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violation. We then construct a “nightmare scenario” that generates a strong first-order

phase transition as required by EWBG, but is very difficult to test experimentally. We
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1 Introduction

The origin of the matter-antimatter asymmetry of our observed universe remains one of the

most important unsolved mysteries in particle physics. This is not for a lack of compelling

theoretical ideas, but rather due to the lack of compelling experimental evidence for any of
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those ideas. A hypothetical physical process in the early universe which generates the ob-

served asymmetry between baryons and anti-baryons is called baryogenesis. This requires

satisfying the three Sakharov conditions [1], which in many theories is achieved by introduc-

ing new GUT or high-scale physics that is not directly accessible at collider experiments.

By construction, these theories are difficult or impossible to test unambiguously.

In contrast, the Standard Model (SM) itself contains all the necessary ingredients to

realize the mechanism of Electroweak Baryogenesis (EWBG) [2–6]. Unfortunately, the

actual parameters of the SM do not satisfy the Sakharov conditions, and thus EWBG also

requires the introduction of new physics beyond the SM (BSM).

Even so, EWBG stands out from other baryogenesis scenarios simply because it occurs

at or near the electroweak (EW) scale. The basic mechanism proceeds as follows (see [7–12]

for reviews). In the very early universe, interactions with the plasma stabilize the higgs

field at the origin. As the universe cools down, the higgs undergoes a phase transition to

a nonzero vacuum expectation value (VEV) when the temperature is in the neighborhood

of the weak scale T ∼ O(100GeV). If this phase transition is sufficiently first-order,

CP -violating interactions of the plasma with the expanding bubble wall of true vacuum

can generate a chiral excess in front of the wall, which is then converted to baryons by

electroweak sphalerons. Given a strong enough phase transition, a sufficient portion of the

generated baryon asymmetry survives inside the bubble of true vacuum once the bubble

wall moves past. Both the strong phase transition and large CP -violation require new

physics, which has to be active near the EW scale. This makes EWBG, in principle, fully

testable at collider experiments.

The difficulty in testing EWBG arises from the multitude of proposed models [7–12],

and a priori one would need to investigate the entire theory space of EWBG to determine

the necessary reach of a future collider. Instead, we propose a systematic approach in which

we closely examine the requirements that new physics must satisfy for successful EWBG,

and then determine if there is an axis along which experimental testability becomes more

difficult. We then look only at models in this most difficult regime.

We set as our axes the two basic BSM requirements for successful EWBG: (i) a mod-

ification of the higgs potential at high temperatures to make the phase transition more

first-order than in the SM, and (ii) some new form of CP -violation. In a particular model,

there are different testable consequences along each of these axes. For example in the

MSSM, the stronger phase transition requires particular spectra with light stops [13–27].

Light stops in turn are easily testable both through direct searches and indirect proper-

ties of the higgs boson. In fact, one can exclude EWBG in the MSSM using early higgs

data without relying on direct searches by correlating the various different higgs production

modes and decays [28–30]. Studying the sources of CP violation also provides experimental

tests; for instance, Electric Dipole Moments (EDMs) provide stringent tests of baryogenesis

in the MSSM [23, 28].

In principle, for any given model we can look for the experimental consequences along

both the phase transition axis and the CP violation axis. However, the detailed calculation

of the generated baryon asymmetry that relies on new sources of CP violation is extremely

complex and subject to large theoretical uncertainties, see e.g. [19–22, 31–44]. In contrast,
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determining if there is a strong first-order phase transition is much more tractable and

can be factorized from the full problem. Therefore, to determine a minimum criterion for

testing EWBG, we first look solely at the phase transition requirement. Although this

does not test the full mechanism of EWBG, ruling out the possibility of a first-order phase

transition is sufficient to rule out the possibility of EWBG. We do not, at the present

time, investigate the correlation between BSM physics responsible for the sources of CP

violation and the phase transition. This will only become necessary if there is a part of

theory parameter space that is not testable through the phase transition requirement alone.

