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ABSTRACT

The distribution of angles subtended between pairs of galaxies and the line of sight, which

is uniform in real space, is distorted by their peculiar motions, and has been proposed as a

probe of cosmic expansion. We test this idea using N-body simulations of structure formation

in a cold dark matter universe with a cosmological constant and in two variant cosmologies

with different dark energy models. We find that the distortion of the distribution of angles

is sensitive to the nature of dark energy. However, for the first time, our simulations also

reveal dependences of the normalization of the distribution on both redshift and cosmology

that have been neglected in previous work. This introduces systematics that severely limit the

usefulness of the original method. Guided by our simulations, we devise a new, improved test

of the nature of dark energy. We demonstrate that this test does not require prior knowledge

of the background cosmology and that it can even distinguish between models that have the

same baryonic acoustic oscillations and dark matter halo mass functions. Our technique could

be applied to the completed BOSS galaxy redshift survey to constrain the expansion history of

the Universe to better than 2 per cent. The method will also produce different signals for dark

energy and modified gravity cosmologies even when they have identical expansion histories,

through the different peculiar velocities induced in these cases.

Key words: cosmology: theory – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

One of the primary scientific goals of ongoing and future galaxy

surveys is to determine what is responsible for the accelerating ex-

pansion of the Universe (Schlegel et al. 2007, 2009; Blake et al.

2010; Laureijs et al. 2010; Schlegel et al. 2011). There are two

main considerations which affect current tests of dark energy. First,

the differences between the observables expected from compet-

itive cosmological models are small. Secondly, given the huge

volumes that will be covered by future surveys, it is likely that

systematic errors will dominate the interpretation of the measure-

ments. For both these reasons, it is generally accepted that the

dark energy challenge should be tackled using multiple cosmolog-

ical probes (Albrecht et al. 2006; Peacock et al. 2006). Guided

by numerical simulations, we assess a recently proposed test, a

version of the Alcock–Paczynski test (Alcock & Paczynski 1979),

which uses measurements of galaxy pairs to constrain the cosmo-

logical model. We expand the available probes of dark energy by

setting out an improved version of the test which we show can

distinguish models that otherwise cannot be separated by existing

methods.

⋆E-mail: elise.jennings@durham.ac.uk

The Alcock–Paczynski test measures the distortion of a spherical

object assuming an incorrect cosmological model is used to compute

distances. The version of this test considered here models the distor-

tion in a spherically symmetric distribution of galaxy pair angles in

redshift space and was first proposed in a form similar to that used

in this paper by Phillipps (1994), who considered the distribution

of angles between quasar pairs. Recently, Marinoni & Buzzi (2010)

introduced an important revision to this test by considering the an-

gle between pairs of galaxies viewed in redshift space. Building on

the work of Marinoni & Buzzi, the method outlined in this paper is

a refined geometrical test of dark energy. The critical feature of our

extension is the use of N-body simulations of different dark energy

models to test the idea that measuring the anisotropic distribution of

galaxy pairs in redshift space is a useful probe of cosmology. This

geometrical test of dark energy will complement and extend cur-

rently used geometrical probes such as measuring the light curves

of Type Ia supernovae (SNe Ia; Riess et al. 1998; Perlmutter et al.

1999; Riess et al. 2011) and applications of the Alcock–Paczynski

test to baryonic acoustic oscillations (BAOs; e.g. Blake et al. 2011).

In a Friedmann–Robertson–Walker universe, pairs of galaxies

should be distributed with random orientations if the fundamental

assumptions of homogeneity and isotropy are correct. This sim-

ple test of cosmology is complicated by two effects: first, we do

not observe galaxies directly in real space but in redshift space,

C© 2012 The Authors
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where peculiar velocities, distinct from the Hubble flow, displace the

position of a galaxy along the line of sight from its true position. This

introduces a preferred direction, with the result that galaxy pairs are

no longer randomly distributed. Secondly, in order to convert ob-

served angles and redshifts into comoving distances, an observer

needs to assume a cosmological model. An intrinsically spherical

object, such as a cluster of galaxies, or a spherically symmetrical

distribution, such as the distribution of galaxy pairs we consider in

this paper, will appear distorted if measured assuming a cosmology

that does not match the true underlying cosmology of the Universe

(Alcock & Paczynski 1979).

Based on this idea, Phillipps (1994) proposed a test where the

hypothetical sphere proposed by Alcock & Paczynski (1979) is

replaced by randomly oriented quasar pairs. In the absence of pecu-

liar motions, a large sample of quasar pairs should have a uniform

distribution in the cosine of the angle between each pair, if the

correct cosmology is adopted. Marinoni & Buzzi (2010) developed

this test by modelling the effect of the redshift-space distortions

as a Doppler shift in the positions of the galaxies. They applied

this model to galaxy pairs in the Sloan Digital Sky Survey (SDSS)

(Abazajian et al. 2009) at low redshift and the DEEP2 galaxy red-

shift survey (Coil et al. 2004) at z ∼ 1.3. After selecting galaxy pairs

according to a set of constraints discussed in Section 4, Marinoni

& Buzzi were left with a sample of 721 pairs in the seventh data

release of the SDSS at z ∼ 0. Mainly due to the small sample size,

Marinoni & Buzzi were only able to distinguish a � cold dark matter

(�CDM) cosmology from somewhat extreme alternatives, namely

an Einstein–de Sitter universe and an open universe with no dark

energy. We note that these models have already been ruled out by

other tests. This does not, however, imply that the test cannot be used

to yield competitive constraints on dark energy with a larger sample

of pairs. Note that the Alcock–Paczynski test measures a distortion

parameter which is proportional to the angular diameter distance

at the redshift of the object, DA(z), multiplied by the Hubble rate,

H(z). The test we propose in this paper models the distribution of

galaxy pairs in real and redshift space assuming a distant observer

approximation. This assumption removes any dependence on the

angular diameter distance in the distortion parameter. As a result,

this technique allows us to measure the Hubble rate directly.

In this paper, using subhalo pairs in large-volume N-body simu-

lations, we test the method of Marinoni & Buzzi and its potential to

distinguish between cosmologies. First, we focus on the selection

criteria necessary to provide a homogeneous sample of pairs whose

distribution in redshift space agrees with the theoretical model of

Marinoni & Buzzi. With robust selection criteria, we then apply this

test to different simulations to see if these dark energy models can be

distinguished from �CDM. A critical assumption made in the anal-

ysis by Marinoni & Buzzi is that the normalization of a theoretical

model of pair distribution does not evolve with redshift. We show,

using numerical simulations, that this assumption is incorrect. We

also consider the practical difficulties associated with obtaining an

accurate measurement of this normalization parameter observation-

ally. We demonstrate that the test, as originally proposed, suffers

from large systematics which limit its utility. We present an im-

proved methodology which uses N-body simulations and does not

require prior knowledge of the true cosmological model.

Most attention to date has focused on cosmological tests which

require measurements on large scales, such as the rate at which cos-

mic structures grow (Guzzo et al. 2008; Wang 2008), the apparent

location of BAOs (Sánchez et al. 2009; Blake et al. 2010) and the

projected matter density as measured through weak lensing (Massey

et al. 2007). It is important to expand this arsenal of tests. This intro-

duces sensitivity to different systematics, which, alongside results

from other probes, will lead ultimately to a more convincing mea-

surement of the properties of dark energy. Also, it is useful to devise

new tests which are not reliant on measuring the galaxy distribution

on the very largest scales, thereby avoiding the need for an accurate

determination of the mean galaxy density (for another example, see

Nusser, Branchini & Davis 2011). The test proposed in this paper

requires a large volume simply to accumulate a large sample of

galaxy pairs; there is no requirement implied on the accuracy of the

photometry across a survey used for this purpose.

