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A B S TR ACT

We produce mock angular catalogues from simulations with different initial power

spectra to test methods that recover measures of clustering in three dimensions,

such as the power spectrum, variance and higher order cumulants. We find that the

statistical properties derived from the angular mock catalogues are in good

agreement with the intrinsic clustering in the simulations. In particular, we

concentrate on the detailed predictions for the shape of the power spectrum, P (k).

We find that there is good evidence for a break in the galaxy P (k) at scales in the

range 0.02sks0.06 h MpcÐ1, using an inversion technique applied to the angular

correlation function measured from the APM Galaxy Survey. For variants on the

standard cold dark matter (CDM) model, a fit at the location of the break implies

Wh\0.45¹0.10, where W is the ratio of the total matter density to the critical

density, and Hubble’s constant is parametrized as H0\100 h km sÐ1 MpcÐ1. On

slightly smaller, though still quasi-linear scales, there is a feature in the APM power

spectrum where the local slope changes appreciably, with the best match to CDM

models obtained for Wh30.2. Hence the location and narrowness of the break in the

APM power spectrum combined with the rapid change in its slope on quasi-linear

scales cannot be matched by any variant of CDM, including models that have a non-

zero cosmological constant or a tilt to the slope of the primordial P (k). These results

are independent of the overall normalization of the CDM models or any simple bias

that exists betwen the galaxy and mass distributions.

Key words: surveys – galaxies: general – dark matter – large-scale structure of

Universe.

1 I N TRO D U CTI O N

Angular catalogues of galaxy positions provide us with

powerful constraints on theories of structure formation in

the Universe. The APM Galaxy Survey covers 4300 deg2 on

the sky and contains over 2 million galaxies to a limiting

apparent magnitude of bJR20.5 (Maddox et al. 1990a,b,c,

1996). The shape of the angular correlation function mea-

sured from the survey at scales of ya1° indicates that the

Universe contains more structure on large scales than is

predicted by the standard cold dark matter (CDM) scenario

(Maddox et al. 1990c).

Whilst this result is confirmed by the largest redshift sur-

veys currently available (e.g. Efstathiou et al. 1990a; Saun-

ders et al. 1991; Vogeley et al. 1992; Fisher et al. 1993;

Tadros & Efstathiou 1996), measurements of correlations

in 3D catalogues are still noisy on scales rE10 hÐ1 Mpc.

Only after the completion of the Sloan Digital Sky Survey

(Gunn & Weinberg 1995) will a 3D catalogue contain the

same order of magnitude of objects as the APM Galaxy

Survey.

An additional complication in redshift catalogues is that

the pattern of galaxy clustering is distorted by the peculiar

motions of galaxies (Kaiser 1987). This effect can boost the

amplitude of the measured two-point correlations by a

factor anywhere in the range 1–2 on large scales, depending

upon the survey and the method of analysis (see table 1 in

Cole, Fisher & Weinberg 1995).
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Whilst the next generation of redshift surveys will

undoubtedly provide a wealth of new information that is not

available in angular catalogues, it is important to take full

advantage of the large number of galaxies and volume sur-

veyed in the angular catalogues (such as the APM Survey

and the parent catalogue for the Sloan Survey when it is

complete) to extract information about the correlations on

large scales. Under certain assumptions, deprojection algo-

rithms to recover the 3D correlations and real space have

been developed for multipoint correlation functions (e.g.

Groth & Peebles 1977; Fry & Peebles 1978; Peebles 1980),

for J-order cumulants of counts in cells (Gaztañaga 1994,

1995, hereafter G94 and G95) and for the power spectrum

(Baugh & Efstathiou 1993, 1994, hereafter BE93 and BE

94). In this paper we present tests of these algorithms by

constructing angular catalogues, with the same selection

function and angular mask as the APM catalogue, from

large numerical simulations. We use sets of simulations that

have been evolved to have a 3D power spectrum that mat-

ches closely the APM form recovered by BE93 and also

simulations of CDM models.

For our present purposes, we are concerned with testing

for the presence of any systematic biases that arise from the

projection process itself rather than from the actual con-

struction of the APM Survey or corresponding angular cata-

logue (some of these problems are addressed in detail by

Maddox et al. 1996).

The outline of the paper is as follows. In Section 2 we

describe the N-body simulations used to make mock cata-

logues in Section 3. We present and test the recovery

methods in Sections 4 and 5. In Section 6 we discuss our

results and present the conclusions.

2 N -B O D Y  R E A LI Z ATI O N S  O F  AP M 

GA L AXY  CLU S TE R I N G

A discussion of the production of evolved N-body simula-

tions that have the same power spectrum as that measured

for APM Survey galaxies (BE93; BE94) is given in Baugh &

Gaztañaga (1996, hereafter BG96). In this section we briefly

summarize the approach taken and list the parameters of

the N-body simulations that are used to make mock APM

catalougues in Section 3.

The first step is to estimate the linear power spectrum

from the measured power spectrum of APM Survey

galaxies. This requires assumptions to be made about the

cosmological model and the form of the bias, if any,

between fluctuations in the light and the mass distributions

(Kaiser 1984). In this paper we consider a spatially flat

universe with the critical density W\1 and zero cosmologi-

cal constant. We assume that there is no bias between light

and mass, i.e., that light traces mass, for simplicity. The

validity of this assumption is not important for the purposes

of this paper, which are to generate a particular distribution

of points in 3D and to determine how well the N-point

correlations in 3D can be recovered from a projected cata-

logue. There is evidence that the relative bias between mass

and light is small on large scales from the hierarchical

scaling of higher order moments of galaxy counts in the

APM Survey (G94), although this does not appear to be the

case on smaller scales (BG96).

The linear power spectrum is obtained from the evolved

power spectrum using the transformation of Jain, Mo &

White (1995). This transformation is based upon a sugges-

tion by Hamilton et al. (1991) that a universal form exists

relating the linear and non-linear correlation functions. The

method was extended to power spectra by Peacock & Dodds

(1994), and modified by Jain et al. (1995) to cope with steep

power-law fluctuation spectra, P (k);k
n, with nsÐ1. We

have found that the formula of Jain et al. gives more self-

consistent results for the n1Ð2 linear power spectra dis-

cussed here than the revised formula given by Peacock &

Dodds (1996).

