mc and m1 are
closely correlated, while best fit ma,b are not strongly affected by the introduction
of a third neutrino. The dashed lines refer to the ξ = 0 case, while the solid lines
refer to the ξ = η case.
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5.3. CSD(3) with η = 2π/3 and CSD(4) with η = 4π/5

It is interesting that the optimal fit for the CSD(3) with χ2 = 2.59(3.14) corresponds to
a choice of input phase |η| = 2.10(2.16) = 0.669π(0.682π), for the ξ = 0 (ξ = η) cases,
respectively. Its closeness to the value 2π/3, independently of ξ, is a compelling quality
in favour of flavour models that predict additional Z3N symmetries, which tend to predict
quantised phases as multiples of π/3. This motivates a χ2 analysis with a fixed value of
η = 2π/3, for a reduced input vector x = (ma,mb,mc). The resulting input and output
parameters for fixed η = 2π/3 are given in Table 5. The best fits give χ2 = 2.59(5.25), for
the ξ = 0 (ξ = η) cases, respectively, marginally worse than in the case of unconstrained
η fits which gave χ2 = 2.59(3.14).

In a model where η is fixed by symmetry, the excess degrees of freedom ν = N −NI are
increased by one since NI is decreased by one. In CSD with two right-handed neutrinos,
this brings the total to ν = 3. Meanwhile, CSD with three right-handed neutrinos
nominally has ν = 0. However, since the sub-subdominant phase ξ contributes only
marginally to the goodness-of-fit, as has been seen in the analysis above, it can be fixed
to some convenient value without affecting the conclusions drawn from the fit. Fixing
both ξ and η gives ν = 2 in the three-neutrino case. For both classes of models, we can
attain χ2/ν ∼ 1.3 − 1.6 with CSD(3), which is slightly better than might be expected,
although it should not be too suprising that one value of n in CSD(n) works better than
the others (although it is encouraging that n = 3 is a small number). The interpretation
is also subject to the previous caveats about not including δCP in the fit (which would
increase ν) and also our conservative treatment of non-Gaussian errors.

Turning to the other promising candidate, CSD(4), we see that, for ξ = 0 (ξ = η), we have
χ2 = 6.51(5.53) for |η| = 2.48(2.63) = 0.79π(0.84π), which is close to 4π/5. Based on the
work in [26], it is meaningful to examine the parameter space for a fixed phase η = ±4π

5

and ξ = 0 or ξ = η.11 χ2-minimisation yields χ2 = 7.20(14.7) with corresponding input
and output parameters given in Table 6.

11Note that the first paper in [26] involved ξ = 0 while the second paper used ξ = η. However in such
realistic models the charged lepton corrections also play a role.
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ξ = 0 ξ = η

Input

ma (meV) 25.9 26.7

mb (meV) 2.60 2.64

mc (meV) 1.80 0.88

Output

m1 (meV) 0.29 0.14

m2 (meV) 8.71 8.63

m3 (meV) 48.2 49.7

θ12 (◦) 32.1 33.3

θ13 (◦) 8.74 8.54

θ23 (◦) 46.2 45.8

δCP (◦) 90.2 89.1

Table 5: Best-fit input and output values corresponding to χ2 = 2.59(5.25) for ξ = 0 (ξ = η)
for a CSD(3) with a fixed input phase η = 2π/3.

ξ = 0 ξ = η

Input

ma (meV) 33.0 35.4

mb (meV) 1.94 1.99

mc (meV) 4.42 1.60

Output

m1 (meV) 0.66 0.26

m2 (meV) 8.65 8.49

m3 (meV) 49.7 50.2

θ12 (◦) 33.5 32.7

θ13 (◦) 8.68 9.05

θ23 (◦) 38.2 41.3

δCP (◦) 93.6 112

Table 6: Best-fit input and output values corresponding to χ2 = 7.20(14.7) for ξ = 0 (ξ = η)
for a CSD(4) with a fixed input phase η = 4π/5.

