

Testing Database Transaction Concurrency

 Yuetang Deng Phyllis Frankl Zhongqiang Chen

 Department of Computer and Information Science

 Technical Report
 TR -CIS-2003-03

10/20/2003

Testing Database Transaction Concurrency1

Yuetang Deng Phyllis Frankl Zhongqiang Chen
Department of Computer and Information Science

Polytechnic University
Brooklyn, NY 11201 USA

{ytdeng, phyllis, zchen}@cis.poly.edu

1 Supported in part by NSF grant CCR-9988354

Abstract

Database application programs are often designed to
be executed concurrently by many users. By grouping
related database queries into transactions, DBMS
systems can guarantee that each transaction satisfies the
well-known ACID properties: Atomicity, Consistency,
Isolation, and Durability. However, if a database
application is decomposed into transactions in an
incorrect manner, the application may fail when executed
concurrently due to potential offline concurrency
problems.

This paper presents a dataflow analysis technique for
identifying schedules of transaction execution aimed at
revealing concurrency faults of this nature, along with
techniques for controlling the DBMS or the application
so that execution of transaction sequences follows
generated schedules. The techniques have been integrated
into AGENDA, a tool set for testing relational database
application programs. Preliminary empirical evaluation
is presented.

1. Introduction

Database and transaction processing systems occupy a
central position in our information-based society. It is
essential that these systems function correctly and provide
acceptable performance. Substantial effort has been
devoted to insuring that the algorithms and data structures
used by Database Management Systems (DBMSs) work
efficiently and protect the integrity of the data. However,
relatively little attention has been given to developing
systematic techniques for assuring the correctness of the
related database application programs. Given the critical
role these systems play in modern society, there is clearly
a need for new approaches to assess the quality of the
database application programs.

To address this need, we have developed a systematic,
partially-automatable approach and a tool set based on
this approach to testing database applications [4,5,6]
Initially, we focused on problems associated with
individual queries. In [8] we explore problems dealing

with transactions, comprising groups of related queries.
This paper focuses on concurrency problems associated
with multiple simultaneously running instances of an
application program.

Many database applications are designed to support
concurrent users. For example, in an airline reservation
system, many clients can simultaneously purchase tickets.
To avoid simultaneous updates of the same data item and
other potential concurrency problems, database
applications employ program units called transactions,
consisting of a group of queries that access, and possibly
update, data items. The DBMS schedules query
executions so as to insure data integrity at transaction
boundaries while trying to utilize resources efficiently.

Although the DBMS employs sophisticated
mechanisms to assure that transactions satisfy the ACID
properties – Atomicity, Consistency, Isolation, and
Durability – an application can still have concurrency-
related faults if the application programmer erroneously
placed queries in separate transactions when they should
have been executed as a unit. The focus of this paper is
on detecting faults of this nature.

The rest of the paper is organized as follows. Section 2
introduces the background, including the AGENDA tool
set for database application testing. Section 3 identifies
some typical transaction concurrency problems. Our
approach to test for concurrency problems is presented in
Section 4. Section 5 discusses the problems with
transaction atomicity/durability in database applications
and our solution. Section 6 presents preliminary empirical
evaluation. Section 7 describes the related work. Section
8 concludes with our contributions and discusses future
work.

2. Background

2.1. Database Transaction

A transaction is a means by which an application
programmer can package together a sequence of database
operations so that the database system can provide a
number of guarantees, known as the ACID properties of a

transaction [11]. Atomicity ensures that the set of updates
contained in a transaction must succeed or fail as a unit.
Consistency means that a transaction will transform the
database from one consistent state to another. The
isolation property guarantees that partial effects of
incomplete transactions should not be visible to other
transactions. Durability means that effects of a committed
transaction are permanent and must not be lost because of
later failure. Therefore, transactions can be used to solve
problems such as creation of inconsistent results,
concurrent execution errors within transactions and lost
results due to system crash [16].

A database application program typically consists of
SQL statements embedded in a source language, such as
C or Java. Ends of transactions are delimited by the
keyword COMMIT (or ROLLBACK). Once a transaction
begins execution, the DBMS assures that no other
transaction executes a statement that interferes with this
transaction (e.g. by updating data being accessed by the
transaction) until the transaction commits or rolls back.
The system can initiate a rollback when it enters a state in
which ACID properties may be violated, either due to
overly optimistic scheduling decisions or to external
events such as system failure. When a rollback occurs, the
system is restored to the state before execution of the
transaction. Once a transaction commits, all of the
changes it has made to the database state become
permanent.
 In this paper, we consider application programs written
in a high-level language such as C, with SQL statements
interspersed. The SQL statements may involve host
variables, which are variables declared in the host
program (host variables are preceded by colons). Multiple
clients may execute an application program concurrently.
In this case, each client has its own host variables. The
only “variable” shared by concurrently executing clients
is the database. In this paper we do not consider stored
procedures or shared variables arising through multi-
threading within an application instance.