The linear to non-linear transformation is given by

D2(KNL)/b (n)\fNL[D2

L (kL)/b (n)], (1)

kL\[1+D2

NL (kNL)]Ð1/3kNL , (2)

where the subscripts L and NL refer to linear and non-linear

respectively, and D (k)\4pk3P (k)/(2p)3 is the fraction vari-

ance of the density field in bins of ln k. The factor

b (n)\[(3+n)/3]1.3 is a function of the effective spectral

index of the density fluctuations, defined as the local slope

of the linear power spectrum at the scale on which the

variance is unity. Using the functional form for the inverse

of fNL given by equation 7(b) of Jain et al. (1996), the linear

power spectrum corresponding to the measured APM

galaxy power spectrum can be calculated iteratively. The

linear APM power spectrum is shown by the solid line in

Fig. 1, with the measured APM galaxy power spectrum

shown by the open circles. The error bars show the 1s

scatter in the mean from averaging over the APM Survey

split up into four zones (BE93; BE94). The linear APM

power spectrum is smoother than the measured spectrum
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Figure 1. The power spectrum measured for APM Survey galaxies

is shown by the open circles with the 1s scatter on the mean,

averaged over the survey split up into four zones. The solid line

shows the linear power spectrum estimated from this, as described

in the text. The dashed line shows the power spectrum measured

from the evolved simulation, APM2(a).
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and is better fitted by a simple analytic form: for ks0.6 h

MpcÐ1,

PAPM (k);
k

[1+(k/kc)
2}3/2

, (3)

with kc2150 H0/c (BG96).

The linear APM power spectrum is used to generate the

initial density fluctuations in an N-body simulation. The

simulation is evolved until the variance measured in spheres

of radius 30 hÐ1 Mpc matches that in the APM Survey.

Several sets of simulations with APM initial conditions are

used in this paper. APM1 consists of one simulation with

1603 particles in a box with sides 440 hÐ1 Mpc. APM2 has

one realization with 2003 particles in a 600 hÐ1 Mpc box, and

APM3 is an ensemble of five simulations (a)–(e), with half

as many particles as APM1 and a slightly smaller box. The

parameters of the simulations are listed in Table 1. The

power spectrum of the evolved simulation APM2(a) is

shown by the dashed line in Fig. 1. The evolved power

spectra give a very close match to the measured APM power

spectrum. In all cases, we generate the initial conditions

using a fast Fourier transform (FFT) on a 2563 potential

grid (Ng\256). The softening length of the APM3 and

CDM3(a) runs was adjusted to be comparable to that used

in the APM1 run. All simulations were run using the P 3M

particle–particle/particle–mesh code of Efstathiou et al.

(1985).

We have run two simulations with the same random

phases as APM2(a) and APM3(a), but with the standard

CDM power spectrum, W\1 and h\0.5; these are called

SCDM2(a) and SCDM3(a). We also ran another CDM

simulation with the same random phases as APM3(a) and

SCDM3(a), but with a low density parameter and a non-

zero value of the cosmological constant, W\0.2, L\0.8 and

h\1, which is called LCDM3(a). The initial density field in

the CDM simulations is set up using the transfer function of

Bond & Efstathiou (1984) for a universe with baryon

density WB\0.03. This transfer function can be expressed in

terms of a parameter G\Wh (Efstathiou, Bond & White

1992); note that this definition of the shape parameter G is

relative to a model with WB\0.03 and differs slightly from

that adopted by Peacock & Dodds (1994). In all cases we

have run the CDM simulations so that the linear variance

on scales of 8 hÐ1 Mpc is s830.84 (note that this value does

not take into account any evolution in the clustering, and

corresponds to clustering at the mean redshift in the APM;

e.g. G95). The SCDM simulation has more power on small

scales and less power on large scales than the APM run.

This can be seen in a comparison of the particle distribu-

tions from APM2(a) and SCDM2(a) shown in Fig. 2. The

figure shows a slice from the simulation box, after the par-

ticle density has been tabulated on a 2563 grid and smoothed

on small scales with a Gaussian filter. The slice shown is 13

hÐ1 Mpc square.

3 M O CK  AP M  M AP S

We transform the N-body simulation into a mock APM

catalogue of angular positions by the following steps.

(i) Select an arbitrary point in the simulated box to be the

local ‘observer’.

(ii) Apply the APM Survey angular mask, including plate

shapes and holes.

(iii) Include a simulated particle at coordinate distance x

from the observer with probability given by the selection

function c (x).

The discreteness of the density field in the N-body simula-

tions means that the final maps have a slightly lower density

than the real APM map. The total number of particles is

about 8Å105 compared with 1.3Å106 galaxies in the APM

Survey to the same apparent magnitude limit. This intro-

duces additional shot-noise in the measurements, which is

corrected in the standard way (e.g. G94). The simulations

use a periodic box, so we replicate the box to cover the total

extent of the APM volume (over 1200 hÐ1 Mpc; beyond this

the expected number of galaxies is of order unity). By com-

paring the results from different box sizes we have verified

that this replication of the box does not introduce any

spurious correlations on large scales.

3.1 The selection function

The selection function c (x) is the normalized probability

that a galaxy at coordinate distance x is included in the

catalogue. This probability is proportional to the estimated

number of galaxies at this coordinate:

c (x)\c* h
q2(x)

q1(x)

dq f (q), (4)

where c* is adjusted so that the probability integrates to

unity over the sample. f (q) is the luminosity function, and

q1(x) and q2(x) are the scaled luminosities corresponding to

the lower and upper limits in the range of apparent magni-

tudes used to build the galaxy sample or catalogue under

study. In our case these are bJ\17 and 20 respectively. G95

constructed a x 2 test to find contours of the values of the

luminosity function parameters that best fit observational

constraints on the luminosity and redshift distribution; the

redshift revolution of the luminosity function is parametr-

ized as f*\f*0 (1+f*1 z); a\a0+a1z and M\M *0+M1z.

