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Abstract 
 

Database application programs are often designed to 
be executed concurrently by many users. By grouping 
related database queries into transactions, DBMS 
systems can guarantee that each transaction satisfies the 
well-known ACID properties: Atomicity, Consistency, 
Isolation, and Durability. However, if a database 
application is decomposed into transactions in an 
incorrect manner, the application may fail when executed 
concurrently due to potential offline concurrency 
problems.  

This paper presents a dataflow analysis technique for 
identifying schedules of transaction execution aimed at 
revealing concurrency faults of this nature, along with 
techniques for controlling the DBMS or the application 
so that execution of transaction sequences follows 
generated schedules. The techniques have been integrated 
into AGENDA, a tool set for testing relational database 
application programs. Preliminary empirical evaluation 
is presented. 
 
1. Introduction 
 

Database and transaction processing systems occupy a 
central position in our information-based society. It is 
essential that these systems function correctly and provide 
acceptable performance. Substantial effort has been 
devoted to insuring that the algorithms and data structures 
used by Database Management Systems (DBMSs) work 
efficiently and protect the integrity of the data. However, 
relatively little attention has been given to developing 
systematic techniques for assuring the correctness of the 
related database application programs. Given the critical 
role these systems play in modern society, there is clearly 
a need for new approaches to assess the quality of the 
database application programs.  

To address this need, we have developed a systematic, 
partially-automatable approach and a tool set based on 
this approach to testing database applications [4,5,6] 
Initially, we focused on problems associated with 
individual queries. In [8] we explore problems dealing 

with transactions, comprising groups of related queries. 
This paper focuses on concurrency problems associated 
with multiple simultaneously running instances of an 
application program. 

Many database applications are designed to support 
concurrent users. For example, in an airline reservation 
system, many clients can simultaneously purchase tickets. 
To avoid simultaneous updates of the same data item and 
other potential concurrency problems, database 
applications employ program units called transactions, 
consisting of a group of queries that access, and possibly 
update, data items. The DBMS schedules query 
executions so as to insure data integrity at transaction 
boundaries while trying to utilize resources efficiently.  

Although the DBMS employs sophisticated 
mechanisms to assure that transactions satisfy the ACID 
properties – Atomicity, Consistency, Isolation, and 
Durability – an application can still have concurrency-
related faults if the application programmer erroneously 
placed queries in separate transactions when they should 
have been executed as a unit. The focus of this paper is 
on detecting faults of this nature. 

The rest of the paper is organized as follows. Section 2 
introduces the background, including the AGENDA tool 
set for database application testing. Section 3 identifies 
some typical transaction concurrency problems. Our 
approach to test for concurrency problems is presented in 
Section 4. Section 5 discusses the problems with 
transaction atomicity/durability in database applications 
and our solution. Section 6 presents preliminary empirical 
evaluation. Section 7 describes the related work. Section 
8 concludes with our contributions and discusses future 
work. 

 
2. Background 
 
2.1. Database Transaction 
 

A transaction is a means by which an application 
programmer can package together a sequence of database 
operations so that the database system can provide a 
number of guarantees, known as the ACID properties of a 



transaction [11]. Atomicity ensures that the set of updates 
contained in a transaction must succeed or fail as a unit. 
Consistency means that a transaction will transform the 
database from one consistent state to another. The 
isolation property guarantees that partial effects of 
incomplete transactions should not be visible to other 
transactions. Durability means that effects of a committed 
transaction are permanent and must not be lost because of 
later failure. Therefore, transactions can be used to solve 
problems such as creation of inconsistent results, 
concurrent execution errors within transactions and lost 
results due to system crash [16]. 

A database application program typically consists of 
SQL statements embedded in a source language, such as 
C or Java. Ends of transactions are delimited by the 
keyword COMMIT (or ROLLBACK). Once a transaction 
begins execution, the DBMS assures that no other 
transaction executes a statement that interferes with this 
transaction (e.g. by updating data being accessed by the 
transaction) until the transaction commits or rolls back. 
The system can initiate a rollback when it enters a state in 
which ACID properties may be violated, either due to 
overly optimistic scheduling decisions or to external 
events such as system failure. When a rollback occurs, the 
system is restored to the state before execution of the 
transaction. Once a transaction commits, all of the 
changes it has made to the database state become 
permanent. 
    In this paper, we consider application programs written 
in a high-level language such as C, with SQL statements 
interspersed. The SQL statements may involve host 
variables, which are variables declared in the host 
program (host variables are preceded by colons). Multiple 
clients may execute an application program concurrently. 
In this case, each client has its own host variables. The 
only “variable” shared by concurrently executing clients 
is the database. In this paper we do not consider stored 
procedures or shared variables arising through multi-
threading within an application instance. 

