
 Open access Proceedings Article DOI:10.1145/2804322.2804326

Testing data transformations in MapReduce programs — Source link

Jesus Moran, Claudio de la Riva, Javier Tuya

Institutions: University of Oviedo

Published on: 30 Aug 2015

Topics: Test data, Data flow diagram, Big data and Data processing

Related papers:

 Infrastructure-Aware Functional Testing of MapReduce Programs

 MRTree: Functional Testing Based on MapReduce's Execution Behaviour

 New ideas track: testing mapreduce-style programs

 Poster: Efficiently Finding Minimal Failing Input in MapReduce Programs

 Towards Ex Vivo Testing of MapReduce Applications

Share this paper:

View more about this paper here: https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-
40r9rtv1yf

https://typeset.io/
https://www.doi.org/10.1145/2804322.2804326
https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-40r9rtv1yf
https://typeset.io/authors/jesus-moran-59ypopc8gz
https://typeset.io/authors/claudio-de-la-riva-3fsvadylc8
https://typeset.io/authors/javier-tuya-199jnuxb6e
https://typeset.io/institutions/university-of-oviedo-3nv6iyrs
https://typeset.io/topics/test-data-3dtih433
https://typeset.io/topics/data-flow-diagram-10stm0l7
https://typeset.io/topics/big-data-bi8jkkwe
https://typeset.io/topics/data-processing-3k17y2s8
https://typeset.io/papers/infrastructure-aware-functional-testing-of-mapreduce-139vic4toh
https://typeset.io/papers/mrtree-functional-testing-based-on-mapreduce-s-execution-2e8kki1xtf
https://typeset.io/papers/new-ideas-track-testing-mapreduce-style-programs-3se9escur0
https://typeset.io/papers/poster-efficiently-finding-minimal-failing-input-in-3mzqy6bbx0
https://typeset.io/papers/towards-ex-vivo-testing-of-mapreduce-applications-1helipoeou
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-40r9rtv1yf
https://twitter.com/intent/tweet?text=Testing%20data%20transformations%20in%20MapReduce%20programs&url=https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-40r9rtv1yf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-40r9rtv1yf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-40r9rtv1yf
https://typeset.io/papers/testing-data-transformations-in-mapreduce-programs-40r9rtv1yf

Testing Data Transformations in MapReduce Programs
Jesús Morán

University of Oviedo
Computer Science Department

Campus de Viesques, Gijón, Spain
(+34) 985 18 2153

moranjesus@lsi.uniovi.es

Claudio de la Riva
University of Oviedo

Computer Science Department
Campus de Viesques, Gijón, Spain

(+34) 985 18 2664

claudio@uniovi.es

Javier Tuya
University of Oviedo

Computer Science Department
Campus de Viesques, Gijón, Spain

(+34) 985 18 2049

tuya@uniovi.es

ABSTRACT

MapReduce is a parallel data processing paradigm oriented to

process large volumes of information in data-intensive

applications, such as Big Data environments. A characteristic of

these applications is that they can have different data sources and

data formats. For these reasons, the inputs could contain some

poor quality data that could produce a failure if the program

functionality does not handle properly the variety of input data.

The output of these programs is obtained from a number of input

transformations that represent the program logic. This paper

proposes the testing technique called MRFlow that is based on

data flow test criteria and oriented to transformations analysis

between the input and the output in order to detect defects in

MapReduce programs. MRFlow is applied over some MapReduce

programs and detects several defects.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –

Validation

General Terms

Reliability, Verification.

Keywords

Software Testing, Data Flow Testing, MapReduce programs.

1. INTRODUCTION
The MapReduce paradigm [11] is based on the "divide and

conquer" principle, which is the breaking down (Map) of a large

problem into several sub-problems (Reduce). MapReduce is used

in Big Data and Cloud Computing to process large data. The unit

of program information is a <key, value> pair, where the value

has data relative to the sub-problem identified by the key. The

program output is the result of a series of transformations about

the input information stored in the <key, value> pairs.