Here we use the best-fitting parameters obtained by G95:

f*110, a1\Ð4 and M
*
1
\Ð2 and the zeroth-order values

of Loveday et al. (1992): f*0\0.0112 h 3 MpcÐ3, M*

0\Ð19.73, a0\Ð1.11. BE93 proposed a functional form

for the redshift distribution N (z‚ discussed below in Section

Testing deprojection algorithms 231
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Table 1. Simulation parameters. The third column gives the dimen-

sion of the FFT mesh used in the long-range force calculation. The

last column gives the softening length of the gravitational force, e in

hÐ1 kpc units.
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Figure 2. A comparison of the evolved density field in the APM2(a) (top) and CDM2(a) (bottom) simulations, which were started with the

same random phases. The density is binned on a 2563 grid, and is smoothed with a Gaussian filter to blur the pixels. The grey-scale shows the

logarithm of the density. The slices are 3 hÐ1 Mpc thick and 600 hÐ1 Mpc square.
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5. This N (z) distribution gives very similar results for the

selection function.

Fig. 3 shows a comparison between the expected number

of galaxies, n (y) y2Dy, at different radial depths (in comov-

ing coordinates y) given by the input selection function com-

pared to the measured counts for two different mock

catalogues.

3.2 Equal-area projection maps

We have made equal-area projected maps from the mock

catalogues. To facilitate a comparison between the maps

made from the different simulations and the map of the

APM Galaxy Survey, the maps have been turned into grey-

scale plots shown in Fig. 4. Grey intensity increases as a low

power (30.1) of the point density. The mock catalogues are

from the same realization of the random seeds, and there-

fore have the same fluctuations in the same places but with

different amplitudes, given by the difference in the initial

power spectrum and its subsequent non-linear evolution. In

the notation of Table 2 these maps are from the simulations

APM3(a), SCDM3(a) and LCDM3(a). The real APM map

has been diluted to show the same mean surface density.

The angular correlations are given in Figs 5 and 6. A visual

comparison shows that the SCDM model does not have as

strong large-scale fluctuations as the APM map, which is

confirmed by Fig. 5 (as found earlier by Maddox et al.

1990c). The SCDM distribution is quite smooth on the larg-

est scales. One can also see how both CDM models have

larger fluctuations on the smallest scales in these maps,

showing a distinctive granulation in grey-scale. The mock

APM map is the closest of the models to the real catalogue,

as expected from the very good agreement in the variance

(cf. Fig. 5). Of course, the locations of individual structures

in the real and mock APM maps do not coincide. Any

statistical differences are due to differences in higher order

correlations.

3.3 Angular correlations

Fig. 5 compares the variance w̄2\,d2.c, of angular fluctua-

tions d in cells of radius y. The angular variance in the APM

Survey is shown by the points with error bars (G94). The

lines show the variance in the mock catalogues made from

the SCDM3(a) (short-dashed), LCDM3(a) (long-dashed)

and APM3(a) (solid) simulations. The CDM mock cata-

logues all have, by construction, the same linear-theory nor-

malization s830.84, but the non-linear s8 is, of course,

slightly different in each case. The simulated APM mock

catalogue is slightly off the measured APM values around

2°–4°; this is also true for the mean different realizations,

and is probably due to slight inaccuracies in the match of the

evolved power spectrum in the simulation to the measured

galaxy power spectrum. Note that all catalogues have simi-

lar power at around 1°. As expected, the LCDM model

matches well the shape of the variance at larger scales, while

the SCDM does not have enough large-scale power. At

smaller scales the CDM models have too much power, as

noted previously (e.g. Efstathiou, Sutherland & Maddox

1990b; G95; BG96).

Fig. 6 shows the skewness or third-order reduced cumu-

lant w̄3\,d3.c, for the same single realization of each

model compared to the APM measurements. The errors

show that at scales bigger than 1° there are very large sampl-

ing fluctuations in w̄3 . This is more dramatic in single reali-

zations of each mock catalogue that covers a smaller volume

than the real APM. It is therefore dangerous to draw any

conclusions, from this figure alone, at scales ya1°. By com-

paring different realizations, we note that the mean at ya1°

comes closer to the APM observations.

In the following two sections we first give a brief review of

the deprojection algorithms; we then estimate the 3D statis-

tics from the full simulation box, i.e. the j̄J using the counts-

in-cells method for the whole simulation box (as in Baugh,

Gaztañaga & Efstathiou 1995) or the power spectrum. The

2D measurements of clustering, the w̄J or the angular corre-

lation function, are estimated from the mock catalogues (as

in G94) and the deprojection algorithms described in the

previous section are applied.

4 R E CO VE RY  O F  TH E  M O M E N TS  O F 

CO U N TS  I N  CE LLS

Here we use a simple method for recovering the 3D vari-

ance, j̄2(R), and higher order reduced moments, j̄J(R),

from the 2D correlations, w̄J(y). This method was intro-

duced and applied to the APM Galaxy Survey in G94, G95,

where a full description can be found.

In a scale-invariant model j̄2;R Ðg with slope g, we can

use the expressions in G95 to relate the estimated angular

amplitudes to the underlying 3D amplitudes, i.e.

s2

8=j̄2(R\8) and SJ=j̄J/j̄
jÐ1

2 . Here we consider a distribu-

tion that is not exactly scale-invariant, but has a slope g

which is a slowly varying function of scale. We call this a

quasi-scale-invariant model (see G95). It is then possible to

apply a local inversion at each scale. In principle, the corre-

lations on all scales R contribute to the correlations on

Testing deprojection algorithms 233
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Figure 3. Comparison of the theoretical (smooth curve) and mea-

sured counts (histogram) in radial shells for two mock catalogues

made from the simulations SCDM3(a) (top) and APM3(a) (bot-

tom).
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Figure 4. Comparison of equal-area projections of maps made from simulated catalogues with the real APM Galaxy Catalogue (Maddox et

al. 1990a,b) (top). The surface density of galaxies is represented by a grey-scale, with the densest regions being the brightest. In each map,

the same total number of galaxies and the same grey-scale calibration are used. The maps extend about 120° in RA and 60° in Dec., covering

about 20 per cent of the Southern Galactic Cap, with a mean depth of 400 hÐ1 Mpc. The 185 overlapping square UK Schmidt plates in each

map correspond roughly to 5° on a side. All maps have similar amplitudes of fluctuations (w̄2) at 1°. From top to bottom we show the real

APM Survey, the standard CDM map made from SCDM3(a), a lambda-CDM map made from LCDM3(a), and a mock APM map made

from a simulation [APM3(a)] evolved to match the power spectrum of APM galaxies.

angular scale y, but because the sample has a finite depth,

D, there is a characteristic scale R3Dy. In our analysis we

relate angular scales y to 3D scales using R\Dy, where D is

the estimated distance which corresponds to the mean red-

shift of the sample (see also Peebles 1980). Although there

is some ambiguity as to what the best definition of D should

be, in the scale-invariant regime we find that the estimated

amplitudes of j̄J are insensitive to changes in our chosen

value of D.