 
2.2. AGENDA Tool Set 

 
In our previous work [4,5], we have discussed issues 

arising in testing database systems, presented an approach 
for testing database applications, and described 
AGENDA, a set of tools based on this approach. In 
testing such applications, the states of the database before 
and after the application’s execution play an important 
role, along with the user’s input and the system output. A 
framework for testing database applications was 
introduced. A complete tool set based on the framework 
has been prototyped. The components of this system are: 
AGENDA Parser, State Generator, Input Generator, State 
Validator, and Output Validator. 

AGENDA takes as input the database schema of the 
database on which the application runs, the application 
source code, and “sample value files”, containing some 
suggested values for attributes. The tester interactively 
selects test heuristics and provides information about 
expected behaviors of test cases. Using this information, 
AGENDA populates the database, generates inputs to the 
application, executes the application on those inputs and 
checks some aspects of correctness of the resulting 
database state and the application output. 

This approach is loosely based on the Category-
Partition method [17]: the user supplies suggested values 
for attributes, optionally partitioned into groups, which 
we call data groups. The data are provided in the sample 
value files. The tool then produces meaningful 
combinations of these values in order to fill database 
tables and provide input parameters to the application 
program. Data groups are used to distinguish values that 
are expected to result in different application behaviors. 
For example, in a payroll system, different categories of 
employees may be treated differently. Additional 
information about data groups, such as probability for 
selecting a group, can also be provided via sample value 
files. 

Using these data groups and guided by heuristics, 
AGENDA produces a collection of test templates 
representing abstract test cases. The tester then provides 
information about the expected behavior of the 
application on tests represented by each test template. For 
example, the tester might specify that the application 
should increase the salaries of employees in the “faculty” 
group by 10% and should not change any other attributes. 
In order to control the explosion in the number of test 
templates and to force the generation of particular kinds 
of templates, the tester selects heuristics. Finally, 
AGENDA instantiates the templates with specific test 
values, executes the test cases and checks that the output 
and new database state are consistent with the expected 
behavior indicated by the tester. The architecture of 
AGENDA is shown in Figure 1. 

The first component (AGENDA Parser) extracts 
relevant information from the application’s database 
schema, the application queries, and tester-supplied 
sample value files, and then makes this information 
available to the other four components by creating an 
internal database called AGENDA DB to store the 
extracted information. The AGENDA DB is used and/or 
modified by the remaining four components. AGENDA 
Parser is a modified version of from the open-source 
DBMS Postgresql parser [18]. 
The second component (State Generator) uses the 
database schema along with information from the tester’s 
sample value files indicating useful values (optionally 
partitioned into different groups of data) for attributes, 
and populates the database tables with data satisfying the 



integrity constraints. It retrieves the information about the 
application’s tables, attributes, constraints, and sample 
data from the AGENDA DB and generates an initial DB 
state for the application. We refer to the generated DB as 
the application DB. Heuristics are used to guide the 
generation of both the application DB state and 
application inputs.  

 
     

     Figure 1: Architecture of the AGENDA tool set  
 
The third component (Input Generator) generates input 

data to be supplied to the application. The input data are 
created by using information generated by the AGENDA 
Parser and State Generator components, along with 
information derived from parsing the SQL statements in 
the application program and information that is useful for 
checking the test results. 

The fourth component (State Validator) investigates 
how the state of the application DB changes during 
execution of a test. It automatically constructs a log table 
and triggers/rules for each table in the application 
schema. The State Validator uses these triggers/rules to 
capture the changes in the application DB automatically, 
and uses database integrity constraint techniques to check 
whether the application DB state has changed in the right 
way. 

The fifth component (Output Validator) stores the 
tuples satisfying the application query and constraints in 
the log tables. It uses integrity constraint techniques to 
check that the preconditions and post-conditions hold for 
the output returned by the application. 
 
3. Transaction concurrency problems 
 

Concurrency is one of the trickiest aspects of software 
development. Even if an application runs correctly for all 
inputs in an isolated environment, it may have incorrect 
behavior when running concurrently with other instances 
of the same application. We define concurrency failure to 
be a failure that occurs when two or more instances 

execute concurrently, which could not occur if the 
instances executed serially. Transaction mechanisms in a 
DBMS provide protection for the shared resource (i.e., 
the database). However, designers must use them 
carefully to assure correct behavior.  

The transaction manager of a DBMS schedules the 
execution of queries from concurrent instances. It assures 
that no concurrency failures occur, provided that the 
application programmer uses transactions appropriately.  
Without intervention by the transaction manager, the 
following phenomena are possible for two concurrent 
database transactions Ti and Tj (executed concurrently by 
two instances)[2, 12]. 

 
P0 (Lost update/Dirty Write): The update to a data 

element committed by Ti is ignored by transaction Tj, 
which writes the same data element based on the original 
value. 

P1 (Dirty Read): Ti modifies a data element. Tj reads 
that data element before Ti commits. If Ti rolls back, Tj 
will use an uncommitted value which does not exist in the 
database. 

P2 (Non-repeatable Read): Ti reads a database element 
twice, once before transaction Tj updates it and once after 
transaction Tj has updated it and commits.  These two 
read operations return different values for the same data 
element. 