The quality in MapReduce programs is important due to their use

in critical sectors, like health (ADN alignment [27]) or security

(image processing in ballistics [17]). Software testing is one of the

industrial practices most used to ensure quality. In recent years

testing technique research has advanced [6], but few efforts have

been focused on massive data processing like MapReduce [8].

These paradigms have new challenges in the field of testing

[23][21][29], and some authors [15][26] estimate respectively that

3% and 1.38%-33.11% of MapReduce programs do not finish.

Another MapReduce issue is that in some scenarios the developers

create several subprograms with a few transformations instead of

creating one program [26]. In these scenarios, the subprograms

take more resources and underperform in comparison with a

whole program.

On the other hand, a study about the MapReduce field has

discovered that 84.5% of faults are due to data processing [19]. In

order to detect these defects, this paper proposes a testing

technique that analyzes the program transformations which could

produce the failures. The testing technique named MRFlow

(MapReduce data Flow) is based on data flow test criteria [25].

The program functionality is represented by means of program

transformations, and then the test cases are derived from these

transformations in order to test the functionality. Firstly, a

program graph is elaborated with information about the program

transformations, then the paths under test are extracted

representing the transformations, and finally each path under test

is tested with different data (empty, not empty, valid, non-valid,

with emission of result and without emission of result). The main

contributions of this paper are (1) a testing technique specifically

tailored to test MapReduce programs in order to detect defects,

and (2) the application over two popular case studies.

The rest of the paper is organized as follows: the MapReduce

paradigm, data flow test criteria and the related work are

summarized in Section 2. Next, Section 3 describes the MRFlow

testing technique, the elaboration of the graph in Subsection 3.1

and the derivation of test cases in Subsection 3.2. In Section 4

MRFlow is applied to two programs and reveals some defects.

Finally, Section 5 contains the conclusions.

2. BACKGROUND
The MRFlow testing technique is based on data flow criteria that

analyze the evolution of variables in MapReduce programs. In

Subsection 2.1 the MapReduce paradigm is summarized, data

flow test criteria basis is in Subsection 2.2, and the related work is

described in Subsection 2.3.

2.1 MapReduce
The MapReduce paradigm solves a problem by splitting it into

sub-problems that can run in parallel. Fundamentally, MapReduce

has two functions: Map that splits the problem into sub-problems,

and Reduce which solves each sub-problem. Both functions

handle <key, value> pairs, where key is the identifier of each sub-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...

http://dx.doi.org/10.1145/2804322.2804326

20

problem and the value corresponds to some data relative to that

sub-problem. The Map function receives the data input and emits

a <key, value> pair, then the Reduce function receives <key,

list(values)> pairs that contain all the information about each sub-

problem, and finally solves it with a <key, value> pairs.

Consider as an example a program that counts the number of

occurrences of each word in a text. This problem is divided into as

many sub-problems as there are different words, then each sub-

problem only counts the occurrences of one word and the key is

that word. The goal of the program is to count, so the value

should contain information relative to the counting of the word,

then the value contains a number of occurrences. For example, if

the input texts are “hi Hadoop” and “hi”, the Map function emits

<hi, 1>, <Hadoop, 1> and <hi, 1>. Then there are two sub-

problems, so the Reduce function receives <Hadoop, 1> and <hi,

[1,1]> and emits <Hadoop, 1>, <hi, 2> which is the number of

occurrences of each word in the texts.

The MapReduce programs are often used in Big Data programs

[28], which process large data (Volume), with a necessary

performance (Velocity) and with different types of data, data from

different sources, and data without apparently a data model such

as for example emails or videos (Variety). To handle this data a

parallel and fault tolerant infrastructure is necessary, for this

reason typically the MapReduce programs run over frameworks,

excelling Hadoop [1] due to its impact on corporations [2].

2.2 Data Flow Test Criteria
The goal of data flow test criteria is to derive tests through the

analysis of program variables. Several testing techniques are

based on data flow, for example to test web applications through

the analysis of state variables [5]. Data flow is a structure testing

technique [4] created from the program P. A control flow graph

G(P) is created from the program, where the edges represent each

statement, and the vertices indicate the following possible

statements. In addition to the graph, the definition and uses of

every variable are determined [25]. In a node n∈N, when a value

is assigned to the variable v∈V, the variable v is defined and the

representation is DEF(v,n). If the variable v is in a predicate of a

condition (i.e., if (v)), then the representation is P-USE(v,n), and

in other uses of v the representation is C-USE(v,n). For example,

in the statement a = b+1, a is defined and b is used.