Thus, at each given scale y with local slope g\g (y), we

use the scale-invariant expressions to relate the estimated

local angular amplitudes to the underlying 3D values. This

results in an estimation for j̄J as a function of the scale

R\Dy. This model was used in G94 and G95 to recover the

3D correlations in the APM Survey.

4.1 Test of the variance

Fig. 7 shows the inversion of j̄2(R) from a standard

G\Wh\0.5 CDM mock angular catalogue (right-hand

panel), and for a mock APM catalogue (left-hand panel)

compared to the corresponding variance j̄2(R) estimated

directly in the 3D simulation [e.g., SCDM3(a) and

APM3(a)]. The variance recovered from the angular

distribution is a very good match to the variance measured

from the full simulation. There is a slight disagreement at
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scales around R120 hÐ1 Mpc, where there is a rapid change

in the slope, as expected, but the discrepancies are within

1s.

4.2 Test of higher order moments

The simulations we use have values of SJ which show a small

variation with scale, e.g. S3;R Ða, with a30.1. This indi-

cates that, strictly speaking, neither the scale-invariant nor

the quasi-scale-invariant models should be used, as the SJ

should be constants in the hierarchical model. Nevertheless,

we still find reasonable agreement from the inversion when

we compare local values of SJ.

Figs 8 and 9 show the inversion of S3(R) and S4(R) from

the standard G\0.5 CDM mock angular catalogue and for

the APM-like mock catalogue compared to the correspond-

ing amplitudes estimated directly in the 3D simulated box.

At scales 20aRa6 hÐ1 Mpc, the amplitudes recovered

from the angular distribution are in good agreement with

the original amplitudes. At larger scales, sampling fluctua-

tions are very large, whereas at smaller scales, there are

some systematic differences which seem more important for

the APM model, which has a steeper power spectrum. As

expected, the inversion method seems to work better for

distributions where the SJ are closer to being constants, e.g.,

SCDM. Note that the measured amplitudes SJ in the APM

are closer to a constant than either of the models we study

here (G94; G95), and one would then expect an even better

agreement in this case. The discrepancies at small scales

could also be due in part to shot-noise in either the angular

or the 3D distribution.

As was pointed out in Gaztañaga & Bernardeau (1997),

there are several effects that make this type of comparison

difficult. First, volume and boundary effects are important

Figure 4 – continued
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on scales x2° and tend to produce smaller values of the

projected amplitudes s3 and s4 . Secondly, the simple hier-

archical model for projections commonly used in the litera-

ture (e.g., by Groth & Peebles 1977 and Fry & Peebles 1978)

is not accurate on quasi-linear scales, as was indicated in

Bernardeau (1995). These two effects compete with each

other, and it is not clear how the projection model should be

improved to allow a better reconstruction.
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Figure 5. Comparison of variance of angular counts-in-cells, w̄2(y),

in the simulated mock catalogues with the results in the real APM

data (symbols with error bars). Single realizations of the maps

made from the SCDM3(a), LCDM3(a) and APM3(a) simulations,

normalized to a linear variance of s8\0.84, are shown respectively

as short-dashed, long-dashed and continuous lines.

Figure 6. Comparison of the skewness w̄3 of angular counts-in-

cells, in the simulated mock catalogues with the results in the APM

Survey (symbols with error bars). The SCDM3(a), LCDM3(a) and

APM3(a) simulations, normalized to linear s8\0.84, are shown

respectively as short-dashed, long-dashed and continuous lines.

Figure 7. Comparison of variance of counts-in-cells, j̄2(R), in the

simulated box (lines) with the results inverted from the corre-

sponding angular mock catalogue (points). The right-hand panel

corresponds to the G\0.5 CDM model SCDM3(a), while the left-

hand panel shows the results from the APM3(a) mock catalogue.

Figure 8. Comparison of the skewness, S3(R), in the simulated box

(dashed lines) with the results inverted from the corresponding

angular mock catalogue (points). The top panel shows the G\0.5

SCDM3(a) model, while the bottom panel corresponds to the

APM3(a) simulation. 
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The integral equation relating w (y) to the 3D power

spectrum, P (k), is given by (BE93; see Peacock 1991 for the

non-relativistic form)

w (w)\h
l

0

P (k) kg(kw) dk, (5)

where the angular variable is w\2 sin (y/2), and the kernel

function is an integral over the survey selection function

g(kw)\
1

2p

1

(NWs)
2 h

l

0

F (x)

(1+z)a 2
dN

dz 3
2 dz

dx 
J0(kwx) dz, (6)

where F (x) depends upon the cosmological model (see Pee-

bles 1980, section 50), and Ws is the solid angle of the survey.

The time evolution of the power spectrum is parametrized

as P (k, z)\P (k)/(1+z)a, where a\0 corresponds to the

pattern of clustering being fixed in comoving coordinates,

which is the case we use in this paper. This is a necessary

oversimplification, as we have an observed quantity that is a

function of only one variable. Furthermore, the median

redshift of the APM Galaxy Survey is zm10.12, and the

corrections for redshift evolution are small.

The redshift distribution of survey galaxies is parametr-

ized as (BE93):

2
dN

dz 3 dz\
3N (m) Ws

2z 3

c

z 2 exp &Ð2
z

zc3
3/2

' dz, (7)

with the median redshift given by

zm\1.412zc\0.016(bJÐ17)1.5+0.046 (8)

for apparent magnitudes bJE17. This form was chosen to

provide a fit to the redshift distribution in the Stromlo/APM

survey (Loveday et al. 1992) and to the fainter surveys of

Broadhurst, Ellis & Shanks (1988) and of Colless et al.

(1990, 1993). Redshifts have now been measured for

galaxies in the magnitude range covered by the APM Sur-

vey, 17RbJR20 (Ellis et al. 1996), and the redshift distribu-

tion is in good agreement with the form that we have

adopted (Efstathiou, private communication).