A novel feature of our analysis is the use of N-body simula-

tions to validate and improve upon the methodology proposed by

Marinoni & Buzzi. Recent work has shown that numerical sim-

ulations of structure formation have an important role to play in

modelling cosmological probes and assessing potential systematic

errors. Angulo et al. (2008) demonstrated that the shape of the power

spectrum of galaxy clustering is substantially different from the

predictions of linear perturbation theory even on very large scales

(see also Smith, Scoccimarro & Sheth 2007; Smith, Scoccimarro

& Sheth 2008; Seo et al. 2008; Jennings et al. 2010). The simula-

tion results led to revised analyses of BAOs, which attempt either

to model the distortions introduced by non-linearities and redshift

space, or to reconstruct the linear theory signal (Seo & Eisenstein

2007; Sánchez, Baugh & Angulo 2008; Montesano, Sánchez &

Phleps 2010; Montesano, Sanchez & Phleps 2011). Similarly, N-

body simulations have demonstrated that the measurement of the

growth factor from redshift-space distortions requires careful mod-

elling (Jennings, Baugh & Pascoli 2011a; Okumura & Jing 2011).

Jennings et al. (2011b) showed that a naı̈ve application of a lin-

ear theory model for the distortion of clustering in redshift space

can lead to a catastrophic misinterpretation of the measured growth

factor. The study in this paper is in a similar spirit; the availability

of N-body simulations to model the pair distribution allows us to

devise an improved cosmological probe.

The outline of this paper is as follows. In Section 2, we review the

theoretical model of Marinoni & Buzzi (2010) for the anisotropic

distribution of pairs and its dependence on cosmology. In Section 3,

we discuss the quintessence dark energy models and the N-body

simulations used in this paper. In Section 4, we list and test the

selection criteria used to select a homogeneous sample of galaxy

pairs from the N-body simulations whose distribution agrees with

the theoretical predictions. In Section 5, we present our results,

comparing the theory with measurements from simulations, for the

two dark energy and the �CDM cosmologies and demonstrate that

a robust test of cosmology can only be achieved by combining

observations with numerical simulations. In Sections 6 and 7, we

present our summary and conclusions.

2 T H E O R E T I C A L BAC K G RO U N D :

T H E D I S T R I BU T I O N O F G A L A X Y PA I R S

Following the derivation and discussion in Marinoni & Buzzi (2010)

(see also the alternative derivation in Phillipps 1994), let us consider

a pair of gravitationally bound galaxies, A and B, at an observed

angular separation, θ , as shown in Fig. 1. In a flat universe, the angle

that galaxy B subtends at galaxy A, as measured from the observer’s

line of sight through A, which we refer to as the tilt angle, t, can be

written as

sin2 t =

[

1 +

(

cot θ −
χA

χB sin θ

)2
]−1

, (1)

C© 2012 The Authors, MNRAS 420, 1079–1091
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Figure 1. An illustration of the actual, t, and observed, τ , angles subtended

between a pair of galaxies, A and B, and the line of sight through A in real

space (black) and in redshift space (red). At the observer’s position, the pair

subtends an angle θ . The comoving line-of-sight separation of the pair is

shown as �r‖ and �r‖,obs in real and redshift space, respectively.

(see Marinoni & Buzzi 2010 for the general expression in a curved

universe). Here χA(B) is the radial comoving distance to galaxy A(B)

which is given by

χ (z) =
c

a0

∫ z

0

dz′

H (z′)
, (2)

where a = 1/(1 + z) is the scalefactor of the universe with current

value a0 = 1, c is the speed of light and H = ȧ/a is the Hubble pa-

rameter with current value H0 = 71.5 km s−1 Mpc−1 (Sánchez et al.

2009). In an isotropic and homogeneous universe, the orientation of

pairs of bound galaxies will be randomly distributed, allowing us to

predict the probability distribution for t, F(t), and a measure of the

distribution μ = 〈sin 2t〉. In the absence of peculiar velocities, an

observer calculating the ensemble average of equation (1) should

find a value of μ = 2/3, independent of cosmology, as long as the

correct cosmology is assumed when converting angles and redshifts

to comoving distances for each member of the pair.

Galaxies have velocities in addition to the Hubble flow which

result in inferred positions which appear displaced along the line of

sight. As a result, the true angle t between a pair of gravitationally

bound galaxies will appear as an angle, τ (see Fig. 1). The angle

subtended between the pair of galaxies in redshift space, calculated

according to equation (1), corresponds to a measurement of the

angle τ and not t, and the average over all pairs will no longer be

a random distribution. The result is a skewed distribution whose

mean will differ from the expected value for a uniform distribution

of μ = 2/3. Adopting the correct cosmology to calculate the en-

semble average in equation (1) will then provide a measure of the

mean of the apparent distribution in redshift space after intrinsic

peculiar velocities distort the orientation of the pairs. Marinoni &

Buzzi modelled this distortion as a simple Doppler shift where the

observed line-of-sight separation is related to the actual separation,

to first order in v/c, by

drobs = dr +
dv‖

H (z)
(1 + z) , (3)

where drobs and dr are the observed and actual line-of-sight separa-

tions of a pair of galaxies A and B and dv‖ = vA · r̂A − vB · r̂B is

the line-of-sight peculiar velocity difference, where r̂A(B) represent

unit vectors in the direction of each galaxy in the pair. The line-

of-sight comoving separation is dr = dχ , as given in equation (2).

Note this equation is a result of relating the position observed in

redshift space to the actual position in real space as dzobs = dz +

dv‖ (see e.g. Hamilton 1998). In the distant observer approxima-

tion, the separation between galaxies is assumed to be small com-

pared to the distance between them and the observer. Under this

assumption, the observed comoving transverse separation is equal

to the true transverse separation of the pair, dr⊥,obs ≈ dr⊥. If the

redshift difference of the pair �z is a lot less than unity such that

�z ≈ dz, then the observed, τ , and actual tilt, t, of the pair can be

simply related by the observed, �r‖,obs, and the actual line-of-sight

finite separation, �r‖, according to

tan t

tan τ
=

�r‖,obs

�r‖

= 1 +
(1 + z)

H (z)

�v‖

�r‖

. (4)

The relation given in equation (4) can then be used to transform the

true distribution of galaxy pairs, F(t), into the apparent distribution,

�(τ ). Using conservation of probability, Marinoni & Buzzi derived

the probability distribution function of the apparent angle written

in terms of the true angle as

�(τ )dτ = F (t)dt . (5)

From this, it follows that �(τ ) is given by

�(τ )dτ =
1

2

(1 + σ 2)(1 + tan2 τ )

[1 + (1 + σ 2) tan2 τ ]3/2
| tan τ |dτ , (6)

and the parameter σ depends on the cosmological expansion history

as

σ 2(z,
) = 2

〈

�v‖

�r

〉

1 + z

H (z)
+ α2 H 2

0 (1 + z)2

H 2(z)
. (7)

The normalization parameter α is given by

α = H−1
0

(〈

�v2
‖

�r2

〉)1/2

. (8)

The first moment of the distribution �(τ ), referred to by Marinoni

& Buzzi as the ‘average anisotropy of pairs’ (the AAP function

from now on), is given by

μobs =
(1 + σ 2) arctan(σ ) − σ

σ 3
. (9)

In equation (9), the parameter σ depends on the expansion his-

tory in a particular cosmological model, H(z), as given in equa-

tion (7). Marinoni & Buzzi set the first term on the right-hand

side of equation (7) to zero on the assumption that the comoving

separation of pairs and their radial peculiar velocities are uncorre-

lated, 〈�v‖/�r〉 = 0. We shall discuss this assumption further in

Section 4.

The original Alcock–Paczynski test, when applied to a spherical

object, measures a distortion parameter, the ratio of the tangential

and radial distances, which is proportional to DA(z)H(z) and is

unity if the correct cosmological model is assumed and there are no

redshift-space effects, that is, there is no distortion of the spherical

object. The Alcock–Paczynski test applied in this paper compares

the distribution of pair angles in real and redshift space in the

distant observer approximation, dr⊥,obs ≈ dr⊥, which gives rise to

a distortion parameter which is independent of DA. The distortion

is estimated, after modelling redshift-space effects, by comparing

the distribution of the angles t and τ , and only depends on H(z).