2.3 Related Work
Several testing approaches exist over the MapReduce programs,

but most of them are focused on testing the performance

[16][14][9] and few are oriented to testing the functionality, that

is the goal of this paper. A classification of testing in Big Data is

proposed by Gudipati et al. [13]. On this point Camargo et al. [7]

and Morán et al. [22] elaborate a classification of defects, and

Csallner et al. [10] test one defect automatically based on a

symbolic execution framework. Another defect can be detected in

compilation time by Dörre et al. [12]. In order to create test

inputs, Mattos [20] develops a bacteriological algorithm

supported by a function created by the tester, and Li et al. [18]

design a test framework which validates the large database

procedures. Our paper is different from other studies in the sense

that it obtains the test cases from the program transformations

systematically.

3. MRFLOW TESTING TECHNIQUE
The MapReduce program logic is represented by the

transformations of keys and values into the program output. In

these transformations, the keys and values can be transformed into

one variable, this variable can be transformed into another, and so

on until the final output.

Usual data flow test criteria like "all-du-paths" analyzes the

definitions and uses of each variable, but does not consider the

transformations between variables in enough degree of detail. In

this sense, the testing technique proposed (MRFlow) analyzes the

transformations from keys and values. This paper focuses on the

Reduce function because it has a large part of the program

functionality, but it can also be applied over the Map function

because both handle key and values. Subsection 3.1 describes the

elaboration of the graph, and the derivation of the test is detailed

in Subsection 3.2.

3.1 Elaboration of MRFlow Graph
In the MRFlow graph, the statements of the program are in the

nodes and each edge represents the next potential statement. In

this graph, as described below, each node also contains

information about the uses of variables coming from

transformations, definition of key/values, and the output.

USE nodes: It contains only the use of a variable var coming

from a key/value transformation. A transformation occurs when a

variable is formed by information coming from key, part of key,

all/part of values, a unique value or combinations of the above. A

sequence of these elements of keys and values is labeled in the

node and represents a transformation between the input key/values

variable and another variable.

Given a variable var, a statement n and a transformation seq, P-

USE-TRANS(var, n, seq) is defined when variable var is used in

the conditional statement n and comes from a transformation seq;

and C-USE-TRANS(var, n, seq) when var is used in a non-

conditional statement. The seq label contains the transformation

of var in a sequence of key/values with conjunction and

disjunction connectors. The conjunction connector indicates

that a transformation exists with both elements of the sequence,

and the disjunction connector indicates that several

transformations exist, one for each part of the sequence. For

example, P-USE-TRANS(var, 6, (key value) key) means that

the variable var is used in the conditional statement 6 with two

possible transformations, one is formed by the key and value, and

the other only by the key. Because the transformation can be

formed by parts of key/values, the seq sequence uses the following

expressions:

 Key transformations:

- [K]: Transformation over the whole key. For example: var

= key, or var = key.length().

- Ki: Transformation over the part i of key. Sometimes the

key is composed of several elements. For example if the

program should obtain the counting of every word in

every year, the key is the compound of word and year. A

transformation that involves the key part "word" (Kword)

could be: var = getWord(key).

21

Figure 1. MRFlow graph of WordCount program.

0 Reduce (Key key, List values){

1 sum = 0;

2 while (values.hasNext()){

3 sum += values.next();

4 }

5 emit(key, sum);

6 }

0 DEF-K(key, 0) DEF-V(values, 0)

P-USE-TRANS(values, 2, [V])

EMIT({key}, {sum}, 5)

C-USE-TRANS(key, 5, [K])

C-USE-TRANS(sum, 5, [V])

C-USE-TRANS(values, 3, [V])

1

2

5 3

 Values transformations:

- [V]: Transformation over several values. For example: var

= values[0] + values[1].

- V: Transformation over one value. For example: var =

values.next().