2.2. AGENDA Tool Set

In our previous work [4,5], we have discussed issues

arising in testing database systems, presented an approach
for testing database applications, and described
AGENDA, a set of tools based on this approach. In
testing such applications, the states of the database before
and after the application’s execution play an important
role, along with the user’s input and the system output. A
framework for testing database applications was
introduced. A complete tool set based on the framework
has been prototyped. The components of this system are:
AGENDA Parser, State Generator, Input Generator, State
Validator, and Output Validator.

AGENDA takes as input the database schema of the
database on which the application runs, the application
source code, and “sample value files”, containing some
suggested values for attributes. The tester interactively
selects test heuristics and provides information about
expected behaviors of test cases. Using this information,
AGENDA populates the database, generates inputs to the
application, executes the application on those inputs and
checks some aspects of correctness of the resulting
database state and the application output.

This approach is loosely based on the Category-
Partition method [17]: the user supplies suggested values
for attributes, optionally partitioned into groups, which
we call data groups. The data are provided in the sample
value files. The tool then produces meaningful
combinations of these values in order to fill database
tables and provide input parameters to the application
program. Data groups are used to distinguish values that
are expected to result in different application behaviors.
For example, in a payroll system, different categories of
employees may be treated differently. Additional
information about data groups, such as probability for
selecting a group, can also be provided via sample value
files.

Using these data groups and guided by heuristics,
AGENDA produces a collection of test templates
representing abstract test cases. The tester then provides
information about the expected behavior of the
application on tests represented by each test template. For
example, the tester might specify that the application
should increase the salaries of employees in the “faculty”
group by 10% and should not change any other attributes.
In order to control the explosion in the number of test
templates and to force the generation of particular kinds
of templates, the tester selects heuristics. Finally,
AGENDA instantiates the templates with specific test
values, executes the test cases and checks that the output
and new database state are consistent with the expected
behavior indicated by the tester. The architecture of
AGENDA is shown in Figure 1.

The first component (AGENDA Parser) extracts
relevant information from the application’s database
schema, the application queries, and tester-supplied
sample value files, and then makes this information
available to the other four components by creating an
internal database called AGENDA DB to store the
extracted information. The AGENDA DB is used and/or
modified by the remaining four components. AGENDA
Parser is a modified version of from the open-source
DBMS Postgresql parser [18].
The second component (State Generator) uses the
database schema along with information from the tester’s
sample value files indicating useful values (optionally
partitioned into different groups of data) for attributes,
and populates the database tables with data satisfying the

integrity constraints. It retrieves the information about the
application’s tables, attributes, constraints, and sample
data from the AGENDA DB and generates an initial DB
state for the application. We refer to the generated DB as
the application DB. Heuristics are used to guide the
generation of both the application DB state and
application inputs.

 Figure 1: Architecture of the AGENDA tool set

The third component (Input Generator) generates input

data to be supplied to the application. The input data are
created by using information generated by the AGENDA
Parser and State Generator components, along with
information derived from parsing the SQL statements in
the application program and information that is useful for
checking the test results.

The fourth component (State Validator) investigates
how the state of the application DB changes during
execution of a test. It automatically constructs a log table
and triggers/rules for each table in the application
schema. The State Validator uses these triggers/rules to
capture the changes in the application DB automatically,
and uses database integrity constraint techniques to check
whether the application DB state has changed in the right
way.

The fifth component (Output Validator) stores the
tuples satisfying the application query and constraints in
the log tables. It uses integrity constraint techniques to
check that the preconditions and post-conditions hold for
the output returned by the application.

3. Transaction concurrency problems

Concurrency is one of the trickiest aspects of software
development. Even if an application runs correctly for all
inputs in an isolated environment, it may have incorrect
behavior when running concurrently with other instances
of the same application. We define concurrency failure to
be a failure that occurs when two or more instances

execute concurrently, which could not occur if the
instances executed serially. Transaction mechanisms in a
DBMS provide protection for the shared resource (i.e.,
the database). However, designers must use them
carefully to assure correct behavior.

The transaction manager of a DBMS schedules the
execution of queries from concurrent instances. It assures
that no concurrency failures occur, provided that the
application programmer uses transactions appropriately.
Without intervention by the transaction manager, the
following phenomena are possible for two concurrent
database transactions Ti and Tj (executed concurrently by
two instances)[2, 12].

P0 (Lost update/Dirty Write): The update to a data

element committed by Ti is ignored by transaction Tj,
which writes the same data element based on the original
value.

P1 (Dirty Read): Ti modifies a data element. Tj reads
that data element before Ti commits. If Ti rolls back, Tj
will use an uncommitted value which does not exist in the
database.

P2 (Non-repeatable Read): Ti reads a database element
twice, once before transaction Tj updates it and once after
transaction Tj has updated it and commits. These two
read operations return different values for the same data
element.

P3 (Phantom): Ti reads a set of tuples based on some
specified conditions. Tj then executes and may insert one
or more tuples that satisfy the same conditions as Ti.
When Ti repeats the reading, it will obtain a different set
of tuples. The difference between P2 and P3 is that new
tuples appear in P3 while the same tuple with different
values may be read in P2.