Using pairs of galaxies in a survey, an observer can measure the

average orientation using equation (1) which should be equal to the

AAP function in equation (9) if the correct cosmology is assumed
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1082 E. Jennings, C. M. Baugh and S. Pascoli

and the observer is able to measure α precisely in order to fully

specify �(τ ). In this paper, we perform this exact test using pairs

of subhaloes in N-body simulations of different cosmologies. In

practice, in a galaxy survey, the parameter α can be determined in

two ways: first, at low redshifts, where the peculiar velocities of the

pair can be measured by combining a redshift-independent distance

measurement, for example, luminosity distances from SNe Ia, the

Tully–Fisher relation or the Dn–σ relation (see e.g. Blakeslee et al.

2000; Borgani et al. 2000; Courteau et al. 2000; da Costa et al.

2000), with the measured redshift of the galaxy. The uncertainties

associated with the redshift-independent luminosity distance mea-

surements are large, ∼10–20 per cent for the Tully–Fisher or Dn–σ

relation, and ∼5–10 per cent for SNe or the surface brightness fluc-

tuation method (Bernardi et al. 2001; Tonry et al. 2001). These

uncertainties on the redshift-independent distance measurements

propagate into larger errors for the peculiar velocities, making it

almost impossible to accurately measure the peculiar velocity of

a single galaxy. The second method to determine α observation-

ally, which we shall assess in this paper after considering the ideal

case of measuring α from the simulations using equation (8), is

to fit to the measured distribution of pairs at each redshift using

equation (6).

One of the key assumptions made by Marinoni & Buzzi is that

the normalization factor α is constant for all redshifts and for dif-

ferent galaxy selections. At z ≈ 0, Marinoni & Buzzi obtained

α = 5.79+0.32
−0.35, using binaries in the SDSS (Abazajian et al. 2009).

Marinoni & Buzzi obtained this value by fitting equation (6) to

the observed distribution at z ≈ 0. We explicitly test this assump-

tion in this paper where it is possible to measure α directly from

the N-body simulations at each redshift. We can also compare the

predictions of the AAP function using the best-fitting value for α ob-

tained at z = 0, instead of normalizing the function at each redshift.

This will allow us to see if the value of α really is independent of

redshift.

3 T R I A L S A M P L E S O F PA I R S FRO M

N U M E R I C A L S I M U L AT I O N S

As a test of the method proposed by Marinoni & Buzzi, which

was outlined in Section 2, we apply it to different cosmologies,

focusing on quintessence models. In Section 3.1, we discuss the

two quintessence dark energy models we take as examples and

highlight the main differences between these and the concordance

cosmological model. In Section 3.2, we describe the simulations

carried out.

3.1 Quintessence dark energy

Numerous quintessence dark energy models have been considered

as an alternative to the concordance cosmology (see e.g. Ratra &

Peebles 1988; Ferreira & Joyce 1998; Copeland, Sami & Tsujikawa

2006; Martin 2008). We focus on two interesting examples

which are representative of a wider class of quintessence mod-

els, scalar fields which evolve in time, which are viable alternative

cosmologies.

One of the models we consider has substantial differences from

�CDM and can be considered as an ‘early’ dark energy model

which features non-negligible amounts of dark energy at high red-

shifts. This quintessence dark energy model features an exponential

term in the scalar field potential which pushes the dark energy equa-

tion of state to w0 = −0.82 today (Brax & Martin 1999). We refer

to this model as the SUGRA model. The second quintessence dark

energy model, which we refer to as INV, has been shown to produce

a similar expansion history and non-linear growth of structure to

those in a �CDM cosmology (Jennings et al. 2010, 2011a) and

will provide a measure of the sensitivity of the test we perform

in this paper. The INV model has an inverse-power-law potential

V(φ) = �β+4/φ for the scalar field φ (Zlatev, Wang & Steinhardt

1999). The values of the constants � and β are fixed by the current

value of the dark energy density (see e.g. Corasaniti & Copeland

2003).

The dark energy equation of state for these quintessence models

can be accurately described over a wide range of redshifts using

four parameters (Corasaniti & Copeland 2003). The variables used

are: w0, the current dark energy equation of state; wm, the value

of w during the matter-dominated era; am, the scalefactor at which

the dark energy equation of state changes from its value during the

matter-dominated era to its present value; and �m, the width of

the transition in the expansion factor. For the SUGRA model, these

parameters are w0 = −0.82, wm = −0.18, am = 0.1 and �m = 0.7.

For the INV model, the values of the parameters are w0 = −0.79,

wm = −0.67, am = 0.29 and �m = 0.4 (Jennings et al. 2010).

The dark energy models have different expansion histories from

�CDM and so when compared to the currently available observa-

tions may favour different best-fitting values of the cosmological pa-

rameters (see Jennings et al. 2010, for a discussion). As our starting

point, we consider a �CDM model with the following cosmological

parameters: 
m = 0.26, 
DE = 0.74, 
b = 0.044, h = 0.715, where

H0 = 100 h km s−1 Mpc−1 and a spectral tilt of ns = 0.96 (Sánchez

et al. 2009). The linear theory rms fluctuation in spheres of radius

8 h−1 Mpc is set to be σ 8 = 0.8. In the simulations discussed in

this paper, the �CDM values for 
m and H0 were used for the INV

dark energy model, while for the SUGRA model, the best-fitting

parameters used were 
m = 0.243 and H0 = 67.73 km s−1 Mpc−1

(see Jennings et al. 2010, for more details). Both these models are

consistent with current observations of SNe Ia light curves (Kowal-

ski et al. 2008), BAOs (Percival et al. 2007; Sánchez et al. 2009)

and the seven-year WMAP measurements of the cosmic microwave

background (Komatsu et al. 2010). A detailed study of both these

models compared to a �CDM cosmology can be found in Jennings

et al. (2010). Note Jennings et al. (2010) showed that the INV model

was indistinguishable from �CDM for several cosmological probes

such as measurements of the halo mass function, BAO peak posi-

tions and growth factor. This model provides us with a significant

test of the discriminatory power of the technique proposed in this

paper. The ratio of the Hubble parameter in each quintessence dark

energy model to that in a �CDM cosmology is shown as a function

of redshift in Fig. 2.

3.2 N-body simulations

The simulations were carried out at the Institute of Computational

Cosmology using a memory efficient version of the TreePM code

GADGET-2, called L-GADGET-2 (Springel 2005). The simulations use

N = 6463 ∼ 269 × 106 particles to represent the dark matter in a

computational box of comoving length 1500 h−1 Mpc. We shall re-

fer to these simulations as the low-resolution runs in Section 5.1. We

chose a comoving softening length of ǫ = 50 h−1 kpc. The particle

mass in the simulation is 9.02 × 1011 h−1 M⊙ with a mean inter-

particle separation of r ∼ 2.3 h−1 Mpc. We also consider a higher

resolution simulation of the �CDM cosmology with the same box

size as above but with 10243 dark matter particles, approximately

four times the number of particles used in the lower resolution

simulation.
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Testing dark energy using pairs of galaxies 1083

Figure 2. The ratio of the Hubble rate in the two quintessence dark energy

models simulated to that in a �CDM cosmology plotted as a function of

redshift. Note the SUGRA quintessence model has a current value for the

Hubble parameter of H0 = 67.73 km s−1 Mpc−1, consistent with observa-

tions (see Section 3.1 for details).

The initial conditions of the particle load were set up with a

glass configuration of particles (White 1994; Baugh, Gaztanaga &

Efstathiou 1995). The particles are perturbed from the glass using

the Zel’dovich approximation which can induce small-scale tran-

sients in the measured power spectrum. These transients die away

after ∼3–10 expansion factors from the starting redshift (Baugh

et al. 1995; Smith et al. 2003). In order to limit the effects of the

initial displacement scheme, we chose a starting redshift of z =

200. The linear theory power spectrum used to generate the initial

conditions was created using the CAMB package of Lewis & Bridle

(2002). The linear theory power spectrum for the two dark energy

models was computed using the parametrized post-Friedmann mod-

ule (Fang, Hu & Lewis 2008) for CAMB which takes into account

the effects of a dynamical dark energy equation of state and dark

energy perturbations (Jennings et al. 2010).