P3 (Phantom): Ti reads a set of tuples based on some 
specified conditions. Tj then executes and may insert one 
or more tuples that satisfy the same conditions as Ti. 
When Ti repeats the reading, it will obtain a different set 
of tuples. The difference between P2 and P3 is that new 
tuples appear in P3 while the same tuple with different 
values may be read in P2.  
 
    DBMS systems allow transactions to run at four 
isolation levels from least stringent (highest concurrency) 
to most stringent (lowest concurrency) [15]: READ 
UNCOMMITTED (level 0), READ COMMITTED (level 
1), REPEATABLE READ (level 2), SERIALIZABLE 
(level 3). P0 is impossible at any isolation level while P1, 
P2, and P3 may happen at levels 0, 1 and 2. When 
transactions are executed at the SERIALIZABLE level by 
default, the DBMS transaction manager assures that none 
of the four phenomena can occur. It schedules execution 
of the queries in the concurrent transactions in such a way 
that the result of the concurrent executions is the same as 
that of a sequential execution of transactions in some 
certain order.  

However, phenomena analogous to P0, P1, P2, and P3 
may occur in an application even if all transactions run at 
the SERIALIZABLE level. In this case, these phenomena 
occur between transactions instead of within a single 
transaction and they are classified as offline concurrency 
problems [10], which occur when data are manipulated 



across multiple database transactions. A buggy 
transaction design/implementation may group queries into 
transactions in an incorrect manner. In the worst case, it 
may put each query into a separate transaction. These 
incorrect designs and/or implementations of database 
applications may cause concurrency failures. 
Concurrency control mechanisms in DBMS systems 
cannot avoid these problems.  
      A common scenario in a database application is that 
the application selects some data from a database, 
processes the data, and updates the database with new 
data. Consistency constraints can be violated if more than 
one instance tries to modify the same data element 
concurrently. To avoid interference from other instances, 
related operations should be grouped into a transaction. 
The entire application can be implemented as a 
transaction to avoid concurrency problems, but this would 
prevent any concurrency since all instances would 
essentially be forced to execute sequentially. To achieve 
some degree of concurrency, an application is composed 
of a set of transactions. There is a close relation between 
the concurrency and the number of transactions in the 
application. The incorrect manipulation of this relation to 
over-optimize efficiency easily introduces concurrency 
faults into the system. The examples below illustrate 
offline concurrency problems. 
    A partial and buggy implementation of an airline 
reservation system is shown in Figure 2. The attribute 
avail in table Flights represents the number of seats still 
available on a given flight.  In line 5, the number of seats 
available on a given flight is stored in the host variable 
avail and  is decremented by 1 in line 6 indicating that 
one seat was booked for the flight. The application 
erroneously commits between lines 5 and 6, thus allowing 
another concurrent application instance to modify the 
database between executions of these lines. 

 
          Example 1: Ticket booking system 
CREATE TABLE Flights(fltNum INT, avail INT); 
1)  BEGIN DECLARE SECTION; 
2)    int flight; 
3)   int avail; 
4)  END DECLARE SECTION; 
5)  void chooseSeat( ) { 
          EXEC SQL SELECT avail INTO :avail   
              FROM Flights WHERE fltNum = :flight 

    5’)     COMMIT;           //Transaction T1  
              //  Erroneously ends T1 and begins  T2 

6)      if (avail > 0) { 
             EXEC SQL UPDATE Flights SET  
                avail =:avail -1 WHERE fltNum = :flight ; 
7)      COMMIT;  //  Transaction T2   
      } 
 

Figure 2: A sample database application system 
illustrating a potential offline concurrency error. 

If two clients A and B run chooseSeat() 
simultaneously, the following schedule could occur: 
client A runs T1, client B runs T1, client A runs T2, client 
B runs T2.  After execution of this schedule, avail is 
decreased by 1 instead of 2.  It implies phenomenon P0.  

Figure 3 shows a partial implementation of a 
warehouse application. The sum of attribute ol_amount in 
the table customer represents the total balance for one 
order. In line 1, this value is stored in the host variable 
ol_total. In line 2, c_balance is increased by ol_total 
indicating that this order is delivered. The application 
erroneously commits between line 1 and line 2, thus 
allowing another concurrent application instance to 
modify the database between the executions of these 
lines. 

 
           Example 2: A warehouse application  
CREATE TABLE order_line  
       (o_id INT, ol_amount MONEY ); 
CREATE TABLE customer  
       (c_id INT, c_balance MONEY);  
Delivery ( ) { 
1) SELECT SUM(ol_amount) INTO :ol_total  
           FROM order_line WHERE c_id = :c_id;   
2’)   COMMIT;  // Transaction T3 

            //  Erroneously ends T3 and begins  T4 
2)    UPDATE customer SET c_balance =  
            c_balance + :ol_total where c_id = :c_id;   
3)    COMMIT;   // T4  
} 
New_order ( ) { …. 
       INSERT INTO order_line VALUES  
             (:c_id, :amount); // T5  
} 
 
Figure 3: Partial implementation of TPC-C 

warehouse application. 
 