 Values transformations with categories: The Reduce function

could receive several values of a different nature and handle

them in a different way. Such different values are considered a

category and could come from different Map functions, a

different data source or contain very different information. For

example, a SPAM detector that receives several types of

messages as a values (sms and email) has two categories:

V:sms and V:email. The character of the sms and email, and

the processing in the program is very different, so there are

two categories.

- [V:cat]: Transformation over several values of cat

category. For example, the statement var = values[0] +

values[1] could be a [V] transformation, but if values[0]

and values[1] are from category sms, then the

transformation is [V:sms].

- V:cat: Transformation over one value of cat category. For

example: if(isSms(values[0])) var = values[0].

DEF nodes: It contains the assignation of new content in the

input key or in the list of values. Given a variable var and a

statement n, DEF-K(var, n) is defined when new content is

assigned to the variable var in the statement n, and var is the input

key variable. DEF-V(var, n) is defined when var is the input

list(values) variable.

Emit Nodes: The Reduce output is emitted by a special statement

in <key, value> pairs. Given the variables {k1,k2,…km}, the

variables {v1,v2,…,vp} and a statement n, EMIT({k1,k2,…km},

{v1,v2,…,vp}, n) is defined when the n emits a <key, value> pair,

the key is created by the variables {k1,k2,…km}, and the value by

{v1,v2,…,vp}.

As an example consider the Reduce function of Wordcount

program [3] that counts the occurrences of each word. Figure 1

illustrates the MRFlow graph. The Reduce function receives a

word as a key, and a list of numbers of occurrence as values, for

instance <hello, [1,1,1]> means that the word “hello” has 3
occurrences in the text. In this program, the variables key, values

and sum come from a transformation of key/values input variables.

If the statement 3 is reached the values variable is transformed

into sum by the addition of all values [V], but in other cases

values is not transformed. The graph contains in node 0 the

definition of key and values. The node 1 is empty because the sum

variable is not created from key/values at this point. The node 2

contains a conditional statement of values variable. In node 3

there is a transformation of values in sum, and finally in node 5

the output, which contains key and sum, is emitted. The program

does not combine key and values in any variable, and each value

only represents the number of occurrences, so the program has

neither categories nor connectors in the sequence of

transformation (seq label).

3.2 Derivation of Test Cases
The goal of MRFlow is to derive tests in order to analyze the

different key/value transformations with or without categories. In

MRFlow graph, the paths under test start in definition of key/value

and finish in each possible last transformation of such variables.

Unlike data flow test criteria where each path is covered by a test

case, in MRFlow for each path under test several situations to be

covered (test coverage items) are defined and represent the

transformations which are the goal of the test cases. Then the test

cases are designed to cover the test coverage items in the path

under test.

Transformation paths (tp): The paths under test, called

transformation paths (tp), are extracted from transformations

between input and output in MRFlow graph. One tp is created

between each DEF-K/DEF-V node and C-USE-TRANS/P-USE-

TRANS of each last transformation of key or list(values). In the

case of DEF-K/DEF-V to P-USE-TRANS(var, n, seq), instead of

creating one tp, several tp are created following all of the next

nodes after the conditional statement n, as in other data flow test

criteria [25]. For example, the transformations and tp of

WordCount [3] program are represented in Figure 2. The program

has 5 tp obtained from the transformation between values and sum

(tp1), the non-existence of values transformations (tp2, tp3 and tp4)

and the non-existence of key transformations (tp5). The values

variable is defined in node 0 and the last transformations are sum

and values depending on whether statement 3 is reached or not.

The sequence of transformation (seq label) between values and

sum is [V] because it involves all values. In the case of key there

is no transformation, so key is the last transformation. Finally, the

transformation paths are obtained between DEF-K/DEF-V and C-

USE-TRANS/P-USE-TRANS of last transformations. In the case of

P-USE-TRANS like P-USE-TRANS(values, 2, [V]), one tp is

created following the next nodes after node 2, that is node 3 (tp2)

and node 5 (tp3).

Test coverage items: Each tp represents the transformations and

the uses of transformation variables. Depending on the type of

transformation (key, part of key, values, value or combination)

22

Figure 2. Example of transformation paths (tp) in WordCount program.