Dark matter haloes were identified in the simulation outputs using

a Friends-of-Friends (FoF) percolation algorithm with a linking

length of b = 0.2 times the mean interparticle separation (Davis

et al. 1985). The SUBFIND algorithm (Springel et al. 2001) was

then run on these halo catalogues to identify self-bound subhaloes

at each redshift. Note that the subhaloes are not necessarily bound

to the main FoF halo. In this paper, pairs of subhaloes within a

common FoF halo are used as a proxy for pairs of galaxies. The

minimum number of particles per halo and subhalo is 10 and we

select only haloes that have at least two subhaloes (i.e. a minimum

of 20 particles in the FoF group). In Fig. 6 (shown later), we show

that our results are not affected by our choice of minimum FoF halo

mass. The position of each subhalo in redshift space is computed by

perturbing its comoving position in real space using the line-of-sight

centre-of-mass velocity of the subhalo relative to an observer placed

at the origin of the box. At a given redshift z̃ > 0, the observer is

still assumed to be at the origin of the box at z = 0 which requires

us to add the comoving distance from z = 0 to z̃ to the subhalo

positions. In Section 4, we discuss the selection criteria for subhalo

pairs in relation to the radius R200 of the parent halo where the mean

density is 200 times the critical value.

4 C A L I B R AT I N G T H E M E T H O D U S I N G

SI MULATI ONS

From the N-body simulations we know which pairs of subhaloes

are in the same FoF halo. However, this does not guarantee that

these objects are gravitationally bound to the FoF halo. There are

too many haloes in our simulations to check explicitly for binding,

so we will use proxies instead. This will allow us to make contact

with the observational selection applied by Marinoni & Buzzi and

to see how their cuts translate into cuts in simulation quantities. We

investigate these selection criteria and provide robust selection cuts

which are independent of cosmology and redshift.

In particular, we address the following question: how do we

construct a sample of pairs that match the theoretical expectation

for the AAP function, in the most favourable case in which we

know the correct cosmology? Using information output from the

simulations about the subhaloes selected and the properties of the

parent halo (e.g. the FoF algorithm returns R200), we can quantify

the definition of a close pair in a rigorous way. If we had selected

only bound pairs, we would expect good agreement with the AAP

function, provided that we know the correct cosmological model.

As a first approach to identify suitable pairs, we shall select sub-

haloes which are within R200 of the main halo, that is, �r⊥,max =

R200, with no other restrictions on velocity or distance from a near-

est neighbour. As this information is not available to an observer,

our second approach will be to translate these selection criteria

into observable quantities such as the angle θ between a pair of

subhaloes.

Marinoni & Buzzi used the following selection criteria to pick

their sample of pairs: (1) a maximum line-of-sight velocity differ-

ence of the pair, �V = 700 km s−1, to avoid projection of neigh-

bouring systems; (2) a maximum comoving transverse separation of

�r⊥,max = 0.7 Mpc h−1; (3) a minimum comoving transverse sepa-

ration �r⊥,min = 20 kpc h−1; and (4) a minimum comoving distance

from the centre of the galaxy pair to another galaxy. The latter two

conditions avoid selecting pairs which may be in the process of

merging or which are interacting with another galaxy. The value for

the maximum velocity difference was chosen such that the relative

increase �N/N in the sample size was <1 per cent when the veloc-

ity cut was increased by 100 km s−1, while the maximum comoving

transverse separation was chosen to be equal to the distance from

Andromeda to the Milky Way.

Fig. 3 shows the measured distributions of the orientation of sub-

halo pairs in real and redshift space in the low-resolution �CDM

simulation at z = 0. The starting point is the sample of subhalo pairs

within a common FoF halo, without any further selection. This is

shown in real space by the black histogram in Fig. 3. Note that

for the lower resolution �CDM simulation there are approximately

65 000 subhalo pairs at z = 0. The real-space distribution of the tilt

follows the expected random distribution and is uniform in cos (τ ).

The distribution of all subhalo pairs in redshift space is shown in

red which is clearly skewed. The mean of this distribution differs

from the prediction of the AAP function by ∼40 per cent. Apply-

ing the final set of cuts to this overall sample as outlined below

leaves approximately 19 000 pairs, and produces the blue hashed

region which is skewed towards smaller angles and agrees with the

predictions of the AAP function given in equation (9) to within

0.5 per cent. We discuss the selection cuts that give rise to this blue

C© 2012 The Authors, MNRAS 420, 1079–1091
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1084 E. Jennings, C. M. Baugh and S. Pascoli

Figure 3. The distribution of the cosine of the apparent inclination angle,

cos (τ ), of pairs of subhaloes in a �CDM simulation at z = 0. The distribution

of cos (τ ) for all the subhalo pairs in redshift (real) space is shown in red

(black). Subhalo pairs that are selected according to the criteria discussed

in Section 4 are shown as the blue hashed boxes. Selecting pairs with only

a cut in θmax gives rise to the distribution shown in orange. Selecting pairs

with only a cut in �vmax gives rise to the distribution shown in green.

hashed region below. A comparison of the red and blue histograms

in Fig. 3 shows that in redshift space if no selection cuts are made

to isolate bound pairs the distribution is clearly randomized by

outliers.

In an attempt to isolate subhaloes that are gravitationally bound

to their parent FoF halo and hence to test if their orientations in

redshift space are distributed according to the predictions of the

AAP function, we first select pairs of subhaloes within R200 and

exclude all other pairs. We find that this sample of pairs has a non-

negligible correlation between �v‖ and �r such that 〈�v‖/�r〉 �=

0. As a result, we use the full expression in equation (7) for the

parameter σ . This gives an AAP function which is in remarkably

good agreement with the measured mean of the distribution, the

ensemble average of equation (1), at z = 0 in a �CDM simulation, to

better than a per cent. This agreement diminishes at higher redshifts,

with the AAP function and the measured mean differing by 10–20

per cent over the redshift range z = 0.25–1.

It is possible to remove subhalo pairs which have 〈�v‖/�r〉 �=

0 by selecting pairs according to an upper limit in the line-of-sight

peculiar velocity difference, �vmax. The velocity difference of pairs

of galaxies is related to the common gravitational potential of the

pair which, in most cases, is weakly correlated with their separation.

However, we find that pairs with large velocity differences have non-

zero correlations; for example, in the �CDM simulation at z = 0,

using all subhalo pairs with �v > 950 km s−1 we find 〈�v‖/�r〉 =

8.5 h km s−1 Mpc−1. Observationally, these subhaloes would not be

detected as the apparent tilt between the pair is approximately zero,

due to their large peculiar velocity difference, and as a result the

pair would lie along the same line of sight. In Fig. 4, we plot the

distribution of the line-of-sight peculiar velocity difference �v in

the left-hand panel, for all subhaloes in the lower resolution �CDM

simulation. The grey shaded region corresponds to the selection cut

in �v. Once we remove any correlated pairs from the sample, and

impose the restriction that �r⊥,max = R200, we find that the measured

mean and the predicted AAP function agree extremely well in the

redshift range z = 0–2. We present these results in more detail in

Figure 4. Left-hand panel: the distribution of the line-of-sight peculiar velocity difference, �v‖, for all pairs of subhaloes in the lower resolution �CDM

simulation at z = 0. Pairs to the left-hand side of the grey shaded region represent those subhaloes that have been selected (95 per cent of the distribution).

Lower right-hand panel: the comoving transverse separation in redshift space, �r⊥, of pairs of subhaloes in the lower resolution �CDM simulation at z = 0

plotted as a fraction of R200. The selected subhaloes are shown as the red hashed region, while those not selected are shown in blue. Upper right-hand panel:

the distribution of the radius, R200, for each parent halo is shown as the green hashed region.
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Testing dark energy using pairs of galaxies 1085

the following section. Note the first term in the expression for σ ,

equation (7), is now negligible as we have removed any correlated

pairs.