The rth iteration of the Lucy algorithm gives an estimate

of the data of

w r(wi)\+
j

P r(k j) g(k jwi) k 2

j Dln k, (9)

which is compared with the ‘true’ data, w 0(y) in order to

generate a new estimate of the power spectrum:

P r+1(k j)\P r(k j) 

+
i

w 0(wi)

w r(wi)
g(k jwi) D ln w

+
i

g(k jwi) D ln w

. (10)

The summations have typically 60 logarithmic bins for the

data, and 30 logarithmic bins for P (k) in the range

3Å10Ð3RkR30 h MpcÐ1.

5.1 Test of the recovery of P (k)

In all cases, unless otherwise stated, we use the mean angu-

lar two-point correlation function and its variance in four

individual disjoint zones (shown in fig. 2 of BE94) to recover

the power spectrum. The results of the inversion of equa-

tion (5) are illustrated in Fig. 10 for the two CDM models

SCDM3(a) and LCDM3(a), which have power spectra with

very different amplitudes and curvatures at a given wave-

number. There is very good agreement in each case, up to

the largest wavenumbers sampled in the simulation box in

these runs, k32p/L30.015 h MpcÐ1. In Section 6.1 below

we present a more detailed comparison for larger scales.

6 M E AS U R I N G  TH E  B R E AK  I N  P ( k )

6.1 Accuracy on large scales

In order to show that the inversion method can accurately

recover features at small wavenumbers (large scales), such
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Figure 9. Comparison of the kurtosis, S4(R), in the simulated

boxes (dashed lines) with the results obtained from the angular

catalogues (as in Fig. 8).

5 R E CO VE RY  O F  TH E  P O W E R  S P E CTRU M

BE93 and BE94 developed an iterative technique to numer-

ically invert Limber’s (1954) equation, which relates a

measure of clustering in 2D to an integral of the 3D power

spectrum multiplied by the survey selection function. BE93

used the measured angular correlation function of the APM

Survey, w (y), to obtain an estimate of the 3D power spec-

trum, whilst the 2D power spectrum, P2(k), was used in

BE94. An estimate of the real space correlation function

has also been made in the same way (Baugh 1996).

This algorithm for the numerical inversion of Limber’s

equation does not rely upon the initial form chosen for the

power spectrum, and it can reveal features that would be

difficult to parametrize in a simple way. The technique is

numerically stable, unlike the use of Mellin transforms

which involves differentiation of noisy quantities (Fall &

Tremaine 1977), and it has been shown to converge rapidly

to stable solutions (BE93).
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as the break in P (k), we now concentrate on the largest

volume simulations, with a box size of L\600 hÐ1 Mpc (see

Table 1). We study a single mock angular map from

SCDM2(a) and APM2(a), with the same phase correlations

and position for the observer. Fig. 11 shows a comparison of

the initial linear P (k) (dashed lines) with the non-linear

P (k) in 3D from the full box (continuous line) for both: (a)

SCDM (right-hand panel) and (b) the APM model (left-

hand panel). Note how even the P (k) measured in the 3D

box has large fluctuations at small k and, in particular, a

large spike at k30.03 h MpcÐ1. This is due to the small

number of modes available to estimate P (k) on these scales

with the FFT technique. These estimates have not been

averaged in bins, and the initial spectrum amplitudes are

drawn from a Gaussian distribution (and are not set equal

to the mean). The mode where this spike is located only

corresponds to nx\2 ny\2 nz\0, so that there are few

modes to average over. This is seen in both the APM and

CDM P (k) in this plot, due to these simulations being set up

with the same phase distributions.

On large scales in Fig. 11 we plot the power spectrum at

the individual Fourier modes. At large wavenumbers we

have binned the 3D FFT estimation for clarity. The

recovered P (k) from the angular two-point function (points

with error bars) shows excellent agreement with the original

P (k). Hence the volume of a single N-body box (L\600 hÐ1

Mpc) is large enough to simulate and recover large-scale

features in P (k), even at k10.01 h MpcÐ1.

It is clear from this figure alone that there is a singificant

measurement of the break of the power spectrum. To make

this more qualitative, we now turn to the local slope of

P (k).

We want to focus in more detail on the shape of the

power spectrum by estimating the local logarithmic slope:

n (k)=
d log P (k)

d log k
. (11)

To do a numerical estimation, we first bin the P (k) data

and use standard polynomial interpolation and numerical

differentiation (e.g. Press et al. 1992) in logarithmic space.

The error in the slope is obtained assuming no spread in

k :

Dn (k)3
d DP (k)/P (k)

d log k
. (12)

This approach seems to work well in the mock maps and

avoids spreading the systematic errors coming from the

sampling variance, which typically introduces a larger

uncertainty in the amplitude of the correlations than in their

shape (see fig. 4 in Baugh et al. 1995).

Fig. 12 shows the results for single realizations of the

SCDM and APM models for two different box sizes:

SCDM2(a) and AMP2(a) with box size L\600 hÐ1 Mpc,

and SCDM3(a) and APM3(a) which have a box size of

L\400 hÐ1 Mpc. The largest scales sampled in each pair of

simulations correspond to wavenumbers of k32p/L30.01 h

MpcÐ1 and k30.015 h MpcÐ1 respectively for the L\600

and 400 hÐ1 Mpc boxes. The smallest scales sampled are

limited by the Nyquist frequency of the FFT grid (of size

Ng): k3Ngp/L , or for large enough Ng by the numerical

resolution (e in Table 1).

Fig. 12 shows that the recovered slope matches closely

that obtained directly in 3D, both in the non-linear (ka0.2
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Figure 10. Symbols with error bars show the recovered 3D P (k)

from the inversion of equation (5) for maps made from the CDM

simulations: (a) LCDM3(a), (b) SCDM3(a). The dotted and

dashed lines show for reference the linear power spectra of the

LCDM and SCDM models respectively. The solid line in each case

shows the non-linear P (k) measured from the simulation.

Figure 11. Comparison of the recovered 3D P (k) (points with

error bars), from the angular catalogues, with the P (k) from the

corresponding 3D simulation (continuous line). The left-hand

panel shows the results for APM2(a), and the right-hand panel

shows those for SCDM2(a). The long- and short-dashed lines

correspond to the G\0.5 linear CDM P (k) and the APM linear

power spectrum respectively.
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h MpcÐ1) and linear (ks0.1 h MpcÐ1) regimes. The particu-

lar realizations of the smaller boxes shown in Fig. 12 have a

flatter slope on large scales in 3D than the corresponding

linear spectrum due to finite-volume effects. This effect is

also reproduced in the recovered slopes.