 DBMS systems allow transactions to run at four
isolation levels from least stringent (highest concurrency)
to most stringent (lowest concurrency) [15]: READ
UNCOMMITTED (level 0), READ COMMITTED (level
1), REPEATABLE READ (level 2), SERIALIZABLE
(level 3). P0 is impossible at any isolation level while P1,
P2, and P3 may happen at levels 0, 1 and 2. When
transactions are executed at the SERIALIZABLE level by
default, the DBMS transaction manager assures that none
of the four phenomena can occur. It schedules execution
of the queries in the concurrent transactions in such a way
that the result of the concurrent executions is the same as
that of a sequential execution of transactions in some
certain order.

However, phenomena analogous to P0, P1, P2, and P3
may occur in an application even if all transactions run at
the SERIALIZABLE level. In this case, these phenomena
occur between transactions instead of within a single
transaction and they are classified as offline concurrency
problems [10], which occur when data are manipulated

across multiple database transactions. A buggy
transaction design/implementation may group queries into
transactions in an incorrect manner. In the worst case, it
may put each query into a separate transaction. These
incorrect designs and/or implementations of database
applications may cause concurrency failures.
Concurrency control mechanisms in DBMS systems
cannot avoid these problems.
 A common scenario in a database application is that
the application selects some data from a database,
processes the data, and updates the database with new
data. Consistency constraints can be violated if more than
one instance tries to modify the same data element
concurrently. To avoid interference from other instances,
related operations should be grouped into a transaction.
The entire application can be implemented as a
transaction to avoid concurrency problems, but this would
prevent any concurrency since all instances would
essentially be forced to execute sequentially. To achieve
some degree of concurrency, an application is composed
of a set of transactions. There is a close relation between
the concurrency and the number of transactions in the
application. The incorrect manipulation of this relation to
over-optimize efficiency easily introduces concurrency
faults into the system. The examples below illustrate
offline concurrency problems.
 A partial and buggy implementation of an airline
reservation system is shown in Figure 2. The attribute
avail in table Flights represents the number of seats still
available on a given flight. In line 5, the number of seats
available on a given flight is stored in the host variable
avail and is decremented by 1 in line 6 indicating that
one seat was booked for the flight. The application
erroneously commits between lines 5 and 6, thus allowing
another concurrent application instance to modify the
database between executions of these lines.

 Example 1: Ticket booking system
CREATE TABLE Flights(fltNum INT, avail INT);
1) BEGIN DECLARE SECTION;
2) int flight;
3) int avail;
4) END DECLARE SECTION;
5) void chooseSeat() {
 EXEC SQL SELECT avail INTO :avail
 FROM Flights WHERE fltNum = :flight

 5’) COMMIT; //Transaction T1
 // Erroneously ends T1 and begins T2

6) if (avail > 0) {
 EXEC SQL UPDATE Flights SET
 avail =:avail -1 WHERE fltNum = :flight ;
7) COMMIT; // Transaction T2
 }

Figure 2: A sample database application system
illustrating a potential offline concurrency error.

If two clients A and B run chooseSeat()
simultaneously, the following schedule could occur:
client A runs T1, client B runs T1, client A runs T2, client
B runs T2. After execution of this schedule, avail is
decreased by 1 instead of 2. It implies phenomenon P0.

Figure 3 shows a partial implementation of a
warehouse application. The sum of attribute ol_amount in
the table customer represents the total balance for one
order. In line 1, this value is stored in the host variable
ol_total. In line 2, c_balance is increased by ol_total
indicating that this order is delivered. The application
erroneously commits between line 1 and line 2, thus
allowing another concurrent application instance to
modify the database between the executions of these
lines.

 Example 2: A warehouse application
CREATE TABLE order_line
 (o_id INT, ol_amount MONEY);
CREATE TABLE customer
 (c_id INT, c_balance MONEY);
Delivery () {
1) SELECT SUM(ol_amount) INTO :ol_total
 FROM order_line WHERE c_id = :c_id;
2’) COMMIT; // Transaction T3

 // Erroneously ends T3 and begins T4
2) UPDATE customer SET c_balance =
 c_balance + :ol_total where c_id = :c_id;
3) COMMIT; // T4
}
New_order () { ….
 INSERT INTO order_line VALUES
 (:c_id, :amount); // T5
}

Figure 3: Partial implementation of TPC-C

warehouse application.

 If two clients, A and B, run Delivery() with the same
c_id simultaneously, then the following schedule could
cause the database to be inconsistent between the
order_line and customer tables: client A runs T3, client B
runs T5, client A runs T4. This schedule implies
phenomenon P0. We describe technique for analyzing
and testing application programs for potential offline
concurrency faults in the next section. In this paper, we
only consider concurrent transactions running at the
SERIALIZABLE, the most stringent level. All
concurrency problems at a higher isolation level could
also appear at a lower isolation levels. Additional faults
could occur if the application programmer erroneously
assigns a less stringent level than needed.