Values
[V]

sum

DEF-V

KeyDEF-K

C-USE-TRANS(sum, 5, [V]) tp1: 0→…→3→…→5→…

C-USE-TRANS(key, 5, [K]) tp5: 0→...→5→...

Values
P-USE-TRANS(values, 2, [V])

tp3: 0→...→2→5→...

tp2: 0→...→2→3→...

C-USE-TRANS(values, 3, [V]) tp4: 0→...→3→...

tp

tp
5

30

3

5
2

3

0

0 5

several situations have to be tested. These situations (test coverage

items) are usual in these types of programs and for each tp are

defined next:

 Existence of information: tp created with empty data or non-

empty data. Depending on the type of transformation (seq

label in MRFlow graph) can occur:

- If tp contains [V]: for each category cat, the

transformation is created with cat data, or without cat

data.

- If tp contains [K]: the transformation is created with data

in all key, or with empty data for each part of key.

 Validation: tp created with valid data or non-valid data.

Depending on the type of transformation (seq label in

MRFlow graph) can occur:

- If tp contains [V]: for each category cat, the

transformation is created with valid cat data, or non-valid

cat data.

- If tp contains [K]: the transformation is created with valid

data in all key, or with non-valid data for each part of key.

 Output: tp reaches EMIT node or not.

Consider the Reduce function in the WordCount example (Figure

1). The test cases are designed in order to cover the test coverage

items in each tp. For example, the test coverage items in all tp:

"transformation with non-empty data", "with valid data" and "with

output emission", can be covered by a test case with Reduce input

<hi, [1,1]> which means that the word "hi" is repeated twice. In

order to cover the other test coverage items (transformation with

non-valid key, with empty values, and so on), new test cases have

to be created, but it is possible that some test coverage items

cannot be covered, as for example "Transformation without output

emission" in all tp of WordCount because the EMIT node is

always reached.

4. CASE STUDIES
In order to explore the applicability of the testing technique,

MRFlow is applied over two popular programs: WordCount [3]

which counts the occurrences of each word in a text, and

IPCountry [24] which counts the number of IPs (Internet Protocol

addresses) in each country. The goal of both programs is to count

elements represented by the key. Further, in both programs the

value is a list of numbers and the functionality consists of adding

the elements of the lists. In WordCount the key is each word and

the value represents the occurrence of the word, and in IPCountry

the key is each country and the value represents the existence of

IPs associated with the country.

For each program an MRFlow graph is created, from which the tp

are extracted, then the test coverage items are derived, and finally

the test case is created. The information of each step is

summarized in Table 1, and in brackets is the information relative

to the key transformations and values transformations. The first

part focuses on the MRFlow graph, the second part summarizes

the test coverage items, and in the third part the test case results

Table 1. Summary of program features and test results

 WordCount (Reduce) IPContry (Reduce)

Number of transformations 3 (Key:1, Values:2) 3 (Key:1, Values:2)

DEF-K/DEF-V nodes 2 (Key:1, Values:1) 2 (Key:1, Values:1)

C-USE-TRANS nodes 3 (Key:1, Values:2) 5 (Key:2, Values:3)

P-USE-TRANS nodes 1 (Key:0, Values:1) 1 (Key:0, Values:1)

EMIT nodes 1 2

Transformation paths (tp) 5 (Key:1, Values:4) 6 (Key:2, Values:4)

Test coverage items 30 (Key:6, Values: 24) 30 (Key:6, Values:24)

Number of test cases 2 2

Test coverage items covered 16 (Key:4, Values:12) 16 (Key:4, Values:12)

Test coverage items not covered 14 (Key:2, Values:12) 14 (Key:2, Values:12)

23

are described. In the MRFlow graph of both programs, the <key,

list(value)> input variables has one definition and the program

contains 3 transformations: transformation of values into another

variable, no values transformation and no key transformation.

Then the C-USE-TRANS/P-USE-TRANS are created from these

variables: 1 P-USE-TRANS in each program, 3 C-USE-TRANS in

WordCount and 5 in IPCountry. In the graph, finally, the EMIT

nodes are created from each emission statement.