6. The link between δCP and leptogenesis in CSD(n)

Leptogenesis [31] is a leading candidate for the origin of matter-antimatter asymmetry
in the universe. In the original form of CSD, the columns of the Dirac mass matrix in
the flavour basis were orthogonal to each other and consequently the CP asymmetries
for cosmological leptogenesis vanished [32, 33]. Following the subsequent observation
that leptogenesis also vanished for a range of other family symmetry models [34], this
undesirable feature was eventually understood [35] to be a general consequence of see-saw
models with form dominance [14] (i.e. in which the columns of the Dirac mass matrix in
the flavour basis are proportional to the columns of the PMNS mixing matrix).

In the case for CSD(n), leptogenesis does not vanish since the columns of the Dirac mass
matrix in the flavour basis are not orthogonal. To be precise, (mD

atm)
T = (0, a, a) and

(mD
sol)

T = (b, nb, (n−2)b) from Eq. 1.4 are not orthogonal for n > 1.12 Interestingly, since

12Note that the orginal CSD(n = 1) case satisfies form dominance since (0, a, a).(b, b,−b) = 0. Hence
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the see-saw mechanism in CSD(n) with two right-handed neutrinos only involves a single
phase η = arg(b2/a2), both the leptogenesis asymmetries and the neutrino oscillation
phase δCP must necessarily originate from η, providing a direct link between the two CP
violating phenomena in this class of models, as follows.

The produced baryon asymmetry YB from leptogenesis in two right-handed neutrino
models with CSD(n) satisfies, following the arguments in [32],

YB ∝ ± sin η , (6.1)

where the “+” sign applies to the case Matm ≪ Msol and the “−” sign holds for the case
Msol ≪ Matm. Since the observed baryon asymmetry YB is positive, it follows that, for
Matm ≪ Msol, we must have sin η to be positive, while for Msol ≪ Matm we must have
sin η to be negative. We have seen that for CSD(n) positive η is associated with negative
δCP and vice versa. Although the global fits do not distinguish the sign of η, the present
hint that δCP ∼ −π/2 would require positive η, then in order to achieve positive YB we
require Matm ≪ Msol, corresponding to “light sequential dominance”, depicted in Fig. 1,
as considered in the two right-handed neutrino analysis in [36].

The above link between CP violation in flavour dependent leptogenesis and neutrino
oscillation for models with sequential dominance was observed in [32], although with
only one leptogenesis phase the conclusions are identical to those obtained in the flavour
independent or “vanilla” case [37]. Our discussion here generalises that of CSD(2) which
involves two texture zeroes [25]. Here we find a link for CSD(n), even without two texture
zeroes, due to the appearance of only a single phase η in the see-saw mechanism, for the
case of two right-handed neutrinos, where η is identified as both the leptogenesis phase
in Eq. 6.1 and the phase appearing in the neutrino mass matrix in Eq. 5.1.

The above conclusions remain approximately true when a third almost decoupled right-
handed neutrino is introduced. As discussed in [32], the relative size of the additional
contribution to the CP asymmetry when a third neutrino is present is O(mc/mb) ∼ 0.1.
A third right-handed neutrino is necessary in the realistic Pati-Salam models based on
CSD(4) in [26]. In these models the new phase is either given by ξ = 0 or ξ = η, so no new
leptogenesis phase appears. However the mechanism for leptogenesis is necessarily quite
different in these models, since the lightest right-handed neutrino of massMatm is too light
to generate successful leptogenesis in its decays. Instead one must rely on the decays of the
second lightest right-handed neutrino of massMsol as in SO(10)-inspired leptogenesis [38].
It would be interesting to discuss this in more detail in a future publication [39].

leptogenesis vanishes in this case. However CSD(1) is excluded due to observed reactor angle and we
find χ2 ∼ 500.
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7. Conclusion