4. Testing for concurrency failures

Testing concurrent systems is notoriously difficult due
to non-determinism and synchronization problems.
Multiple executions of the same test may have different
interleavings and generate different results, making it
particularly difficult to diagnose and debug faults that
have been detected. In addition to the problems that can
occur in sequential programs, concurrent programs have
their unique problems: data access control and
synchronization. In a database application, there is
usually no direct synchronization between different
application instances. Concurrency problems may occur
when two application instances simultaneously access
and/or update the same database element (the same
attribute of the same table) directly or indirectly through
host variables storing local copies of the same database
element. Based on the above observations, we propose
the following procedure to test transaction concurrency.

1. Find schedules that could potentially produce
concurrency failures. A schedule can be represented by
the form S = <Ti

A, Tj
B, Tk

A>, where Ti, Tj and Tk are
transactions and are not necessarily distinct2, and A and B
are two different application instances. Section 4.1
describes relevant schedules and Section 4.2 gives an
algorithm for finding them.
 2. Generate test cases to execute the given transactions
for each generated schedule. Transactions in a schedule
usually access the same database element (table and
attribute). To guarantee that all transactions in a schedule
access the same tuple of the same database table, the test
case generator should populate the inputs to these
transactions properly.
 3. Execute the test cases in such a way that the
interleaving of executions of application instances
conforms to the specified schedule. This can be achieved
by using either of the two methods: modification of the
concurrency control engine in the DBMS backend and
instrumentation of the application source code.

4.1. Failure-prone transaction schedules

 The simplest schedule which may induce
concurrency failure is one that involves only three
transactions and has the form of <Ti

A, Tj
B, Tk

A>. A naïve
approach would generate all possible triples of the form
<Ti

A, Tj
B, Tk

A>. However, many of them are not relevant
since the transactions access totally different data
elements. It is more efficient if we only generate
transaction sequences accessing the same data element
directly or through host variable. We call such schedules
interesting. A sequence <Ti

A, Tj
B, Tk

A> is legal if an

2 Ti , Tj , and Tk are not necessarily distinct.

application instance A can follow a path containing Ti
followed by Tk.

To define legal schedules, we introduce a transaction
control flow graph (TCFG) based on the application
source code. Each node represents a host language
statement or an embedded SQL statement. There is a
directed edge from node i to node k if the execution of i
can be followed immediately by the execution of k. All
the consecutive non-transaction nodes (those nodes
consisting of host language statements only) can be
collapsed together to reduce the size of the TCFG as long
as the control structure of the application is not changed.
The TCFG is constructed by using source code analysis
tools [8]. The flow information inside a transaction is
only helpful in testing transaction consistency. In this
paper, the TCFG is further simplified by collapsing all
SQL statements of one transaction into one single
transaction node.
 Each transaction node in the TCFG is associated with
the set of database elements and the set of host variables
the transaction accesses. This information can be obtained
from the AGENDA tool set introduced in [5]. When SQL
queries in a transaction are parsed by the AGENDA
Parser, information about all database elements to be
accessed (reads or writes) is stored in the table
xact_read_write, and information about host variables to
be accessed (defines or uses) and their associated tables
and attributes is stored in the table xact_parameter. For
instance, table xact_read_write for Example 1 and table
xact_parameter for Example 2 are given in Tables 2 and
Table 3.

Table 2: table xact_read_write for example 1, R
stands for “READ”; W stands for “WRITE”.

XactId Op Tname Aname
T1 R Flight Available
T1 R Flight Fltnum
T2 R Flight Fltnum
T2 W Flight available

Table 3: table xact_parameter for example 2, U

stands for “USE”; D stands for “DEFINE”.
XactId Param Op Tname Aname
T3 ol_total D order_line ol_amount
T3 c_id U order_line c_id
T4 ol_total U customer c_balance
T4 c_id U Customer c_id
T5 c_id U customer c_id
T5 amount U customer c_balance

 As illustrated in Example 1, if two transactions Ti, and
Tk in the same instance access the same data element in
some path of the TCFG, there is a potential concurrency
failure: a transaction Tj in another instance could access
the same data element; if their operations are not

compatible (i.e., at least one operation is WRITE) a
concurrency failure could occur.
 Similarly, as illustrated in Example 2, if two
transactions Ti and Tk define/use the same host variable in
some path of TCFG, and a transaction Tj in another
application instance writes the data element associated
with this host variable, then Tj may change the data
element, so the host variable is not consistent with the
associated data element. Again, a concurrency error may
occur.
 In Example 2 above, in Tk client A is using a host
variable (defined in Ti) whose value is out of date because
client B updated the data element from which the host
variable is defined before client A used the host variable.
More generally, Tk could use a host variable that depends
on the host variable defined in Ti, through some chain of
definitions and uses.
 By considering all possible interleavings between a
transaction Tj in one instance and transactions (Ti, Tk)
from another instance, we list all the possible access
patterns and possible errors with each pattern in Table 4
and Table 5.

Table 4: access patterns and their problems.
Transactions (Ti, Tk) in one instance and Tj in
another access the same database element.