The break in P (k) corresponds to n\0, and is well traced

within the errors in the larger boxes.

6.2 Implications for the APM power spectrum

Table 2 shows the values of P (k) recovered from the two-

point correlations in the APM angular Galaxy Catalogue.

These are essentially the same as in fig. 7 of BE93, although

there are small differences corresponding to a different

number of iterations in the Lucy algorithm (chosen here to

provide the minimum x 2 match to the angular correlation

function). Figs 13 and 14 illustrate the implications of our

findings for the power spectrum recovered from the APM.

Fig. 13 shows the reconstructed slope in the APM Galaxy

power spectrum, while Fig. 14 shows the corresponding

P (k). Symbols with error bars correspond to the mean and

variance in four individual disjoint zones (shown in Table

2). The break at n\0 is found to lie at k\0.02–0.06 h

MpcÐ1 (between the vertical dotted lines in the figure). This

can also be shown directly in Fig. 14, where P (k) shows a

significant break on similar scales (also bounded by dotted

lines). Note that the error bars are comparable in the mock

and the real catalogues.

The power spectrum recovered from the mock catalogues

agrees well with the P (k) measured from the unprojected

simulation box, indicating that the volume of a single box

(L\600 hÐ1 Mpc) is large enough to realize and recover a

break on scales around k30.05 h MpcÐ1, without any finite-

volume effects. Thus the volume traced by the APM Survey

(which extends radially well beyond 600 hÐ1 Mpc) is large

enough to allow a measurement of the break in the power

spectrum, n\0.

In an extensive analysis of the systematic errors involved

in plate matching, Maddox et al. (1996) have placed an

upper limit of dw (y)11Å10Ð3 on the likely contribution of

the systematic errors to the angular correlations. In Figs 13

and 14 the inversion result using the angular correlation

function measured from the full survey is shown as a contin-

uous line. The short-dashed lines in these figures show how

this result for the power spectrum changes when an offset of

10Ð3 is subtracted from the angular correlation function in

the full APM map. In principle, results from individual

zones (symbols with errors in the figures) could be affected

more by the zone boundary than results from the full survey,

Table 2. Values of the estimated power spec-

trum P (k) recovered from measurements in

the (real) APM angular galaxy catalogue,

corresponding to the mean and error from

the variance in four individual disjoint

regions in the catalogue. No correction for

merged stars has been applied (final ampli-

tude should be 10 per cent higher).

Figure 12. Comparison of the recovered 3D local slope n (k)

(points with error bars), from the angular catalogues, with the

slope in the corresponding 3D power spectrum (continuous line).

The long- and short-dashed lines correspond to the G\0.5 linear

CDM model and the APM linear model respectively. The left and

right panels show the results in the small (400 hÐ1 Mpc) and large

(600 hÐ1 Mpc) boxes. The top and bottom panels correspond to

SCDM and APM simulations respectively.
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although, on the other hand, large-scale noise from plate

matching could be more important for the whole survey

than for individual zones. For the mock catalogues, the

smaller size of individual zones does not seem to introduce

important errors at the scales under consideration (e.g. Fig.

12). Thus, while there is no clear reason to prefer the esti-

mate of the power spectrum made from the full survey to

that made from the zones, the latter is less likely to be

affected by any large-scale plate-matching errors. As the

variance from the different zones includes all the above

sources of potential error, we take this estimation and vari-

ance as our best mean and errors.

Fig. 15 shows the effects of non-linear evolution in the

mass power spectrum for the G\0.5 standard CDM model

and for two variants of SCDM with G\0.2. Again, we use

the form of the CDM power spectrum given by Bond &

Efstathiou (1984), which is valid for a universe with a small

baryon density, WB\0.03, and we follow the definition of

G\Wh\0.5 for SCDM adopted by Efstathiou et al. (1992).

For G\0.5 we show linear-theory power spectra (solid

lines) for two different normalizations to the variance in

spheres of radius 8 hÐ1 Mpc; the amplitude of temperature

fluctuations in the microwave background gives a value

s831.2 (e.g. Stompor, Banday & Gorski 1995; Bunn, Liddle

& White 1996), whilst normalization to reproduce the abun-

dance of rich clusters requires s830.50, virtually indepen-

dent of the shape of the power spectrum for W\1 (White,

Efstathiou & Frenk 1993; Eke, Cole & Frenk 1996). The

dashed lines give the corresponding predictions for the non-

linear spectra, using the transformation of Peacock &

Dodds (1996) rather than that of Jain et al. (1995), which is

not so accurate for CDM models (see BG96). The lower set

of curves in Fig. 15(c) show a critical-density model with a

Hubble constant H0\50 km sÐ1 MpcÐ1, but with the SCDM

transfer function altered by using G\0.2. The normaliza-

tion of this curve matches the COBE detection, with

s8\0.42. The upper curves in (c) are for an open model

with density parameter W\0.2 and H0\100 km sÐ1 MpcÐ1.

In this case the model is normalized to reproduce the abun-

dance of rich clusters with s8\1.07 (Eke et al. 1996).

The APM galaxy power spectrum has been plotted to

match the amplitude of the mass power spectrum, dividing

the observed amplitude by a bias parameter squared. In the

(a) panel, the bias parameters have been chosen to match

the galaxy power spectrum to the amplitude of the mass

power spectrum at wavenumbers 0.3RkR10 h MpcÐ1,

whilst in the (b) panel, the match is made at the scale of the

break in the APM power spectrum. Panel (c) shows the case

for G\0.2 normalized to small scales. This figure demon-

strates the basic problem of the CDM model; the shape of

the power spectrum cannot be made to match the observed

galaxy power spectrum at both large and small scales, unless

some complicated biasing prescription is invoked, in which

the bias would need to vary significantly with scale.

6.2.1 The effect of biasing

The fluctuations traced by the galaxy distribution might be

different, or biased, from the underlying mass fluctuations
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Figure 13. The local slope of the power spectrum estimated from

the APM catalogue. Symbols with error bars correspond to the

slope estimated in four individual disjoint zones (subsamples). The

continuous line is from an inversion of the angular correlation

function measured from the full APM map. The short-dashed line

corresponds to the inversion after subtracting 10Ð3 from the angu-

lar correlation function in the full APM map. The two long-dashed

lines correspond to linear CDM models with Wh\0.5 (top) and

Wh\0.2 (bottom).