We have performed an analysis on a class of CSD(n) models in which, in the flavour
basis, two right-handed neutrinos are dominantly responsible for the “atmospheric” and
“solar” neutrino masses with Yukawa couplings to (νe, νµ, ντ ) proportional to (0, 1, 1)
and (1, n, n − 2), respectively, where n is a positive integer. The χ2 measure offers a
flexible and robust way to examine parameter space for a given form of neutrino mass
matrix, and the relative strength of fit to experimental data. However the treatment
and interpretation of this statistical test is subject to a number of subtleties and caveats
which we have discussed already. These include: the non-Gaussianity of the “data”
(taken from a particular global analysis); the decision about whether to include δCP as
a measured “data” point; the treatment of parameters which do not significantly affect
the fit, namely ξ, and those which are constrained to be small on theoretical grounds,
namely mc; and which parameters are regarded as being fixed by theory such as n of
CSD(n) and the phase η which may be fixed by a discrete symetry. We have tried to be
very conservative at each step, and have clearly discussed the interpretation taking into
account our conservative approach. For example, we have taken the smallest asymmetric
errors when dealing with non-Gaussian distributions. We have also carefully discussed
the relevant ν = N −NI with which the χ2 should be compared, in each case, and seen
that the interpretation is non-trivial.

With the above caveats in mind, we can say that for just two right-handed neutrinos,
we cautiously find good agreement with experiment for CSD(3) and CSD(4), leading to
accurate predictions for mixing angles, with these two cases being distinguished by their
differing predictions for the atmospheric angle of θ23 ≈ 45◦ and θ23 ≈ 39◦, respectively.
We find it encouraging that the entire PMNS matrix can be so accurately fitted in terms
of just one input parameter, namely the relative phase η, with the input mass parameters
ma andmb essentially determining the neutrino mass-squared differences ∆m2

21, ∆m2
31. In

some models the phase η itself may be fixed to some small set of discrete values consistent
with the preferred values extracted from the fit.

We have also carefully studied the perturbing effect of a third “decoupled” right-handed
neutrino, leading to a bound on the lightest physical neutrino mass m1 . 1 meV for the
viable cases, corresponding to the robust prediction of a normal neutrino mass hierarchy.
The best fit model in this case is shown to be CSD(3), for which we find χ2 = 2.59(3.14)
with fixed sub-subdominant phase ξ = 0 (ξ = η). CSD(3) has the added desirable
property that η is preferred to be close to 2π/3, which can be naturally predicted from
flavour models with a Z3N symmetry. Another leading contender is CSD(4) for which
we find χ2 = 6.51(5.53) with fixed sub-subdominant phase ξ = 0 (ξ = η). For the
case ξ = 0, CSD(4) prefers η to be close to 4π/5, which can be naturally predicted from
flavour models with a Z5N symmetry. However such realistic flavour models will in general
also include (small) charged lepton corrections which will modify the fits presented here.
CSD(5) is less favoured with χ2 ≈ 25−30. The present analysis confirms that CSD(2),
as well as CSD(n > 5) are disfavoured, the latter being a new result.
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The analysis is further complicated for larger n by the increasing influence of the sub-
subdominant matrix proportional to mc (which correlates very closely with the lightest
neutrino mass). However here we restrict ourselves to the CSD framework where we de-
mand that the third right-handed neutrino be approximately decoupled from the see-saw
mechanism, since otherwise all predictivity is lost. Ultimately, while it is not perhaps
suprising a reasonable fit can be found for some n, unexpectedly only a handful of align-
ments (n = 3, 4 and possibly n = 5) give a good agreement with data, all with reasonably
small n.

Furthermore, the predictions for mixing angles and masses are quite sharp, particularly
for the viable choices of CSD(3) and CSD(4), and could feasibly be ruled out by more
precise measurements of mixing angles and CP phase in future neutrino experiments.