Ti R W R R R W W W
Tj R R R W W W W R
Tk R R W R W R W W
Conflict N N N Y Y Y Y Y
Pheno-
mena

 P2 P0 P0
P3

P0 P1

Table 5: Access patterns and their problems.
Transaction (Ti, Tk) belongs to an instance, a host
variable is defined/used in Ti and Tk. Tj in another
instance accesses the database element associated
with the host variable in Ti.

Ti U D U U U D D D
Tj R R R W W W W R
Tk U U D U D U D D
Conflict N N N Y Y Y Y N
Pheno-
mena

 P0
P1
P2
P3

P0
P1
P2
P3

P0
P1
P2
P3

P2
P3

4.2. Generation of interesting and legal schedules

A flow-sensitive data flow analysis technique is used
to construct interesting and legal schedules. Data flow
analyses (DFAs) are widely used in static program
analysis [1]. In DFA, a graph is constructed for the
control and/or data flow in the program. Each node

represents a statement or a block of statements. Control
and data information are associated with each node and
can be propagated along edges. Information associated
with flow graph nodes is usually iteratively re-computed
by the DFA algorithm.
 Each node in the TCFG that correspond to a
transaction is associated with a set of tuples in form of <
Tk, op , elm >, where data element elm is either a database
element (table.attribute) or a host variable, and op is the
operation (R/W or D/U) of transaction Tm on elm.

A DFA algorithm similar to the well-known reaching
definitions algorithm is used to find pairs of transactions
that access related data and lie on the same control path.
For each node GEN and KILL sets are defined. They
represent both data element flow information and host
variable flow information:

GEN[Tk] = {< Tk , op , elm > | < Tk , op , elm >
 ∈ (xact_read_write ∪ xact_parameter) }
KILL[Tk] = {<Tj , op1 , elm > | <Tj , op1 , elm >
 ∈ (xact_read_write ∪ xact_parameter) ∧ (k≠ j)
 ∧ (<Tk, op2, elm > ∈ GEN [Tk]) ∧ op2 ∈ {W,D} }

For each node (transaction) Tk, GEN[Tk] contain a
tuple for each data element elm accessed by Tk. For each
data element elm that is updated in node Tk , KILL[Tk]
includes all tuples involving a data element, elm, that is
defined or written in Tk. IN[Tk] and OUT[Tk] can be
calculated iteratively by using a work-list algorithm
derived from the method for computing the Reaching
Definitions [1], which finds all the tuples reaching node
Tk by solving the following equations:

 IN[Tk] = ∪Ti ∈ predecessors(Tk) (OUT [Ti]).

OUT[Tk] =(IN [Tk] – KILL [Tk]) ∪ GEN [Tk]

 After the algorithm converges, IN[Tk] and GEN[Tk]
can be used to derive pairs of transactions accessing the
same data element in the same execution path. If a tuple
<Ti, op1, elm > is in the IN set of Tk and <Tk, op2, elm >
is in GEN set, then a tuple < Ti, op1, Tk, op2, elm > is
added to the XactPair set indicating that transactions Ti
and Tk access the same data element elm. The interesting
and legal schedule XactSchedule set can be generated
based on the XactPair set, table 4 and table 5. The
procedures for computing XactPair set and XactSchedule
set are given in Figure 5.

Gen_XactPair(Tk) {

 For each tuple <Ti, op1, elm > in IN[Tk]
 If exists tuple <Tk, op2, elm > in GEN[Tk]
 Add <Ti, op1, Tk, op2, elm > to XactPair

}
Gen_XactSchedule() {

For each tuple <Ti, op1, Tk, op2, elm> in XactPair

 If exists tuple <Tj, op3, elm > ∈ GEN(Tj) ∧
 (<op1, op3, op2> has conflict)
 Add <Ti

A, Tj
B, Tk

A> to the XactSchedule
 }
 Figure 5: Generation of transaction pairs and
schedules

 For instance, by applying the above algorithm to
Example 1, <T1, R, T2, R, flights.fltNum> and <T1, R, T2,
W, flights.avail> are added to XactPair because both T1
and T2 access the same data items flights.fltNum and
flights.avail. Both transactions read data element flights.
fltNum only, and no transaction write flights.fltNum, so no
schedule is generated. For data element flights.avail, two
schedules are generated: <TA

1, T1
B, TA

2> and <T1
A, T2

B,
T2

A>.
 Based on the same reasoning, < T3, U, T4, U, c_id>
and < T3, U, T4, U, ol_total > are added to XactPair for
Example 2 and schedule <TA

3, TB
5, TA

4> is generated.
Notice that there are no pairs XactPair < T3, U, T5, U,
c_id> and < T4, U, T5, U, c_id> because T3 (or T4) and
T5 do not appear in the same execution path, assuming
that there is no control path in the calling program that
calls Delivery() then calls New_Order()3. It is clear that,
by using flow-sensitive analysis techniques, the number
of generated schedules can be reduced dramatically.