      If two clients, A and B, run Delivery( ) with the same 
c_id simultaneously, then the following schedule  could 
cause the database to be inconsistent between the 
order_line and customer tables: client A runs T3, client B 
runs T5, client A runs T4. This schedule implies 
phenomenon P0. We describe technique for analyzing 
and testing application programs for potential offline 
concurrency faults in the next section. In this paper, we 
only consider concurrent transactions running at the 
SERIALIZABLE, the most stringent level. All 
concurrency problems at a higher isolation level could 
also appear at a lower isolation levels. Additional faults 
could occur if the application programmer erroneously 
assigns a less stringent level than needed.  
 



4. Testing for concurrency failures 
 

Testing concurrent systems is notoriously difficult due 
to non-determinism and synchronization problems. 
Multiple executions of the same test may have different 
interleavings and generate different results, making it 
particularly difficult to diagnose and debug faults that 
have been detected. In addition to the problems that can 
occur in sequential programs, concurrent programs have 
their unique problems: data access control and 
synchronization. In a database application, there is 
usually no direct synchronization between different 
application instances. Concurrency problems may occur 
when two application instances simultaneously access 
and/or update the same database element (the same 
attribute of the same table) directly or indirectly through 
host variables storing local copies of the same database 
element. Based on the above observations, we propose 
the following procedure to test transaction concurrency.  

1. Find schedules that could potentially produce 
concurrency failures.  A schedule can be represented by 
the form S = <Ti

A, Tj
B, Tk

A>, where Ti, Tj and Tk are 
transactions and are not necessarily distinct2, and A and B 
are two different application instances. Section 4.1 
describes relevant schedules and Section 4.2 gives an 
algorithm for finding them. 
    2. Generate test cases to execute the given transactions 
for each generated schedule. Transactions in a schedule 
usually access the same database element (table and 
attribute). To guarantee that all transactions in a schedule 
access the same tuple of the same database table, the test 
case generator should populate the inputs to these 
transactions properly. 
     3. Execute the test cases in such a way that the 
interleaving of executions of application instances 
conforms to the specified schedule. This can be achieved 
by using either of the two methods: modification of the 
concurrency control engine in the DBMS backend and 
instrumentation of  the application source code. 

 
4.1. Failure-prone transaction schedules 
 

  The simplest schedule which may induce 
concurrency failure is one that involves only three 
transactions and has the form of <Ti

A, Tj
B, Tk

A>. A naïve 
approach would generate all possible triples of the form 
<Ti

A, Tj
B, Tk

A>. However, many of them are not relevant 
since the transactions access totally different data 
elements. It is more efficient if we only generate 
transaction sequences accessing the same data element 
directly or through host variable. We call such schedules 
interesting.  A sequence <Ti

A, Tj
B, Tk

A> is legal if an 

                                                 
2 Ti , Tj , and Tk are not necessarily distinct. 

application instance A can follow a path containing Ti 
followed by Tk.  

To define legal schedules, we introduce a transaction 
control flow graph (TCFG) based on the application 
source code. Each node represents a host language 
statement or an embedded SQL statement. There is a 
directed edge from node i to node k if the execution of i 
can be followed immediately by the execution of k. All 
the consecutive non-transaction nodes (those nodes 
consisting of host language statements only) can be 
collapsed together to reduce the size of the TCFG as long 
as the control structure of the application is not changed. 
The TCFG is constructed by using source code analysis 
tools [8].  The flow information inside a transaction is 
only helpful in testing transaction consistency. In this 
paper, the TCFG is further simplified by collapsing all 
SQL statements of one transaction into one single 
transaction node.    
      Each transaction node in the TCFG is associated with 
the set of database elements and the set of host variables 
the transaction accesses. This information can be obtained 
from the AGENDA tool set introduced in [5]. When SQL 
queries in a transaction are parsed by the AGENDA 
Parser, information about all database elements to be 
accessed (reads or writes) is stored in the table 
xact_read_write, and information about host variables to 
be accessed (defines or uses) and their associated tables 
and attributes is stored in the table xact_parameter. For 
instance, table xact_read_write for Example 1 and table 
xact_parameter for Example 2 are given in Tables 2 and 
Table 3. 

 
Table 2:  table xact_read_write for example 1, R 
stands for “READ”; W stands for “WRITE”. 