From the above graph, the transformation paths (tp) are obtained,

and then for each tp the test coverage items are derived. The

Wordcount has 5 tp and IPCountry has 6 tp, but in both cases

there are 30 test coverage items.

It is not possible to cover 14 of the test coverage items due to

some program constraints such as it is impossible to create values

with empty content, the node EMIT is always reached, and so on.

The rest of the test coverage items, 16, are covered with two test

cases: <hi, [1,1]> and <hello,, [1,1]> (hello with a comma) for

WordCount, and <Spain, [1,1,1]> and <###, [1,1,1]> for

IPCountry.

The test cases detect two defects because of the non-validation of

key. If WordCount program receives "hello, hello, hello", the

expected output is hello:3, but the real output is hello:1, hello,:2

because the Reduce function receives an invalid key "hello," that

is not a word. In IPCountry the program fails when it receives a

non-country as key, for example Reduce receives <###, [1,1,1]>

in the test case and the expected output is nothing because "###"

can be an unexpected log/exceptional data but it is not a country.

The two defects found in the programs are caused by the non-

validation of input data together with exceptional/non-valid data.

In these two programs, MRFlow allows to test the functionality

with a few test cases that cover many test coverage items.

5. CONCLUSIONS
The MapReduce development and programs contain characteristic

defects such as the incorrect validation or incorrect processing of

different types of data. These defects produce a failure when the

key or the values contain some data that is not correctly processed

in the MapReduce programs. In this work, the testing technique

MRFlow is introduced in order to test the MapReduce programs.

MRFlow is based on data flow test criteria and analyzes the

program transformations under several situations to cover. This

testing technique is applied over two popular programs and with

two test cases covers several situations in the transformations

which reveal one defect in each program. The faults are caused by

the non-validation of key, but MRFlow in other programs could

detect other defects relative to the transformations of keys and

values.

As future work we plan to apply MRFlow in more programs and

to automate the technique in areas such as test coverage items, the

execution of test cases, the derivation of test cases or the graph on

which these test cases are derived.

6. ACKNOWLEDGMENTS
This work was supported in part by project TIN2013-46928-C3-

1-R, funded by the Spanish Ministry of Science and Technology,

and GRUPIN14-007, funded by the Principality of Asturias

(Spain) and ERDF funds.

7. REFERENCES
[1] Hadoop: open-source software for reliable, scalable,

distributed computing. http://hadoop.apache.org/ Accessed

May, 2015.

[2] Institutions that are using hadoop for educational or

production uses. http://wiki.apache.org/hadoop/PoweredBy

Accessed May, 2015.

[3] Wordcount 1.0.

http://hadoop.apache.org/docs/r2.7.0/hadoop-mapreduce-

client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Example:_WordCount_v1.0

Accessed May, 2015.

[4] IEEE draft international standard for software and systems

engineering–software testing–part 4: Test techniques, 2014.

[5] Alshahwan, N., and Harman, M. State aware test case

regeneration for improving web application test suite

coverage and fault detection. In Proceedings of the 2012

International Symposium on Software Testing and Analysis

(2012), ACM, pp. 45–55.

[6] Bertolino, A. Software testing research: Achievements,

challenges, dreams. In 2007 Future of Software Engineering

(2007), IEEE Computer Society, pp. 85–103.

[7] Camargo, L. C., and Vergilio, S. R. Classicação de defeitos

para programas mapreduce: resultados de um estudo

empírico. In AST - 7th Brazilian Workshop on Systematic

and Automated Software Testing (2013).

[8] Camargo, L. C., and Vergilio, S. R. Mapreduce program

testing: a systematic mapping study. In Chilean Computer

Science Society (SCCC), 32nd International Conference of

the Computation (2013).

[9] Chen, Y., Ganapathi, A., Griffith, R., and Katz, R. The case

for evaluating mapreduce performance using workload

suites. In Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2011 IEEE 19th

International Symposium on (2011), IEEE, pp. 390–399.

[10] Csallner, C., Fegaras, L., and Li, C. New ideas track: testing

mapreduce-style programs. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on

Foundations of software engineering (2011), ACM, pp. 504–
507.