4.3. Generation and execution of test cases for
schedules

 The above (static) analysis is conservative, in the
sense that every schedule corresponding to the
phenomena in Table 4 and Table 5 is generated.
Consequently, if no schedules are generated, the tester
can be assured that none of the concurrency failures
under consideration can occur. A schedule that is
generated may or may not lead to a concurrency failure.
In the remaining (dynamic) phases, we attempt to execute
the anomalous schedules in order to exhibit failures.
Some schedules may be infeasible because the required
paths cannot be executed (due to unsatisfiable relations
among variables), and some schedules may not cause
concurrency failures if data values are not correlated.
Also, a schedule might indicate a phenomenon (P1, P2 or
P3) which is acceptable for the application.

To enforce the generated schedule (or partial
schedule), test cases must be generated in such a way that
transactions in the given schedule manipulate the same
tuple (row) in the database table. By scrutinizing the
documentation of the application design and
implementation, testers can get some ideas about each

3 The TCFG and data flow analysis are currently
intraprocedural. Adapting them to handle interprocedural
flows would yield more accurate analysis.

transaction, and figure out which transactions will be
executed for each test template. Therefore, to generate
test cases, we first need to identify appropriate test
templates and then instantiate them.

In Example 1, the test template for schedule <T1
A, T2

B,
T2

A> involves the executions of T1 and T2. For test case
of this test template, input to T1

A, T2
A, and T2

B must be
generated appropriately such that the executions of these
transactions indeed follow the given schedule. To make
sure that transactions operate on the same tuple in the
database, some parameters (host variables) in the
preconditions of these transactions must be instantiated
with the same values.

Generally speaking, for a test case for a database
application, the DBMS scheduler will execute the test
according to its own scheduling policy, and the schedule
chosen by the DBMS may not be the one in which we are
interested. To guarantee that the test is executed
according to the desired schedule, we suggest two
methods, modification of the DBMS transaction manager
and instrumentation of the application. Both methods use
shared memory and semaphores for synchronization and
coordination of different application instances. Shared
memory is used since it is the fastest form of IPC (Inter-
process Communication) and shared data does not need to
be copied between processes [19].
 In a DBMS system, the transaction manager monitors
transaction executions, guarantees transaction ACID
properties, and recovers from failure [3]. To modify the
transaction manager so that it will execute our tests
according to our policy, we consider two scenarios. First
consider complete schedules in which the execution order
of all transactions is specified. We modify the transaction
manager so that it reads information about the desired
schedule (e.g., from a configuration file) into its shared
memory. Semaphore is used to control the access by all
DBMS back-ends. Based on the connection identifier (i.e.
process identifier) and transaction identifier, the
transaction manager can determine if the current
application instance is the desired one. If not, the manager
just schedules it in a normal way. Otherwise, the manager
will not schedule the instance until it is the instance’s
turn.
 The second scenario is that only a partial schedule is
generated and the execution order of a subset of
transactions is specified. Different transactions may
contain the same query. To distinguish transactions, we
assign a static unique identifier (xid) for each transaction
by instrumenting the following statement to the head of
each transaction:
 Select * from xact_table where xact_table.id = xid
By xid, the transaction manager can identify whether or
not the current transaction should be regulated and
subjected to the specified schedule. If the specified
schedule is non-executable for the given test case, the

transaction manager will raise an exception and abort the
test after waiting for some given time.
 The second way to execute a schedule is to add control
in the application source code. Similar to the first method,
information about the desired schedule is read into shared
memory from a configuration file. The shared memory
can be accessed by all instances; however, the access is
mutually exclusive via semaphores. The instrumentation
tool finds the starting points of all transactions involved
in the schedule, and adds a function call to
wait_for_my_turn(). This function will access the
scheduling information in the shared memory, and check
if it is the current transaction’s turn to execute. If not, the
transaction yields its execution and keeps on waiting.
Otherwise, the instance will execute until the end of the
current transaction. The above procedure is repeated until
all instances are finished. Similar techniques discussed in
the previous method can be used to handle non-
executable schedules.
 In the first method, application instances are
independent of each other and they can run on different
machines. The second method is independent of the
DBMS systems and has better portability and flexibility.
In section 6, we will compare their overhead and
efficiency.

5. Testing transaction atomicity/durability

The property of atomicity/durability is ensured by
DBMS systems. The atomicity property requires that we
execute a transaction to completion. If a transaction fails
to complete for some reasons (e.g., system crash), the
DBMS system must undo any effect the transaction
imposed on the database. However, if a transaction is
chopped into two or more transactions due to buggy
design/implementation, then the DBMS system can not
recover if the application fails after the first transaction
commits. Again, this is the offline concurrency problem,
which cannot be solved by the DBMS itself. Example 3
is uch a buggy implementation of balance transfer in a
bank application.

Example 3: balance transfer application
CREATE TABLE checking
 (acctNum INT, balance INT);
CREATE TABLE saving
 (acctNum INT, balance INT);
Transfer () {
 SELECT balance into :out_balance FROM
 saving WHERE acctNum = :in_acct1;
 If (:out_balance > :amount) {
 UPDATE saving SET balance = balance –
 :amount WHERE acctNum = :in_acct1;

 COMMIT; // Transaction T6
 // Erroneously ends T6 and begins T7

 UPDATE checking SET balance = balance
 + :amount WHERE acctNum = :in_acct2;
 COMMIT; //T7 }
}

Figure 6 Partial C program for bank transfer.