XactId Op Tname Aname 
T1 R Flight Available 
T1 R Flight Fltnum 
T2 R Flight Fltnum 
T2 W Flight available 
 
Table 3: table xact_parameter for example 2, U 

stands for “USE”; D stands for “DEFINE”. 
XactId Param Op Tname Aname 
T3 ol_total D order_line ol_amount 
T3 c_id U order_line c_id 
T4 ol_total U customer c_balance 
T4 c_id U Customer c_id 
T5 c_id U customer c_id 
T5 amount U customer c_balance 

 
     As illustrated in Example 1, if two transactions Ti, and 
Tk in the same instance access the same data element in 
some path of the TCFG, there is a potential concurrency 
failure:  a transaction Tj  in another instance could access 
the same data element; if their operations are not 



compatible (i.e., at least one operation is WRITE) a 
concurrency failure could occur.  
      Similarly, as illustrated in Example 2, if two 
transactions Ti and Tk define/use the same host variable in 
some path of TCFG, and a transaction Tj in another 
application instance writes the data element associated 
with this host variable, then Tj may change the data 
element, so the host variable is not consistent with the 
associated data element. Again, a concurrency error may 
occur.  
     In Example 2 above, in Tk client A is using a host 
variable (defined in Ti) whose value is out of date because 
client B updated the data element from which the host 
variable is defined before client A used the host variable. 
More generally, Tk could use a host variable that depends 
on the host variable defined in Ti, through some chain of 
definitions and uses.  
     By considering all possible interleavings between a 
transaction Tj in one instance and transactions (Ti, Tk) 
from another instance, we list all the possible access 
patterns and possible errors with each pattern in Table 4 
and Table 5. 
 
Table 4: access patterns and their problems.  
Transactions (Ti, Tk) in one instance and Tj  in 
another access the same database element.  

Ti R W R R R W W W 
Tj  R R R W W W W R 
Tk R R W R W R W W 
Conflict N N N Y Y Y Y Y 
Pheno-
mena 

   P2 P0 P0 
P3 

P0 P1 

 
Table 5: Access patterns and their problems. 
Transaction (Ti, Tk) belongs to an instance, a host 
variable is defined/used in Ti and Tk. Tj in another 
instance accesses the database element associated 
with the host variable in Ti.  

Ti U D U U U D D D
Tj R R R W W W W R
Tk U U D U D U D D
Conflict N N N Y Y Y Y N
Pheno-
mena 

   P0 
P1 
P2 
P3 

P0 
P1 
P2 
P3 

P0 
P1 
P2 
P3 

P2 
P3 

 

 
4.2. Generation of interesting and legal schedules 
 

A flow-sensitive data flow analysis technique is used 
to construct interesting and legal schedules. Data flow 
analyses (DFAs) are widely used in static program 
analysis [1]. In DFA, a graph is constructed for the 
control and/or data flow in the program. Each node 

represents a statement or a block of statements. Control 
and data information are associated with each node and 
can be propagated along edges. Information associated 
with flow graph nodes is usually iteratively re-computed 
by the DFA algorithm. 
     Each node in the TCFG that correspond to a 
transaction  is associated with a set of tuples in form of  < 
Tk, op , elm >, where data element elm is either a database 
element (table.attribute) or a host variable, and op is the 
operation (R/W or D/U)  of transaction Tm on elm.  

A DFA algorithm similar to the well-known reaching 
definitions algorithm is used to find pairs of transactions 
that access related data and lie on the same control path. 
For each node GEN and KILL sets are defined. They 
represent both data element flow information and host 
variable flow information:  
 
GEN[Tk] = {< Tk , op , elm > | < Tk , op , elm >  
     ∈ (xact_read_write ∪ xact_parameter ) } 
KILL[Tk] = {<Tj , op1 , elm > | <Tj , op1 , elm >  
     ∈ (xact_read_write ∪ xact_parameter ) ∧ ( k≠ j ) 
      ∧ (<Tk, op2, elm > ∈ GEN [Tk]) ∧ op2 ∈ {W,D} } 
 

For each node (transaction) Tk, GEN[Tk] contain a 
tuple for each data element elm accessed by Tk.  For each 
data element elm that is updated in node Tk , KILL[Tk] 
includes all tuples involving a data element, elm, that is 
defined or written in Tk. IN[Tk] and OUT[Tk] can be 
calculated iteratively by using a work-list algorithm 
derived from the method for computing the Reaching 
Definitions [1], which finds all the tuples reaching node 
Tk by solving the following equations: 
     
     IN[Tk] = ∪Ti ∈ predecessors(Tk) ( OUT [Ti] ).  

OUT[Tk] =( IN [Tk] – KILL [Tk] ) ∪ GEN [Tk] 
 
     After the algorithm converges, IN[Tk] and GEN[Tk]  
can be used to derive pairs of transactions  accessing the 
same data element in the same execution path. If a tuple 
<Ti, op1, elm > is in the IN set of Tk and <Tk, op2, elm > 
is in GEN set, then a tuple < Ti, op1, Tk, op2, elm > is 
added to the XactPair set indicating that transactions Ti 
and Tk access the same data element elm. The interesting 
and legal schedule XactSchedule set can be generated 
based on the XactPair set, table 4 and table 5. The 
procedures for computing XactPair set and XactSchedule 
set are given in Figure 5. 
   