As R200 is not an observable quantity, the next step is to see

if this cut can be translated into a cut in θ , the observed angular

separation of the pair. In Fig. 4, we plot the distribution of the

comoving transverse separation �r⊥ as a fraction of R200 in the

lower right-hand panel, for all subhaloes in the lower resolution

�CDM simulation. The comoving transverse separation �r⊥ as a

fraction of R200 for the subhaloes that are selected by θ < θmax is

shown as the red hashed region, while the distribution of those not

selected is shown in blue. In the upper right-hand panel in Fig. 4,

the distribution of R200 for the parent haloes is plotted in green.

Selecting pairs according to θmax gives rise to a sample containing

most of the subhalo pairs which have �r⊥ < R200, with only a small

number of pairs with �r⊥ > R200 that happen to lie at an angle θ <

θmax.

We find the following selection rules give rise to a population of

pairs whose measured moment matches the predictions of the AAP

function extremely well, provided the correct cosmological model

is assumed (see Section 5.1):

(i) The upper limit of the line-of-sight velocity difference should

correspond to retaining 95 per cent of the total distribution of pairs

in the sample (grey shaded region in the left-hand panel of Fig. 4).

(ii) The maximum observed separation of a pair, θmax, should

correspond to retaining 50–60 per cent of the distribution for all

pairs.

Subhalo pairs in redshift space chosen according to the two selec-

tion criteria given above give rise to the blue hashed region shown

in Fig. 3. For this �CDM simulation at z = 0, this corresponds to

approximately 19 000 pairs with �v < 950 km s−1 (95 per cent of

the distribution) and θ < 6.5 × 10−4 rad (50 per cent of the distri-

bution). Note these specific values quoted for �v and θ are only for

illustration. The selection criteria presented in the two points above

should be applied to the parent sample of galaxy pairs when imple-

menting this test. If we select pairs by restricting �v only, we retain

38 000 subhalo pairs and then the difference between the measured

mean and the corresponding AAP function is approximately 30 per

cent. This distribution is shown in green in Fig. 3. Selecting pairs

with θ < θmax and no restriction on �v, that is, including correlated

pairs with 〈�v‖/�r〉 �= 0, results in a mean that differs from the

corresponding AAP function by less than 1 per cent, provided the

full expression for σ in equation (1) is used (shown in orange in

Fig. 3). Note if the full expression is not used, then the difference

is 4 per cent. We find that the measured moment is most sensitive

to the first two selection criteria chosen by Marinoni & Buzzi and

relatively insensitive to the minimum comoving separation of the

pair and the comoving distance from the nearest neighbour. Note

this is partly because we only consider pairs of subhaloes from the

same halo.

In Fig. 5, we plot the measured mean of each of the distribu-

tions shown in Fig. 3 as a function of redshift. The red dot–dashed

line shows the mean of the distribution of all subhalo pairs in

redshift space with no cuts. By restricting the sample, using ei-

ther a cut in �v or a cut inθ , we obtain the mean shown as the

green triple-dot–dashed line and orange dotted line, respectively.

Selecting subhalo pairs according to the two selection cuts dis-

cussed above results in a measured mean (blue dashed line) which

is in very good agreement with the predictions of the correspond-

ing AAP function (solid black line) when we measure α directly

from the simulation. Note each distribution has its own associ-

Figure 5. The sample means of the anisotropic distributions of pair tilt

angles shown in Fig. 3 for subhaloes in the low-resolution �CDM simula-

tion, as a function of redshift. The mean of the distribution of all pairs in

redshift space (no selection cuts) is shown as the red dot–dashed line. The

measured mean for pairs selected with only a cut in �v (θ ) is shown as the

green triple-dot–dashed (orange dotted) line. Once we impose a cut in both

�v and θ , the measured mean of the distribution (blue dashed line) agrees

with the corresponding predicted AAP function (solid black line). The light

green shaded region shows the uncertainty on this prediction because we

have measured α from the simulation which has a finite number of pairs.

The AAP function plotted here was found assuming a �CDM cosmology

for H(z). The error bars on the data points are estimated from a jack knife

sampling of the subhalo pairs using 100 subsamples of the data.

ated AAP function, with a normalization set by the pairs in each

sample.

The error bars in Fig. 5 have been calculated by jackknife sam-

pling the subhalo pairs by grouping the data into 100 sets containing

equal numbers of subhaloes, and then successively removing one set

at a time, calculating the sample mean for the remaining haloes and

computing the variance amongst the measured means (see Norberg

et al. 2009, for a discussion of the reliability of the jackknife tech-

nique). We have verified that these errors change the AAP function

by less than 1 per cent if we vary the sample size to 25 or 50 subsam-

ples at a given redshift. The error on the AAP function, shown as

the green shaded region in Fig. 5, was found using a similar method

to find the variance in α at each redshift splitting the pairs in the

simulations into 100 subsamples. The errors on both 〈sin 2τ 〉 and

the AAP function increase with increasing redshift as the number

of pairs decreases. This happens because of the fixed resolution of

the simulation, which means that we resolve a progressively smaller

fraction of the subhalo population with increasing redshift. A sim-

ilar drop in the number of pairs would happen in a flux-limited

galaxy survey.

We have tested the stability of the method by comparing sim-

ulations of different resolution. The sample mean, 〈sin 2τ 〉 (equa-

tion 1), of the distribution of subhalo pairs in redshift space in the

two �CDM simulations, higher and lower resolution, is shown in

Fig. 6 at different redshifts. The mean for the lower resolution sim-

ulation is shown as the blue squares in Fig. 6. The AAP function

using the measured value for α at each redshift is shown as the

solid black line as in Fig. 5. The sample mean from the higher
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1086 E. Jennings, C. M. Baugh and S. Pascoli

Figure 6. The sample means of the anisotropic distributions of pairs of

subhaloes measured in the low- and high-resolution �CDM simulations are

shown as the blue squares and purple circles, respectively. The AAP function

given in equation (9) using the value for α measured from the simulation

at each redshift is shown as the light-green and the blue shaded regions for

the low- and high-resolution simulations, respectively. The means measured

using pairs of subhaloes from the high-resolution simulation that have a

parent halo mass of M ≥ 9 × 1012 h−1 M⊙ and M ≥ 1 × 1014 h−1 M⊙ are

shown as the red stars and orange crosses, respectively. Note that for the

measured mean of subhaloes within a parent halo of M ≥ 1 × 1014 h−1 M⊙
at z = 2, there are only 49 pairs and we used 10 subsamples to find the

jackknife errors.

resolution simulation is shown as the purple circles with the corre-

sponding AAP function shown as the solid light blue line. In both

the lower and higher resolution simulations, the measured distri-

bution of pairs shows excellent agreement with the predictions of

the AAP function assuming a �CDM cosmology, and also agrees

with each other in shape and amplitude within the error bars. The

difference between the AAP functions for the higher resolution

simulation (blue shading) and for the lower resolution simulation

(solid black line) in Fig. 6 is also due to the difference in resolution

between the two simulations. If we select only subhaloes from the

higher resolution simulation that have a halo mass of M ≥ 9 ×

1012 h−1 M⊙, which corresponds to the minimum halo mass se-

lected by the FoF algorithm in the lower resolution simulation, we

obtain the red stars with errors bars plotted in Fig. 6. These points

are almost coincident with the corresponding measurement from

the lower resolution simulation (blue squares), agreeing to better

than 1σ .

We also make contact with an observational galaxy sample in

Fig. 6. If we select subhaloes from main haloes which have a mass

of M ≥ 1 × 1014 h−1 M⊙, then we obtain the mean plotted as the

orange crosses in Fig. 6. Again these results are consistent with

the means for the lower resolution simulation at each redshift. This

mass corresponds to the minimum halo mass expected to contain

two or more luminous red galaxies (LRGs) on average (Almeida

et al. 2008). This subhalo selection is relevant for a spectroscopic

redshift survey such as the SDSS-III BOSS (Schlegel et al. 2007)

which will target LRGs in the redshift range z < 0.7. Without

applying any selection cuts, we find approximately 27 000 subhalo

pairs at z = 0 which share a common halo of M ≥ 1 × 1014 h−1 M⊙;

at z = 0.25 and 0.5, the number of subhalo pairs is approximately

18 000 and 11 000, respectively. From the first semester of BOSS

data, White et al. (2011) estimate that the cumulative probability

that a galaxy in their sample is hosted by a halo of mass M ≥ 1 ×

1014 h−1 M⊙ is about 5 per cent. If we extend this probability to

the full sample of LRGs expected by the BOSS with space density

n̄ = 3 × 10−4 h3 Mpc−3, then this corresponds to approximately

13 000 pairs of LRGs in the redshift range z = 0.5–0.6. This is

similar to the number of pairs we obtain from the higher resolution

simulation restricting to haloes with M ≥ 1 × 1014 h−1 M⊙ at z =

0.5, shown by the orange crosses in Fig. 6.