Finally we have seen that, with just two right-handed neutrinos in CSD(n), there is a
direct link between the oscillation phase δCP and leptogenesis. This is because there
is only one phase η appearing in the see-saw mass matrices. Hence η is identified as
both the leptogenesis phase in Eq. 6.1 and the phase in the neutrino mass matrix in
Eq. 5.1. For a given ordering of right-handed neutrino masses, the sign of η is fixed
by the requirement that the observed baryon asymmetry is positive. For instance, if
Matm ≪ Msol, then positive baryon asymmetry requires that η is also positive. A positive
η in the neutrino mass matrix implies that δCP is negative, in agreement with the current
hint that δCP ∼ −π/2. It is interesting that, for positive η, the global analyses for
CSD(3) or CSD(4) with two right-handed neutrinos predict values of δCP ≈ −92.2◦ or
δCP ≈ −120◦, respectively, with similar predictions when a third approximately decoupled
right-handed neutrino is included.

In summary, the χ2 fit of the input parameters to measured parameters presented here
confirms and quantifies the earlier claims that see-saw models based on CSD(3) and
CSD(4) successfully describe neutrino masses and lepton mixings. Although the inter-
pretation of the χ2 values is subject to discussion, we have tried to be clear and open as
well as conservative when presenting the results. In the case of two right-handed neutri-
nos, a single phase η controls leptogenesis and predicts all the mixing angles and phases
in the PMNS matrix. Overall, it is encouraging that good fits for these two cases can be
achieved, subject to the above discussed caveats, for simple values of the phase η = 2π/3
or η = 4π/5, where such quantised values of the phases could arise due to Abelian Z3N

or Z5N discrete symmetries, together with a non-Abelian A4 family symmetry. In such
models the CSD(n) structures emerge from A4 breaking flavons with vacuum alignments
proportional to (1, n, n − 2)T , arising from othogonality conditions. However, in such
realistic models, we should in general expect the results presented here to be modified
somewhat due to further small effects arising from charged lepton mixing and renormal-
isation group corrections. In conclusion, the see-saw mechanism with CSD(n) represents
a predictive and rather successful approach to understanding lepton mixing with a direct
link to leptogenesis.
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A. χ2 near the global minimum

Fig. 14 shows the best fit χ2 with respect to the two input masses ma and mb for a
two neutrino model for the most physically interesting cases of CSD(3) and CSD(4). It
is clear from the contours that both input masses are quite tightly constrained. Any fit
that gives χ2 < 50 will correspond to a deviation from the best fit value of no more than
10-15%. It is also confirmed that the addition of a third right-handed neutrino does not
significantly alter the best-fit or the spread of ma and mb, as mc is small (as is required
by CSD). This lends validity to our assertion that the two physical neutrino masses m2,3

are largely derived from the input masses ma,b, leaving (in the two neutrino case) only a
single phase η which controls the detailed prediction of the PMNS matrix.
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Fig. 14: Variation of χ2 with input masses ma and mb for CSD(3) and CSD(4). The dark
blue region corresponds to χ2 ≤ 5, while the surrounding regions correspond to
χ2 ≤ 20 and χ2 ≤ 50.

The validity of χ2 as a test-statistic depends not only on its ability to measure the
numerical fit to data but also how reliable its behaviour is in the neighbourhood of a
purported global minimum. We find that once we have constrained our parameter space
to exclude degenerate minima (corresponding to±η), χ2 as defined in Section 4 is typically
well-behaved near the observed minimum. Fig. 15 shows, for CSD(3) and CSD(4), the
variation of χ2 in this region. Specifically, it plots the lower envelope of χ2 evaluated
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for 106 vectors in parameter space (ma,mb,mc, η), chosen randomly. This means this
envelope is not subject to any systematic errors due to any minimising algorithm. Other
CSD(n) alignments do not demonstrate any different behaviours to those observed in
these graphs.

The shape of the curves for ma, mb, and η show clearly defined minima, while the range
of low-χ2 values is comparatively wider and includes mc = 0. Nevertheless, although mc

may take a large range of values and produce reasonably good χ2 fits, it appears to have
a single minimum region – the global and any local minima are the same. We safely fix
the sub-subdominant phase ξ in Fig. 15, which has a negligible effect on the position and
nature of the minimum.
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