Gen_XactPair( Tk ) { 

 For each tuple <Ti, op1, elm > in IN[Tk] 
     If exists  tuple <Tk, op2, elm > in GEN[Tk]   
             Add <Ti, op1, Tk, op2, elm > to XactPair 

} 
Gen_XactSchedule( ) { 

For each tuple <Ti, op1, Tk, op2, elm> in XactPair 



      If exists tuple <Tj, op3, elm > ∈ GEN(Tj )  ∧  
         ( <op1, op3, op2> has conflict ) 
             Add  <Ti

A, Tj
B, Tk

A> to the XactSchedule 
 } 
    Figure 5: Generation of transaction pairs and 
schedules 

 
     For instance, by applying the above algorithm to 
Example 1, <T1, R, T2, R, flights.fltNum> and <T1, R, T2, 
W, flights.avail> are added to XactPair because both T1 
and T2 access the same data items flights.fltNum and 
flights.avail. Both transactions read data element flights. 
fltNum only, and no transaction write flights.fltNum, so no 
schedule is generated. For data element flights.avail, two 
schedules are generated: <TA

1, T1
B, TA

2> and <T1
A, T2

B, 
T2

A>.  
     Based on the same reasoning, < T3, U, T4, U, c_id> 
and < T3, U, T4, U, ol_total > are added to XactPair for 
Example 2 and schedule <TA

3, TB
5, TA

4> is generated.  
Notice that there are no pairs XactPair < T3, U, T5, U, 
c_id> and < T4, U, T5, U,  c_id> because T3 (or T4) and 
T5  do not appear in the same execution path,  assuming 
that there is no control path in the calling program that 
calls Delivery() then calls New_Order()3. It is clear that, 
by using flow-sensitive analysis techniques, the number 
of generated schedules can be reduced dramatically. 

 
4.3. Generation and execution of test cases for 
schedules 
 
     The above (static) analysis is conservative, in the 
sense that every schedule corresponding to the 
phenomena in Table 4 and Table 5 is generated. 
Consequently, if no schedules are generated, the tester 
can be assured that none of the concurrency failures 
under consideration can occur. A schedule that is 
generated may or may not lead to a concurrency failure. 
In the remaining (dynamic) phases, we attempt to execute 
the anomalous schedules in order to exhibit failures. 
Some schedules may be infeasible because the required 
paths cannot be executed (due to unsatisfiable relations 
among variables), and some schedules may not cause 
concurrency failures if data values are not correlated. 
Also, a schedule might indicate a phenomenon (P1, P2 or 
P3) which is acceptable for the application. 

To enforce the generated schedule (or partial 
schedule), test cases must be generated in such a way that 
transactions in the given schedule manipulate the same 
tuple (row) in the database table. By scrutinizing the 
documentation of the application design and 
implementation, testers can get some ideas about each 
                                                 
3 The TCFG and data flow analysis are currently 
intraprocedural. Adapting them to handle interprocedural 
flows would yield more accurate analysis. 

transaction, and figure out which transactions will be 
executed for each test template. Therefore, to generate 
test cases, we first need to identify appropriate test 
templates and then instantiate them. 

In Example 1, the test template for schedule <T1
A, T2

B, 
T2

A> involves the executions of T1 and T2. For test case 
of this test template, input to T1

A, T2
A, and T2

B must be 
generated appropriately such that the executions of these 
transactions indeed follow the given schedule. To make 
sure that transactions operate on the same tuple in the 
database, some parameters (host variables) in the 
preconditions of these transactions must be instantiated 
with the same values. 

Generally speaking, for a test case for a database 
application, the DBMS scheduler will execute the test 
according to its own scheduling policy, and the schedule 
chosen by the DBMS may not be the one in which we are 
interested. To guarantee that the test is executed 
according to the desired schedule, we suggest two 
methods, modification of the DBMS transaction manager 
and instrumentation of the application. Both methods use 
shared memory and semaphores for synchronization and 
coordination of different application instances. Shared 
memory is used since it is the fastest form of IPC (Inter-
process Communication) and shared data does not need to 
be copied between processes [19]. 
    In a DBMS system, the transaction manager monitors 
transaction executions, guarantees transaction ACID 
properties, and recovers from failure [3]. To modify the 
transaction manager so that it will execute our tests 
according to our policy, we consider two scenarios. First 
consider complete schedules in which the execution order 
of all transactions is specified. We modify the transaction 
manager so that it reads information about the desired 
schedule (e.g., from a configuration file) into its shared 
memory.  Semaphore is used to control the access by all 
DBMS back-ends. Based on the connection identifier (i.e. 
process identifier) and transaction identifier, the 
transaction manager can determine if the current 
application instance is the desired one. If not, the manager 
just schedules it in a normal way. Otherwise, the manager 
will not schedule the instance until it is the instance’s 
turn.  
       The second scenario is that only a partial schedule is 
generated and the execution order of a subset of 
transactions is specified. Different transactions may 
contain the same query. To distinguish transactions, we 
assign a static unique identifier (xid) for each transaction 
by instrumenting the following statement to the head of 
each transaction: 
     Select * from xact_table where xact_table.id = xid 
By xid, the transaction manager can identify whether or 
not the current transaction should be regulated and 
subjected to the specified schedule. If the specified 
schedule is non-executable for the given test case, the 