To test for atomicity/durability problems, we

instrument the database application source code in the
following way. For each transaction in the test, we find its
end point (commit or rollback), and insert code which
sends a signal to AGENDA’s Validator and then
suspends on the pause() function. After verifying that
database is in a consistent state, the State Validator will
send a signal back to the application to resume its
execution. To verify database states, the State Validator
needs to know the preconditions and post-conditions of
transactions. For instance, in example 3, the precondition
and post-condition are that the sum of two accounts
involved does not change. This knowledge is then
converted into a check constraint in the log tables.

6. Preliminary evaluation

 We have implemented the proposed methods and
measured some aspects of their performance on the TPC-
C benchmark. We performed all experiments on the
platform of Sun ULTRA 10 workstation. The CPU clock
rate is 440 Mhz. Main memory is 384 MB. The TPC-C
application is implemented in C programming language
with embedded SQL. The instrumentation is implemented
in Perl. TPC Benchmark™ C (TPC-C) is the standard
benchmark for online transaction processing (OLTP). It is
a mixture of read-only and update-intensive transactions
that simulate the activities found in a complex OLTP
[20]. The TPC-C application models a wholesale supplier
managing orders and stocks. The five OLTP transactions
are new-orders, payment, order-status, delivery, and
stock-level.
 To evaluate the time overhead of the proposed
methods, we chop each original transaction into 2
transactions arbitrarily. This introduces potential
concurrency faults. We run the TPC-C application in
three different ways and record their corresponding CPU
elapse time.
 S0: The original five transactions are executed without
 any instrumentation or scheduling enforcement.
 S1: The desired schedule is enforced by the DBMS
 transaction manager.
 S2: The transactions are instrumented in the application
 source code according to the desired schedule.

We ran S0, S1 and S2 separately 5 times and recorded
their total elapse time in the first three rows of Table 6.
The unit of time is seconds. The last two rows of Table 6

show the overhead for situations S1 and S2, defined as
OHi = (Si-S0)/S0 * 100% (i=1 or 2).
 As we see from Table 6, the overhead for S1 is much
smaller than that for S2, indicating that modification of
the DBMS transaction manager is more efficient than
instrumentation of application source code in terms of
running time.

Table 6: Overhead based on TPC-C transaction
 new_order order-status delivery
S0 7.980 1.049 5.465
S1 8.946 1.123 6.277
S2 16.186 3.954 14.428
OH1 12% 7% 15%
OH2 102% 277% 264%

 In the TPC-C application, there are 34 queries. We
modified the application so that each single query is
considered as a transaction, and the data and control
flows of the original program are kept unchanged. Then
we found the total number of schedules consisting of 3
transactions for the following 4 different situations, and
their results are given in Table 7.
 W1: any 3 transactions.
 W2: 2 of the 3 transactions in the same application
 instance access the same data element or host
 variable.
 W3: 2 of the 3 transactions in the same application
 instance are generated from XactPair.
 W4: 2 of the 3 transactions in the same application
 instance are generated from XactPair; only those
 schedules are considered which match the patterns
 that may reveal concurrency errors in table 4 or
 table 5.

Table 7: Schedules analysis
Situation W1 W2 W3 W4
Schedules 39304 916 127 11

 As we can see from Table 7, by taking account of the
information about the data element, the number of
schedules to consider can be reduced significantly
(W2/W1= 2.33%). Similarly, if we also consider data
flow information, we can further reduce the number of
schedules (W3/W2 = 13.43%). Finally, our proposed
method also considers the access patterns; the number of
interesting schedules is the smallest (W4/W3 = 8.66%).

7. Related work

 Many static and dynamic analysis techniques have
been proposed for the difficult problem of detecting
concurrency related faults. These techniques must be

tailored to the concurrency model of the programming
language under test.

Model checking tools [13] systematically explore the
state spaces of concurrent/reactive software systems.
They have been shown to be effective in verifying many
types of properties, including absence of specific
concurrency faults. Although there has been substantial
progress in applying model checking to software [7], it
has not been applied to database application programs,
where the very large state space due to the database poses
a significant challenge.

Instrumentation techniques are widely used in white-
box testing. Contest [9] is a tool for detecting
synchronization faults in multithreaded Java programs.
The program under test is instrumented with sleep(),
yield(), and priority() primitives at points of shared
memory accesses and synchronization events. At run
time, based on random or coverage decisions, Contest can
determine whether the seeded primitive is to be executed.
A replay algorithm facilitates debugging by saving the
orders of shared memory accesses and synchronization
events. This kind of instrumentation technique is
integrated into our tools for testing database applications.

Race conditions are the major concurrency error which
occurs in concurrent systems. ExitBlock [3] is a practical
testing algorithm that systematically and deterministically
finds program errors resulting from unintended timing
dependencies. ExitBlock executes a program or a portion
of a program on a given input multiple times,
enumerating meaningful schedules in order to cover many
program behaviors. However, in database applications, a
race condition occurs when two or more application
instances try to access the same data element in the
database. This can be controlled by the transaction
manager of the DBMS system. A major concern in
database applications is how to group queries into
transactions so that a balance between efficiency and
robustness can be achieved.