The errors on the AAP function as measured by Marinoni &

Buzzi, α = 5.79+0.32
−0.35, are substantially larger than ours due to the

uncertainty in fitting for the parameter α at z = 0 with a smaller

number of pairs. Our higher resolution simulation has approxi-

mately four times more subhalo pairs than the lower resolution

simulation, after making the selection cuts discussed in Section 4,

which gives rise to error bars which are approximately 50 per cent

smaller in the higher resolution run (see Fig. 6). The sample of pairs

used by Marinoni & Buzzi is approximately 25 times smaller than

the sample from our lower resolution simulation. We have verified

that by applying the Marinoni & Buzzi selection cuts to our parent

sample of subhalo pairs in the lower resolution simulation gives

α = 5.69, which is consistent with the value for α obtained by

these authors. However, we find that the measured mean for this

simulation sample does not agree with the AAP function within the

error bars. (If our sample were of the same size as that used by

Marinoni & Buzzi, our errors would be significantly larger and the

two would agree in this case.) This demonstrates the need for the

robust resolution-independent selection criteria we have presented

here.

5 A PPLI CATI ON: A N EW TEST

In this section, we use the selection criteria outlined in Section 4

to test the predictions of the AAP function, equation (9), using

the distribution of subhalo pair angles measured in N-body simu-

lations. The accuracy of this test relies on two key variables: the

cosmological expansion history assumed, H(z), and the normaliza-

tion parameter, α = H−1
0 (〈�v2

‖〉/〈�r2〉)1/2. We consider the impact

of uncertainties in each of these variables in turn. In Section 5.1,

we present the measured anisotropic distribution of the orientation

of pairs, selected according to the prescription set out in Section 4,

and its first moment at different redshifts together with the predicted

distribution using the AAP function in a �CDM cosmology and in

two quintessence dark energy cosmologies. In order to test the abil-

ity of the theoretical model to distinguish different cosmologies, we

will assume perfect knowledge of the correct H(z) and α in the first

instance. We then consider how an observer would measure α and

the impact this has on the results, again assuming the correct H(z).

We relax the assumptions further in Section 5.2 where an incorrect

cosmological expansion history is used to analyse the data. This

is done by measuring the distribution of subhaloes in the INV and

SUGRA dark energy simulations assuming a �CDM cosmology to

infer distances from the pair. We will show that the method, as im-

plemented in Marinoni & Buzzi (2010), fails to exclude the wrong

cosmology. Consequently, we propose a new method, which uses

the theoretical model discussed so far but which exploits additional

information about α from the numerical simulations. In Section 5.3,

we show that this method can be successfully applied to test dark

energy.
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Testing dark energy using pairs of galaxies 1087

5.1 Testing the method: theory versus observations

First of all, we test how the approach discussed in Section 2 can

distinguish different cosmologies. We put ourselves in the idealized

situation of an observer who knows the correct cosmological model

to compute distances and is able to measure peculiar velocities

precisely to find α at each redshift. In Fig. 7, the mean of the

redshift-space distributions of subhalo pairs for �CDM and the

two quintessence dark energy models are plotted as a function of

redshift. The results for �CDM are the same as those shown in

Fig. 6 for the lower resolution simulation. The measured sample

mean for the INV dark energy model is shown as the red-orange

circles with error bars, while the results for the SUGRA model are

shown as the green-grey triangles. The predicted AAP function for

each of these models, using the correct expansion history and the

value for α measured at each redshift, is shown as the solid red

line for the INV model and as the solid green line for the SUGRA

model. The uncertainties on the AAP function are plotted as the

red shaded region for the INV model. The errors for the SUGRA

model are similar but are not plotted in Fig. 7 for clarity. The

errors shown on both models for the measured mean and the AAP

function were found using an identical jackknife sampling method

to that used for the �CDM result. It is clear from Fig. 7 that the

measured mean for the three simulations agrees with the respective

AAP function, provided the correct expansion history is known and

that the parameter α can be determined at each z. As these results

show, the measurements in a �CDM or a dynamical dark energy

model agree very well with the predictions, if the correct cosmology

is used to analyse the data. For the two quintessence models, the

deviations from �CDM are due to the different expansion histories

Figure 7. The first moment of the anisotropic distribution of pairs of sub-

haloes measured in a �CDM cosmology and two quintessence dark energy

simulations as a function of redshift. Measurements for the �CDM, INV and

SUGRA cosmologies are shown as the blue squares, red circles and green

triangles, respectively. The AAP function using the measured value for α

at each redshift for each cosmological model is shown as the solid black,

red and green lines for �CDM, SUGRA and INV, respectively. The shaded

bands show the uncertainty on the AAP function for each cosmology. Note

that the error bars for the AAP function for SUGRA are similar to those for

the INV model and are not shown for clarity.

(see Fig. 2). This is a consistency check which confirms that the

method works.

In reality, in a galaxy survey, it is not possible to measure the

parameter α accurately at high redshifts because of the difficulties

associated with measuring galaxy peculiar velocities to sufficient

precision. We shall now degrade the status of the idealized observer

mentioned above and consider a more realistic observer who still

knows the correct cosmological model but who is unable to mea-

sure α directly at any redshift other than z = 0. Using the measured

distribution of pairs at z = 0, we fit the distribution given in equa-

tion (6) to set α and test the accuracy of the AAP function using this

α(z = 0) value at each redshift, as suggested by Marinoni & Buzzi.

If α does not evolve with redshift, we would expect this approach

to result in accurate agreement between the measured mean and the

AAP function.

In Fig. 8, the measured distribution of the angle τ , in radians, for

�CDM is shown as the red hashed region with error bars. Note the

y-axis shows the fraction of the total number of pairs per bin. The

distribution (equation 6) with the best-fitting value αFIT = 5.67 ±

0.1 (with 1σ errors) is plotted as the purple dashed line. The grey

dotted lines show the distribution adopting α + 1σ and α − 1σ . Note

the error we obtain for α, 0.1, is much smaller than that obtained

by Marinoni & Buzzi (0.3) due to the difference in sample size and

the different methods used to estimate the errors. This value for α

agrees with the measured value from the simulations of α = 5.56.

In Fig. 9, the AAP function assuming a �CDM cosmology and

using this αFIT(z = 0) value at each redshift is shown as the black

dashed line with error bars. The mismatch between this curve and

the simulation results clearly indicates that α evolves with redshift,

invalidating one of the main assumptions made in the analysis of

Marinoni & Buzzi. Note that the black dashed line in Fig. 9 is

much smoother than the shaded green band for the AAP function

Figure 8. The fractional distribution of the angle τ in radians of pairs of

subhaloes measured in �CDM at z = 0. The error bars on each bin are cal-

culated by jackknife sampling after dividing the catalogue of subhalo pairs

into 100 subsamples and calculating the variance amongst the distributions

measured after successively removing one subsample at a time. The purple

dashed line shows the distribution in equation (6), with the best-fitting value

of the normalization parameter αFIT = 5.67 ± 0.1. The grey dotted lines

show the 1σ error on the best-fitting distribution.
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1088 E. Jennings, C. M. Baugh and S. Pascoli

Figure 9. The first moment of the anisotropic distribution of pairs of sub-

haloes measured in a �CDM simulation (blue-yellow squares) as shown in

Fig. 7. The AAP function using the z = 0 best-fitting value for α at each

redshift (see Fig. 8) is shown as the dashed black line with error bars. If

we fit for α using the measured distribution at each redshift, then we obtain

the red dashed line prediction for the AAP function assuming a �CDM

cosmology. The error bars on the black dashed and red dot–dashed lines are

the 1σ errors obtained by fitting for α.

in �CDM where the value of α is measured directly from the

simulation at each redshift. Using the z = 0 value for α produces

an AAP function which is systematically and significantly below

the measured results for a �CDM cosmology for z > 0. Applying

this measure of α as proposed by Marinoni & Buzzi could lead to

a spurious detection of deviations from �CDM. It is clear from

Fig. 9 that the method proposed by Marinoni & Buzzi contains a

serious systematic error which is apparent when applied to a large

sample of pairs. Marinoni & Buzzi considered a smaller sample

than in the simulations where the statistical errors dominated this

systematic.