transaction manager will raise an exception and abort the 
test after waiting for some given time.  
    The second way to execute a schedule is to add control 
in the application source code. Similar to the first method, 
information about the desired schedule is read into shared 
memory from a configuration file. The shared memory 
can be accessed by all instances; however, the access is 
mutually exclusive via semaphores. The instrumentation 
tool finds the starting points of all transactions involved 
in the schedule, and adds a function call to 
wait_for_my_turn(). This function will access the 
scheduling information in the shared memory, and check 
if it is the current transaction’s turn to execute. If not, the 
transaction yields its execution and keeps on waiting. 
Otherwise, the instance will execute until the end of the 
current transaction. The above procedure is repeated until 
all instances are finished. Similar techniques discussed in 
the previous method can be used to handle non-
executable schedules. 
      In the first method, application instances are 
independent of each other and they can run on different 
machines. The second method is independent of the 
DBMS systems and has better portability and flexibility. 
In section 6, we will compare their overhead and 
efficiency. 
 
5. Testing transaction atomicity/durability 
 

The property of atomicity/durability is ensured by 
DBMS systems.  The atomicity property requires that we 
execute a transaction to completion. If a transaction fails 
to complete for some reasons (e.g., system crash), the 
DBMS system must undo any effect the transaction 
imposed on the database. However, if a transaction is 
chopped into two or more transactions due to buggy 
design/implementation, then the DBMS system can not 
recover if the application fails after the first transaction 
commits. Again, this is the offline concurrency problem, 
which cannot be solved by the DBMS itself.  Example 3 
is uch a buggy implementation of balance transfer in a 
bank application. 

 
Example 3: balance transfer application 
CREATE TABLE checking  
        (acctNum INT, balance INT); 
CREATE TABLE saving  
        (acctNum INT, balance INT); 
Transfer ( ) { 
   SELECT balance into :out_balance FROM   
           saving WHERE acctNum = :in_acct1;  
        If (:out_balance > :amount) { 
   UPDATE saving SET balance = balance –  
               :amount WHERE acctNum = :in_acct1;     

   COMMIT;  // Transaction T6      
                    //  Erroneously ends T6 and begins  T7 

   UPDATE checking SET balance = balance  
              + :amount WHERE acctNum = :in_acct2;  
   COMMIT; //T7 } 
} 
 
Figure 6 Partial C program for bank transfer. 
  
To test for atomicity/durability problems, we 

instrument the database application source code in the 
following way. For each transaction in the test, we find its 
end point (commit or rollback), and insert code which 
sends a signal to AGENDA’s Validator and then 
suspends on the pause( ) function. After verifying that 
database is in a consistent state, the State Validator will 
send a signal back to the application to resume its 
execution. To verify database states, the State Validator 
needs to know the preconditions and post-conditions of 
transactions. For instance, in example 3, the precondition 
and post-condition are that the sum of two accounts 
involved does not change. This knowledge is then 
converted into a check constraint in the log tables. 
 
6. Preliminary evaluation 
 
     We have implemented the proposed methods and 
measured some aspects of their performance on the TPC-
C benchmark. We performed all experiments on the 
platform of Sun ULTRA 10 workstation. The CPU clock 
rate is 440 Mhz. Main memory is 384 MB. The TPC-C 
application is implemented in C programming language 
with embedded SQL. The instrumentation is implemented 
in Perl. TPC Benchmark™ C (TPC-C) is the standard 
benchmark for online transaction processing (OLTP). It is 
a mixture of read-only and update-intensive transactions 
that simulate the activities found in a complex OLTP 
[20]. The TPC-C application models a wholesale supplier 
managing orders and stocks. The five OLTP transactions 
are new-orders, payment, order-status, delivery, and 
stock-level.  
    To evaluate the time overhead of the proposed 
methods, we chop each original transaction into 2 
transactions arbitrarily. This introduces potential 
concurrency faults. We run the TPC-C application in 
three different ways and record their corresponding CPU 
elapse time.  
   S0: The original five transactions are executed without    
          any instrumentation or scheduling enforcement. 
   S1: The desired schedule is enforced by the DBMS  
          transaction manager.  
   S2: The transactions are instrumented in the application  
          source code according to the desired schedule. 

We ran S0, S1 and S2 separately 5 times and recorded 
their total elapse time in the first three rows of Table 6. 
The unit of time is seconds. The last two rows of Table 6 



show the overhead for situations S1 and S2, defined as 
OHi =  (Si-S0)/S0 * 100% (i=1 or 2). 
    As we see from Table 6, the overhead for S1 is much 
smaller than that for S2, indicating that modification of 
the DBMS transaction manager is more efficient than 
instrumentation of application source code in terms of 
running time.  
 