Flow analysis techniques are used in many fields such
as compilation, code analysis, and reverse engineering.
Reachability testing [14] systematically executes all
possible orders of operations on shared variables in a
program consisting of multiple processes. It parallelizes
the executions of different schedules to speed up testing.
Reachability testing requires explicit declarations of
which variables are shared. In contrast, for DB
application testing, we can identify the shared variables
(data elements) relatively easily and use this information
to limit testing to those schedules that are potentially
problematic.

8. Conclusions and future work

To test database applications, we have proposed a
framework and have designed and implemented a tool set

to partially automate the testing process. In this paper, we
extend our previous work to test transaction concurrency
at the isolation level of SERIALIZABLE and transaction
atomicity/durability. We have identified the potential
offline concurrency problems in database applications. A
data flow analysis technique is used to identify interesting
and legal schedules, which may reveal concurrency
errors. Two approaches are suggested to execute a given
schedule. The instrumentation method is also used to test
atomicity/durability. Preliminary empirical evaluation
based on the TPC-C benchmark is presented and
demonstrates our approach’s effectiveness and efficiency.
 Testing database applications involves testing that
transactions lead to consistent database states and
transform the database space in manner consistent with
the application’s specification and that no failures occur
in concurrent executions that would not occur in serial
executions. This paper focuses on the last of those issues.
Techniques for checking consistency are discussed in a
related paper [8]. Future work includes techniques to
expose potential problems associated with “dirty read”,
“non-repeatable read”, and “phantom”, for transactions
running at isolation levels lower than SERIALIZABLE.
We also plan more extensive empirical evaluation.

Acknowledgments

The authors are grateful for the comments and
suggestions from anonymous reviewers. We would thank
David Chays, Gleb Naumovich, Torsten Suel, and Alex
Delis for helpful discussions.

References

[1] A. Aho, R. Sethi, and J. Ullman, Compipler:
Principles, Techniques, and Tools, Addison-Wesley,
1988.
[2] H. Berenson, et al. “A critique of ANSI SQL
Isolation Levels” ACM Special Interest Group on
Management of Data Conference, San Jose, CA USA
1995.
[3] D. Bruening, J. Chapin, “Systematic testing of
multithreaded programs”, MIT/LCS Technical Memo,
LCS-TM 607, April 2000.
[4] D. Chays, P. Frankl, et al. “A Framework for Testing
Database Application” ACM International Symposium on
Software Testing and Analysis, Portland, Oregon, 2000.

[5] D. Chays, Y. Deng, et al. “An AGENDA for Testing
Relational Database Application”, Journal of Software
Testing, Verification and Reliability, to appear.
[6] D. Chays, Y. Deng, “Demonstration of AGENDA
Tool for Testing Database Applications”, International
Conference on Software Engineering, Portland, Oregon,
USA, 2003.
[7] J. Corbett, M. Dwyer, et al. “Bandera: Extracting
finite-state models from Java Source Code”, International
Conference on Software Engineering, Limerick, Ireland,
2000.
[8] Y. Deng, D. Chays and P. Frankl, “Testing database
transaction consistency”, Technical Report, CIS
Department, Polytechnic University, 2003.
[9] O. Edelstein, E. Farchi, et al. “Multithreaded Java
program test generation”, IBM Systems Journal, Vol. 41,
2002.
[10] M. Fowler, Patterns of Enterprise Application
Architecture, Addison-Wesley & Benjamin Cummings,
2003.
[11] H. Garcia-monlina, J. Ullman, J. Widom, Database
Systems: the Complete Book, Prentice Hall, 2000.
[12] J. Gray, A. Reuter, Transaction Processing: Concept
and Techniques, Morgan Kaufmann Publishers Inc.,
1993.
[13] G. Holzmann, “The Spin Model Checker”, IEEE
Transaction on Software Engineering, May 1997.
[14] G. Hwang, K. Tai, and T. Huang, “Reachability
testing: an approach to testing concurrent software”,
Inernational. Journal on Software Engineering and
Knowledge Engineering, Vol. 5, No. 4, 1995, 493-510.
[15] J. Melton, A. Simon, SQL: 1999 Understanding
Relational language components, Morgan Kaufmann
Publishers Inc., 2002.
[16] P. O’Neil, Database: Principles, Programming, and
Performance, Morgan Kaufmann Publishers, 2000.
[17] T. Ostrand and M. Balcer. “The category-partition
method for specifying and generating functional tests”.
Communication of ACM, Vol. 31 no. 6, 1988.
[18] PostgreSQL Global Development Team,
PostgreSQL, http://www.postgresql.org, 2002.
[19] R. Stevens, Advanced programming in the UNIX
environment, Addison-Wesley, 1993.
[20] TPC-Benchmark C. Transaction Processing Council.
http://www.tpc.org, 2002.