[11] Dean, J., and Ghemawat, S. Mapreduce: simplified data

processing on large clusters. Communications of the ACM

51, 1 (2008), 107–113.

[12] Dörre, J., Apel, S., and Lengauer, C. Static type checking of

hadoop mapreduce programs. In Proceedings of the second

international workshop on MapReduce and its applications

(2011), ACM, pp. 17–24.

[13] Gudipati, M., Rao, S., Mohan, N. D., and Gajja, N. K. Big

data: Testing approach to overcome quality challenges. Big

Data: Challenges and Opportunities (2013), 65–72.

[14] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B. The

hibench benchmark suite: Characterization of the mapreduce-

based data analysis. In Data Engineering Workshops

(ICDEW), 2010 IEEE 26th International Conference on

(2010), IEEE, pp. 41–51.

[15] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. An

analysis of traces from a production mapreduce cluster. In

24

Cluster, Cloud and Grid Computing (CCGrid), 2010 10th

IEEE/ACM International Conference on (2010), IEEE,

pp. 94–103.

[16] Kim, K., Jeon, K., Han, H., Kim, S.-g., Jung, H., and Yeom,

H. Y. Mrbench: A benchmark for mapreduce framework. In

Parallel and Distributed Systems, 2008. ICPADS’08. 14th
IEEE International Conference on (2008), IEEE, pp. 11–18.

[17] Kocakulak, H., and Temizel, T. T. A hadoop solution for

ballistic image analysis and recognition. In High

Performance Computing and Simulation (HPCS), 2011

International Conference on (2011), IEEE, pp. 836–842.

[18] Li, N., Escalona, A., Guo, Y., and Offutt, J. A scalable big

data test framework. In Software Testing, Verification and

Validation (ICST), 2015 IEEE 8th International Conference

on (2015), IEEE, pp. 1–2.

[19] Li, S., Zhou, H., Lin, H., Xiao, T., Lin, H., Lin, W., and Xie,

T. A characteristic study on failures of production distributed

data-parallel programs. In Proceedings of the 2013

International Conference on Software Engineering (2013),

IEEE Press, pp. 963–972.

[20] Mattos, A. J. d. Test data generation for testing mapreduce

systems. Master’s thesis, Universidade Federal do Paraná,
2011.

[21] Mittal, A. Trustworthiness of big data. International Journal

of Computer Applications 80, 9 (2013), 35–40.

[22] Morán, J., De La Riva, C., and Tuya, J. Mrtree: Functional

testing based on mapreduce’s execution behaviour. In Future

Internet of Things and Cloud (FiCloud), 2014 International

Conference on (2014), IEEE, pp. 379–384.

[23] Nachiyappan, S., and Justus, S. Getting ready for bigdata

testing: A practitioner’s perception. In Computing,

Communications and Networking Technologies (ICCCNT),

2013 Fourth International Conference on (2013), IEEE,

pp. 1–5.

[24] Owens, J. R., Femiano, B., and Lentz, J. Hadoop Real World

Solutions Cookbook. Packt Publishing Ltd, 2013.

[25] Rapps, S., and Weyuker, E. J. Selecting software test data

using data flow information. Software Engineering, IEEE

Transactions on, 4 (1985), 367–375.

[26] Ren, K., Kwon, Y., Balazinska, M., and Howe, B. Hadoop’s
adolescence: an analysis of hadoop usage in scientific

workloads. Proceedings of the VLDB Endowment 6, 10

(2013), 853–864.

[27] Schatz, M. C. Cloudburst: highly sensitive read mapping

with mapreduce. Bioinformatics 25, 11 (2009), 1363–1369.

[28] Sharma, M., Hasteer, N., Tuli, A., and Bansal, A.

Investigating the inclinations of research and practices in

hadoop: A systematic review. In Confluence The Next

Generation Information Technology Summit (Confluence),

2014 5th International Conference- (2014), IEEE, pp. 227–
231.

[29] Sneed, H. M., and Erdoes, K. Testing big data (assuring the

quality of large databases). In Software Testing, Verification

and Validation Workshops (ICSTW), 2015 IEEE Eighth

International Conference on (2015), IEEE, pp. 1–6.

25