Table 6: Overhead based on TPC-C transaction 
 new_order order-status delivery 
S0 7.980 1.049 5.465 
S1 8.946 1.123 6.277 
S2 16.186 3.954 14.428 
OH1 12% 7% 15% 
OH2 102% 277% 264% 

        
    In the TPC-C application, there are 34 queries. We 
modified the application so that each single query is 
considered as a transaction, and the data and control 
flows of the original program are kept unchanged. Then 
we found the total number of schedules consisting of 3 
transactions for the following 4 different situations, and 
their results are given in Table 7. 
   W1: any 3 transactions. 
   W2: 2 of the 3 transactions in the same application       
           instance access the same data element or host  
           variable. 
   W3: 2 of the 3 transactions in the same application  
           instance are generated from XactPair. 
   W4: 2 of the 3 transactions in the same application  
           instance are generated from XactPair; only those  
           schedules are considered which match the patterns  
           that may reveal concurrency errors in table 4 or  
           table 5.  

 
Table 7:  Schedules analysis 
Situation  W1 W2 W3 W4 
Schedules 39304 916 127 11 

  
     As we can see from Table 7, by taking account of the 
information about the data element, the number of 
schedules to consider can be reduced significantly 
(W2/W1= 2.33%). Similarly, if we also consider data 
flow information, we can further reduce the number of 
schedules (W3/W2 = 13.43%). Finally, our proposed 
method also considers the access patterns; the number of 
interesting schedules is the smallest (W4/W3 = 8.66%). 
 
7. Related work 
 
    Many static and dynamic analysis techniques have 
been proposed for the difficult problem of detecting 
concurrency related faults. These techniques must be 

tailored to the concurrency model of the programming 
language under test. 

Model checking tools [13] systematically explore the 
state spaces of concurrent/reactive software systems. 
They have been shown to be effective in verifying many 
types of properties, including absence of specific 
concurrency faults. Although there has been substantial 
progress in applying model checking to software [7], it 
has not been applied to database application programs, 
where the very large state space due to the database poses 
a significant challenge.  

Instrumentation techniques are widely used in white-
box testing. Contest [9] is a tool for detecting 
synchronization faults in multithreaded Java programs. 
The program under test is instrumented with sleep(), 
yield(), and priority() primitives at points of shared 
memory accesses and synchronization events. At run 
time, based on random or coverage decisions, Contest can 
determine whether the seeded primitive is to be executed. 
A replay algorithm facilitates debugging by saving the 
orders of shared memory accesses and synchronization 
events. This kind of instrumentation technique is 
integrated into our tools for testing database applications.  

Race conditions are the major concurrency error which 
occurs in concurrent systems. ExitBlock [3] is a practical 
testing algorithm that systematically and deterministically 
finds program errors resulting from unintended timing 
dependencies. ExitBlock executes a program or a portion 
of a program on a given input multiple times, 
enumerating meaningful schedules in order to cover many 
program behaviors. However, in database applications, a 
race condition occurs when two or more application 
instances try to access the same data element in the 
database. This can be controlled by the transaction 
manager of the DBMS system. A major concern in 
database applications is how to group queries into 
transactions so that a balance between efficiency and 
robustness can be achieved. 

Flow analysis techniques are used in many fields such 
as compilation, code analysis, and reverse engineering. 
Reachability testing [14] systematically executes all 
possible orders of operations on shared variables in a 
program consisting of multiple processes. It parallelizes 
the executions of different schedules to speed up testing. 
Reachability testing requires explicit declarations of 
which variables are shared. In contrast, for DB 
application testing, we can identify the shared variables 
(data elements) relatively easily and use this information 
to limit testing to those schedules that are potentially 
problematic. 
 
8. Conclusions and future work 
 

To test database applications, we have proposed a 
framework and have designed and implemented a tool set 



to partially automate the testing process. In this paper, we 
extend our previous work to test transaction concurrency 
at the isolation level of SERIALIZABLE and transaction 
atomicity/durability. We have identified the potential 
offline concurrency problems in database applications. A 
data flow analysis technique is used to identify interesting 
and legal schedules, which may reveal concurrency 
errors. Two approaches are suggested to execute a given 
schedule. The instrumentation method is also used to test 
atomicity/durability. Preliminary empirical evaluation 
based on the TPC-C benchmark is presented and 
demonstrates our approach’s effectiveness and efficiency. 
   Testing database applications involves testing that 
transactions lead to consistent database states and 
transform the database space in manner consistent with 
the application’s specification and that no failures occur 
in concurrent executions that would not occur in serial 
executions. This paper focuses on the last of  those issues. 
Techniques for checking consistency are discussed in a 
related paper [8].  Future work includes techniques to  
expose potential problems associated with “dirty read”, 
“non-repeatable read”, and “phantom”, for transactions 
running at isolation levels lower than SERIALIZABLE. 
We also plan more extensive empirical evaluation. 
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