Figure 14. Comparison of the recovered P (k) (points with error

bars), from the angular catalogues, with the linear APM model

(long-dashed line). Panel (a) corresponds to a mock APM cata-

logue [APM2(a)]. Panel (b) shows the estimated APM P (k) from

measurements in the real galaxy catalogue. In both cases the points

and error bars correspond to the mean and variance in four indivi-

dual disjoint zones (subsamples). The continuous line in panel (b)

corresponds to the inverse result obtained using the angular corre-

lation function measured from the full APM map. The short-

dashed line corresponds to the inversion result after subtracting an

offset of 10Ð3 from w (y).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
4
/2

/2
2
9
/1

1
0
1
3
6
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



(e.g. Bardeen et al. 1986). We will argue here that the effect

of this biasing is not important for the shape of the APM

power spectrum at large scales.

Assume that the (smoothed) galaxy fluctuations dg are

related to the mass fluctuations dm by a local transforma-

tion: dg(x)\F [dm (x)], and that this relation can be given as

a Taylor series: F\b1dm+b2d
2

m+ . . . . Then the two-point

function jg

2 (r)=,dg(x) dg(x+r). on a scale r will be just

given by

jg

2 (r)\b2

1 j
m

2 (r)+b1b2,dm (x) dm (x+r)2.

+b1b2,d2

m (x) dm (x+r).+ . . . , (13)

where all further terms are of order 4 or greater in dm , and

therefore correspond to either higher order correlations, jJ,

with Ja2, or higher powers in j2 . If dm is Gaussian or

hierarchical (as in the case for gravitational evolution) the

higher order correlations jJ are at most of order j jÐ1

2 . This

means that at large scales, where j2s1, the first term is the

dominant one, so that only the amplitude but not the shape

of the two-point statistics is changed by biasing. This effect

has been found in N-body simulations and toy biasing

models (Weinberg 1994; Gaztañaga & Lacey 1997, in pre-

paration; Mo, Jing & White 1997).

For the APM power spectrum, a wavenumber around

k30.1 h MpcÐ1 corresponds to a top-hat radius of R1p/

k330 hÐ1 Mpc. For any reasonable biasing model relating

galaxy fluctuations, dg, to the underlying matter fluctua-

tions, dm , the matter density fluctuations are very small,

around R330 hÐ1 Mpc. The independent constraints on the

normalization of mass fluctuations discussed above give

values of around unity for the variance in spheres of radius

8 hÐ1 Mpc. To have rms fluctuations of order unity at R330

hÐ1 Mpc would imply s8a3.

Thus, from the above arguments, the small variance on

large scales, Rz8 hÐ1 Mpc, means that it is reasonable to

assume that the galaxy shape of P (k) for ks0.1 h MpcÐ1

corresponds to the shape of the underlying linear matter

power spectrum. This argument, just based on the smallness

of the variance and the hierarchical structure, can also be

applied to gravity, as the leading contribution to the correla-

tion functions in perturbation theory is indeed exactly given

Testing deprojection algorithms 241

© 1998 RAS, MNRAS 294, 229–244

Figure 15. The effects of non-linear evolution on the shape of CDM power spectrum. The solid lines show the linear-theory power spectrum:

the lower and upper curves in (a) and (b) are for normalizations of s8\0.50 and 1.21 respectively in the G\0.5 CDM model. The lower solid

curve in panel (c) shows a G\0.2 CDM model for a universe with W\1 and a Hubble constant of H0\50 km sÐ1 MpcÐ1, normalized to match

the COBE result with s8\0.42. The upper solid curve in panel (c) corresponds to an open universe with W\0.2 and H0\100 km sÐ1 MpcÐ1,

with a normalization that reproduces the abundance of rich clusters, s8\1.07. The dashed curves show the corresponding non-linear power

spectra; in this case we have used the transformation of Peacock & Dodds (1996), which is expressed in a form that makes it readily applicable

to different cosmological models.

The APM galaxy power spectrum is shown by points with error bars, where we have divided by a bias parameter, bg, squared (values

indicated in the figure) to match the amplitude of the mass spectrum at different scales: (a) the bias parameters have been chosen to match

the amplitude of the mass G\0.5 CDM P (k) on small scales kz0.5; (b) the match is made to the amplitude of the mass G\0.5 CDM

spectrum at the scale of the break in the APM power spectrum, k30.05; (c) match to the amplitude of the mass G\0.2 CDM spectrum on

small scales, kz0.5. At small wavenumbers, ks0.01 h MpcÐ1, the estimate of the APM power spectrum is dominated by systematic and

random errors in the catalogue.
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by a local transformation (see Fosalba & Gaztañaga 1997, in

preparation). This is clearly illustrated in Fig. 12. By com-

paring the linear and non-linear shape of P (k), one can see

that it has not been changed significantly by gravitational

evolution on scales where the rms fluctuations are small,

i.e., ks0.1 h MpcÐ1.

6.2.2 Variations of CDM models

A simple variation of CDM models is to introduce a tilt in

the initial power spectrum so that P (k)\k n0T (k), where

T (k) is the transfer function (e.g. Bond & Efstathiou 1984;

Bardeen et al. 1986) and n0 is primordial spectral index,

n081. Unless the transfer function T (k) somehow depends

strongly on n0 , the local slope of a given tilted CDM model

is similar to that of the corresponding standard scale-invar-

iant model (where n0\1), given by n\n0+d log(T )/

d log(k), with the shift due to the tilted value of n0 . Thus,

tilted models can only scale up or down the CDM predic-

tions in Fig. 13, and therefore cannot account for the APM

observations.

The measurement of the abundance of deuterium in

high-redshift hydrogen clouds is provoking much debate in

the literature (e.g. Rugers & Hogan 1996; Tytler, Fan &

Burles 1996). Consequently, the baryon density of the

Universe is uncertain, and possible values fall in a wider

range than was previously accepted. In the limit of a high

baryon density (i.e., WB10.1), the power spectrum of the

mass is modified. A full calculation of the transfer function

(e.g. Seljak & Zaldarriaga 1996) indicates that the high

baryon density introduces features or ‘wiggles’ into the

shape of the power spectrum on large scales (see also Gold-

berg & Strauss 1997 for a discussion of how these peaks

could be used to constrain the value of WB). We have used

the CMB-fast code of Seljak & Zaldarriaga to compute the

shape of the power spectrum in a CDM universe with

WB\0.1 and W\1. The resulting modification of the power

spectrum compared with the Bond & Efstathiou (1984)

transfer function for WB\0.03 is insufficient to improve the

agreement with the APM power spectrum.