It is clear from Fig. 9 that α does evolve with redshift and that we

can improve on the estimates of this parameter by fitting equation (6)

to the measured distribution at each redshift. In Fig. 9, the AAP

function in a �CDM cosmology using the best-fitting values for

α measured at each redshift is shown as the red dot–dashed line

with error bars. The jackknife errors on α are estimated using 100

subsamples for the distributions at z = 0–1 and using 50 subsamples

for z = 1.5 and 2 as there are fewer pairs at these higher redshifts.

This approach to measuring α gives much better agreement with

the mean measured from the simulations, shown as the blue-yellow

data points in Fig. 9. Note this method of extracting α assumes that

the correct cosmology is �CDM.

5.2 The test assuming a particular cosmology

In this section, we are no longer idealized observers who know the

correct cosmology, so the only possible choice is to assume the

same cosmology in the data fitting and in the theoretical prediction

of the galaxy distribution. Specifically, we will assume �CDM, for

simplicity, in order to set the expansion history H(z) in equation (8)

and to compute the comoving distances in equation (1), as well as

to extract the parameter α. In order to find the parameter α, we must

fit to the observed distribution of the orientations of pairs which

has been found also by assuming a �CDM cosmology. Assuming

that the true cosmological model chosen by nature is a dynamical

dark energy model, for instance, the INV or SUGRA cosmology,

we will check if the wrong cosmology, �CDM in our case, can be

excluded or not, and consequently if the method is applicable to

future galaxy surveys. For this analysis, we take subhalo pairs in

the INV and SUGRA simulations, and at each redshift we rescale

the comoving distances to match those which would be computed

by an observer assuming a �CDM cosmology.

The ensemble average of equation (1) for each subhalo pair in

the INV (SUGRA) simulation is plotted in Fig. 10 as the red circles

(green triangles), with error bars. If we fit for α at each redshift,

we obtain the purple dot–dashed line in Fig. 10 for the INV model.

Although we have assumed, incorrectly, a �CDM cosmology, we

find that the AAP function agrees with the measured sample mean

for the INV model at each redshift. In Fig. 10, a similar analysis

is presented for the SUGRA model. The measured mean for this

dark energy model, assuming a �CDM cosmology to compute

comoving distances, is shown as the green triangles. The AAP

function using the best-fitting value for α at each redshift and a

�CDM expansion history is shown as the grey dashed line. Again,

theory and observations agree when we would expect them not to

as we have used the wrong cosmology in the AAP function and to

compute distances. Our results show that the AAP function, using

either a fixed value of α(z = 0) or a best-fitting value at each

redshift, is not an accurate model with which to test for dynamical

dark energy models if the correct cosmological model is unknown

and that further input from numerical simulations is needed to arrive

at a viable test.

Figure 10. The measured mean of the anisotropic distribution of pairs of

subhaloes in the INV dark energy simulation assuming a �CDM cosmol-

ogy to find the comoving distance from each pair member (red circles).

The purple dot–dashed line shows the predicted AAP function, assuming a

�CDM cosmology, and using the best-fitting α found at each redshift. The

measured mean for the SUGRA model, assuming a �CDM cosmology, is

shown as the green triangles and the predicted AAP function, assuming a

�CDM cosmology, and using the best-fitting α found at each redshift, is

shown as the grey dashed line.
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Testing dark energy using pairs of galaxies 1089

5.3 A blueprint for probing dark energy

From the previous section it is clear that the cosmological test

proposed by Marinoni & Buzzi relies heavily on measuring the pa-

rameter α accurately at each redshift. The assumption that α does

not vary with redshift is incorrect and could falsely rule out �CDM

if this test is misapplied to pairs of galaxies in future surveys. The

value of α also depends on the cosmological model. For example,

at z = 0, the values for the �CDM, SUGRA and INV cosmologies

are α = 5.56, 6.32 and 5.32 respectively, with a typical error of 0.1.

The difficulty is not just a problem of measuring α accurately but

stems from the fact that the cosmology assumed affects both the

data and the theoretical prediction in a way which cannot be dis-

entangled. The accuracy and predictive power of the AAP function

can be restored if instead of measuring α from observations, we

employ N-body simulations which contain a comparable number

of subhalo pairs to the number of galaxy pairs in the survey under

consideration. It is clear that independent information about α is

necessary and numerical simulations play an important role in pro-

viding these predictions in a given cosmology. We propose a new

approach to measuring dark energy, where observational measure-

ments of the mean of the anisotropic distribution of pairs and pre-

dictions of the AAP function from numerical simulations are com-

bined. The new method we propose to test a given cosmology is as

follows:

(i) An observer assumes the cosmology to obtain the comoving

distances needed to calculate the ensemble average of equation (1)

for a sample of pairs of galaxies, selected using the criteria given in

Section 4, at different redshifts.

(ii) Using an N-body simulation of the same assumed cosmology

and with a comparable number density of pairs and volume to the

galaxy survey, the observer can then construct a similar catalogue

of pairs according to Section 4 and find the value of α at each

redshift.

(iii) This gives rise to a prediction for the AAP function which

can be compared with the means measured from the galaxy survey

at each redshift, and the assumed cosmology can be verified or

excluded.

Note if the AAP function measured from the simulation and the

measured mean of the galaxy pair sample analysed assuming the

same cosmology disagree, then a suite of N-body simulations of

different cosmologies would need to be run. The AAP function

from each simulation should then be compared to the measured

mean, computed assuming the cosmology used in the simulation.

This test is realistic, given current computing resources. In Fig. 11,

we use the INV and SUGRA simulations to illustrate this method.

In the upper and lower panels, we show the measured means for the

INV and SUGRA dark energy simulations, respectively, which are

treated here as the ‘observed’ pair sample. In this example, we are

testing a �CDM cosmology and use it to compute the distances in

each case, as in Fig. 10, together with the predicted AAP function

from an N-body simulation of �CDM where α is measured directly

from the simulation (green shaded region). It is clear that for z < 1

the INV model and the SUGRA model can be distinguished from

the AAP function predicted in a �CDM cosmology. This result

shows that if a SUGRA or INV model is the correct cosmology for

the Universe, then �CDM can be ruled out. If there is a mismatch

between the measurement from the observed pair sample and the

simulation-calibrated AAP prediction as in Fig. 11, then a new

simulation with a different expansion history is required until an

acceptable match is found.

Figure 11. Upper panel: the measured mean of the anisotropic distribu-

tion of pairs of subhaloes in the INV dark energy simulation assuming a

�CDM cosmology to find the comoving distance from each pair member

(red circles). The predicted AAP function for a �CDM cosmology, using

the value of α measured directly from the lower resolution N-body simula-

tion, is shown as the solid black line. Lower panel: same as the upper panel

but for the SUGRA quintessence model assuming a �CDM cosmology to

determine comoving distances (green triangles).

6 SU M M A RY

The distribution of the orientation of pairs of galaxies is uniform in

real space in a homogeneous and isotropic universe. However, in

redshift space, two effects lead to the inferred distribution becoming

skewed. First, an observer has to assume a cosmology to convert po-

sitions on the sky and redshifts into distances. A mismatch between

the assumed and underlying cosmologies introduces an error in the

radial distance from a galaxy. Secondly, peculiar motions intro-

duce distortions which break the connection between the measured

redshift and the actual distance. Both effects result in an apparent

displacement of galaxies along the line of sight.

Marinoni & Buzzi (2010) proposed that the distortion of the

distribution of the angle subtended between galaxy pairs as viewed

in redshift space can be modelled by a simple Doppler shift in the

galaxy positions. This procedure gives rise to a theoretical prediction

for the distribution in redshift space, which is referred to as the AAP

function. We have tested the accuracy of this model using subhalo

pairs identified in N-body simulations of cosmologies with different

dark energy models.

The AAP function depends on two variables: the ‘normaliza-

tion’ parameter α = H−1
0 (〈�v2

‖/�r2〉)1/2 and the expansion history,

H(z), which depends on the cosmology. In this paper, we present

the AAP function normalized in three different ways: (i) using the
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relation α = H−1
0 (〈�v2

‖/�r2〉)1/2, we can measure α directly from

the simulation at each redshift; (ii) we can measure α at z = 0 by

fitting to the measured distribution and then assume that α does not

evolve with redshift, and apply the z = 0 normalization to specify

the mean of the distribution of pairs at different redshifts (as sug-

gested by Marinoni & Buzzi); and (iii) we can apply case (ii) but

fitting for α at each redshift using the measured distribution and

not just at z = 0. When we measure α directly (case i), we obtain

excellent agreement between measurements of the mean from the

simulation and the predictions of the AAP function. If instead we

retain the best-fitting z = 0 value, α(z = 0), at each redshift (case ii),

we do not find a good match between the theory and the simulation

measurements. This demonstrates that simply fitting for α at z =

0 and assuming it does not evolve with redshift is not accurate. In

fact such an approach would incorrectly rule out the cosmology

used in the simulation. If we fit for α at each redshift using the

simulation (case iii), then we again recover an excellent match be-

tween the theory and simulation results. We use a large sample of

subhalo pairs which do not necessarily reside in fully relaxed and

virialized haloes that have detached from the Hubble flow. This is

demonstrated by the fact that we measure a different value for α in

different cosmologies (see Section 5).

Note that each of the above cases considers idealized observers

who know the correct cosmology to compute distances and H(z).

The measured mean of the distribution of pair angles (equation 1)

depends on the cosmological model assumed to convert the position

on the sky and redshift to comoving distance. The AAP function

also depends on cosmology through H(z). As a result, the measured

mean and the AAP function will not agree if the wrong cosmology

is assumed (the Alcock–Paczynski effect). Using two quintessence

dark energy simulations (labelled INV and SUGRA), we have tested

if the AAP function reproduces the measured mean of the distribu-

tion when, in the first instance, we know the correct cosmology (the

‘perfect’ observer case), and in the second instance, when we instead

assume �CDM (i.e. the ‘real’ observer who has no prior knowl-

edge of the underlying cosmology). The two dark energy models

we consider have an evolving equation of state which is compatible

with current observations of the cosmic microwave background,

BAO and SN Ia distances. We find that, for a perfect observer who

knows H(z) and α exactly, the AAP function and the measured

means are in very good agreement for both the SUGRA and the

INV models.

Consider now performing the same exercise using the SUGRA

and INV simulations, as a real observer who does not know the un-

derlying cosmology and so assumes a �CDM cosmology, and who

uses the best-fitting value for α at each redshift. We might expect that

the theory should not match the measured mean for the dynamical

dark energy models. However, we find that, by fitting for α using the

observed distribution in the simulations, we instead recover a model

which incorrectly matches the observations extremely well for both

dark energy cosmologies, even though we have assumed a �CDM

model. The consequences are that, in a universe with evolving dark

energy, we would find that a �CDM model incorrectly matches the

observations, invalidating the methodology.

In this paper, we have proposed a new formulation of the test of

Marinoni & Buzzi in which the distribution of galaxy pairs can be

analysed without prior knowledge of the cosmology. The measured

distribution of angles should be compared with predictions for the

AAP function using a reference N-body simulation to directly mea-

sure α. We have shown that the subhalo pairs in two quintessence

dark energy simulations, which are treated as the ‘observed’ pair

sample in this instance, produce a different measured distribution

from that predicted in a �CDM simulation even when analysed

after assuming (incorrectly) a �CDM cosmology. In the new test,

the AAP function is normalized with reference to a simulation with

the same cosmology as assumed to analyse the observations. The

predicted AAP function and measurement will only agree if the

assumed cosmology matches the true cosmology. If this is not the

case, then a new reference simulation must be generated with a re-

vised expansion history, to see if an improved match to the observed

distribution of galaxy pair angles can be obtained. We find that, by

measuring the mean of the distribution as a function of redshift, we

should be able to detect deviations from a �CDM expansion history

at the level of 2 per cent in a box of volume ∼3 h−3 Gpc3. This new

test complements the constraints on the present value of Hubble’s

parameter provided by observations of SNe Ia which constrain H0

to ∼3 per cent (Riess et al. 2011), and improves on constraints of

H(z) at higher redshifts which are accurate to about ∼10 per cent.

7 C O N C L U S I O N S

Distinguishing between competing scenarios for the accelerating

expansion of the universe is a major challenge for both observational

and theoretical cosmologists. The expansion history and distance–

redshift relations are remarkably close between viable models which

satisfy the currently available constraints. A convincing determina-

tion of the nature of dark energy will require a combination of probes

for two reasons (Albrecht et al. 2006). First, the small differences

in the expected signals from a given probe mean that systematic ef-

fects become important. Applying different probes will allow us to

see whether or not a measured signal is robust to systematics. Sec-

ondly, some existing tests cannot distinguish between some classes

of dark energy model. New probes are therefore needed to break

such degeneracies.

We have tested one such example of a new probe, the distribution

of angles subtended between pairs of galaxies. This distribution is

distorted by the peculiar motions of galaxies and also by the choice

of cosmology adopted to transform observed positions into comov-

ing distances. The origins of this test can arguably be traced back to

Alcock & Paczynski (1979), and it was refined by Phillipps (1994).

Marinoni & Buzzi (2010) applied the test to the angle between pairs

of galaxies and crucially included redshift-space distortions.

We have used numerical simulations of structure formation to

assess the performance of the test. The mean of the distribution

of pair angles varies with redshift and, furthermore, is measurably

different between cosmologies. A comparison between a theoretical

model for the pair-angle distribution and the measurements from the

simulations shows that the test, as originally proposed, is limited.

The theoretical calculation requires a parameter to be specified to

normalize the distribution of pair angles. Our simulations show that

this parameter is redshift- and cosmology-dependent.

It is possible to estimate the normalization of the pair-angle distri-

bution observationally, at redshifts z > 0, if the peculiar velocities of

galaxies can be measured. For example, it was recently argued that

accurate mean pairwise velocities of pairs of SNe Ia can be obtained

by combining photometry from a survey such as the Pan-STARRS

(Kaiser et al. 2010) or the Large Synoptic Survey Telescope (Abell

et al. 2009) with follow-up spectroscopy (Bhattacharya et al. 2011).

At present, the accuracy of measurements of the peculiar velocity

field is not adequate to distinguish between the models compared

in this paper.

Our proposed methodology avoids this problem by using an N-

body simulation with a similar number of pairs to the observational

sample to normalize the distribution of angles. This secures the

C© 2012 The Authors, MNRAS 420, 1079–1091
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crucial step of setting the normalization of the theoretical distribu-

tion at each redshift. The detailed selection of the N-body sample

of subhalo pairs is not important, avoiding the need to combine

the simulation with a galaxy formation model. Furthermore, we

have demonstrated that it is not necessary to have a knowledge of

the true underlying background cosmology for the successful ap-

plication of the test.

The new method we have proposed is a powerful complement and

extension to existing probes of dark energy. This is demonstrated

by the ability of the pair distribution to distinguish between cos-

mologies that cannot be separated through the appearance of BAOs

or through the halo mass function. The technique can be applied

already to ongoing surveys, such the SDSS-III BOSS (Schlegel

et al. 2007), and should yield competitive constraints. The method

should also produce distinct signals for dark energy and modified

gravity models which have identical expansion histories, through

the different peculiar motions induced.
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