7 CO N CLU S I O N S

The algorithms tested here successfully recover the power

spectrum and higher order cumulants in three dimensions

(3D). There are no systematic shifts or biases in the inferred

correlations resulting either from the deprojection tech-

niques or from the pocess of projecting the original particle

distribution. The 3D variance recovered from angular cata-

logues is in good agreement with the input model, confirm-

ing the results in G95. For higher order correlations the

deprojection method studied here, and also used in G94,

Gaztañaga & Frieman (1994), G95 and BG96, seems to be

adequate, at least for intermediate scales, 20aRa6 hÐ1

Mpc, although one would, in principle, expect deviations

from the simple hierarchical, according to perturbation

theory (Bernardeau 1995). A more detailed analysis of this

point is presented elsewhere (see Gaztañaga & Bernardeau

1997).

It is possible to recover the detailed shape of the power

spectrum, with error bars similar to those quoted by BE93.

As pointed out there (and also in G95), the uncertainties in

the selection function do not have much effect on the

recovered shape. The deprojection algorithm is able to dis-

tinguish sharp features, such as the one for k30.07–0.2 h

MpcÐ1 shown in Fig. 13, first remarked upon by BE93. For

this range of wavenumbers, the best-fitting CDM model has

Wh30.2, as pointed out by Efstathiou et al. (1990b) and

Peacock & Dodds (1994). However, the break in the power

spectrum in this particular CDM model is broader and at a

larger scale than the break in the APM power spectrum.

We have shown that the volume traced by the APM Sur-

vey is large enough to allow a significant measurement of

the break in the power spectrum, n\0, as found on scales

around k30.05 h MpcÐ1. We have also shown (see Fig. 14)

that possible systematic errors involved in the APM plate

matching lie within our estimated errors.
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Peacock & Dodds (1994) report a break in the power

spectrum at a wavenumber of k30.02 h MpcÐ1 using spec-

tra measured from a range of different surveys. The

volumes mapped out by these surveys span a considerable

range. We have found that only our largest simulation boxes

allow the break to be measured accurately, both in the

direct estimation of the power spectrum in 3D and in the

recovered spectrum obtained from the projected catalogue.

The size of the largest box we use, L\600 hÐ1 Mpc, is much

greater than the median depth of any of the redshift surveys

available to Peacock & Dodds, indicating that finite-volume

effects could have altered the shape of the power spectra

estimated from individual surveys on large scales (as found

in Fig. 12 for the 400 hÐ1 Mpc boxes). Other sources of

uncertainty in this type of compilation include the different

selection biases applied, the differences in the intrinsic

luminosities of the objects selected in the catalogue, and the

large sampling variance from the smaller surveys. Furher-

more, the linearization process applied to the measured

power spectra involves a correction for the distortion of the

pattern of clustering by galaxy peculiar velocities (Kaiser

1987), which is both model- and catalogue-dependent (e.g.

Smith et al. 1997).

The location of the break that we find in the galaxy power

spectrum matches that found in power spectrum of galaxies

clusters, both from a compilation based on the Abell cata-

logue (Einasto et al. 1997) and from a carefully selected

redshift sample drawn from the APM Cluster Catalogue

(Dalton et al. 1992; Tadros 1996; Tadros & Dalton 1997, in

preparation).

The physical interpretation of the break at

kB30.05 h MpcÐ13150 
H0

c
(14)

found in the APM is unclear. We have argued in Section

6.2.1 that the galaxy shape of P (k) for ks0.1 h MpcÐ1

corresponds to the shape in the underlying linear matter

power spectrum. For inflationary models with cold dark

matter (CDM) the break in the power spectrum at wave-

number kB corresponds to the Hubble radius when the

Universe becomes matter-dominated. This is because the

amplitude of fluctuations is frozen as they enter the Hubble

radius during the radiation-dominated era (see Bond &

Efstathiou 1984; Bardeen et al. 1986). The wavelength of

the Hubble radius at this epoch is lB110(Wh)Ð1 hÐ1 Mpc
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(e.g. Kolb & Turner 1990), where W is the total matter

density in units of the critical density, which corresponds to

a wavenumber of kB30.1(Wh) h MpcÐ1. Thus, for CDM-

like models, the range of the scales we find for the break in

the APM, k\0.02–0.06 h MpcÐ1, implies 0.2xWhx0.6. To

be more precise, we perform a x 2 fit to the CDM models in

Bond & Efstathiou (1984) using the four APM P (k) points

in the range k\0.02–0.06 h MpcÐ1 to find Wh30.45¹0.10

(Wh\0.2 produces a x 239, while Wh\0.4 gives x 231.3).

Thus the case W\1 requires h30.45¹0.10, while an open

universe or one with a non-zero cosmological constant, L,

can accommodate other values of the Hubble constant h.

For purely relativistic dark matter, like neutrinos, the scale

at which the amplitude of fluctuations are damped is typi-

cally larger than for CDM, corresponding to the Hubble

radius when the universe becomes non-relativistic. For

these models the measured break yields correspondingly

larger values for Wh.

As shown in Fig. 13, the sharp change in the local slope of

the APM at k30.05–0.1 h MpcÐ1 is not compatible with any

CDM model, which has a broader peak. Note that in Fig. 13,

the results are independent of uncertainties in the overall

normalization or in any linear bias that may be applied,

unlike Fig. 15. We have also shown that non-linear evolu-

tion is not sufficient to modify the shape of the linear CDM

power spectrum to provide a good match to the shape of the

observed APM spectrum.

We have argued in Section 6.2.2 that simple variations of

CDM models, such as tilted or higher WB models, cannot

account for the APM observations. Models in which a large

fraction of the matter is relativistic (such as mixed dark

matter) are more likely to match this type of sharp feature.

The scale found here for the break, around k30.05 h

MpcÐ1, could give interesting constraints for these models.
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Gaztañaga E., 1994, MNRAS, 268, 913 (G94)
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