A strong first-order electroweak phase transition is characterized by the presence of

a barrier in the effective thermal higgs potential that separates degenerate minima h = 0

and h = vc at some temperature Tc, while satisfying the Baryon-Number Preservation

Criterion for mh = 125GeV,
vc
Tc

> 0.6− 1.6. (1.1)

The right-hand side is conventionally taken to be 1.0, but we consider the shown numerical

range to reflect unknown details of the baryon number generation mechanism during the

phase transition [45]. There are a number of possible ways to achieve this phase transition

by introducing new particles which couple to the higgs, modifying its potential by a variety

of mechanisms (see [46] for a categorization of phase transitions and their correlation to

higgs observables). Therefore, moving down the axis of difficulty in testing sources of a

strong phase transition is relatively straightforward. The most-hidden particles that can

increase the strength of the EW phase transition are SM singlet scalars. SM singlets that

couple to the higgs to achieve EWBG have been studied in great detail, both by them-

selves [47–59] and in the context of supersymmetry [60–66]. In this paper we investigate

the maximally hidden singlet scalar model, find where a strong phase transition can occur,

and then correlate this with the reach of experimental probes.

The basic setup for this “nightmare scenario” is as follows. We introduce a real singlet

field that couples to the higgs and has a Z2 symmetry to forbid higgs-singlet mixing [50–56].

This rules out electroweak precision tests and higgs coupling modifications as experimental

probes. We then set mS > mh/2 to avoid modified higgs decays, in particular an exotic

higgs decay mode which would be relatively easy to discover at future colliders (see [67]

for a review).

This nightmare scenario, while difficult to test, still has a number of potential exper-

imental signatures. For instance, colliders can probe the direct production of the singlet

states, as well as shifts in the triple higgs couplings and Zh cross section. Furthermore,

the presence of the Z2 symmetry has implications for dark matter searches.

One could, in principle, make the above setup even more difficult to discover by includ-

ing extra singlets that decrease some of the experimental signatures while leaving the phase

transition intact. However, as we show in this paper, excluding even this basic nightmare

scenario requires at least a 100TeV hadron collider, such as the proposed SPPC/FCC.

A higgs factory like CEPC, ILC, or TLEP is not sufficient, based on existing studies for

precision measurements of higgs self-couplings. Remarkably, the fact that this scenario is
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testable at the SPPC/FCC demonstrates that it may be possible to postulate a “no-lose”

theorem for EWBG with future colliders.

Our paper is organized as follows. In section 2, we define the Z2 symmetric sin-

glet scalar model and the two-dimensional parameter plane that illustrates its entire phe-

nomenology. Section 3 contains our analyses of the one-step and two-step phase transitions

which enable EWBG in this model. Sections 4 and 5 examine direct and indirect signatures

of the singlet scalar at colliders, and show how the discovery potential overlaps with the

EWBG-favored regions of parameter space. We consider cosmological constraints on the

singlet in section 6 and show that, under certain assumptions, the entire parameter space

can be excluded by future direct detection experiments. Renormalization group (RG) evo-

lution and the implications of strong couplings are discussed in section 7. We summarize

our findings and discuss implications in section 8.

2 A “nightmare scenario” for a strong electroweak phase transition

Our putative nightmare scenario is constructed to hide the effects of a strong first-order

phase transition, as discussed in section 1.

2.1 Model definition

We define our model by the following most general renormalizable tree-level higgs potential

for the SM higgs and a single real scalar:

V0 = −µ2|H|2 + λ|H|4 + 1

2
µ2
SS

2 + λHS |H|2S2 +
1

4
λSS

4. (2.1)

After substituting H = (G+, (h+ iG0)/
√
2) and focusing on the field h which becomes the

SM higgs after acquiring a VEV,1 this becomes

V0 = −1

2
µ2h2 +

1

4
λh4 +

1

2
µ2
SS

2 +
1

2
λHSh

2S2 +
1

4
λSS

4. (2.2)

This scenario of adding a singlet with a Z2 symmetry to the SM has been well-studied in a

variety of different contexts [50–56]. In this work, we focus on adding one real singlet with

a mass larger than mh/2 to avoid exotic higgs decays, and an unbroken Z2 symmetry under

which S → −S to avoid singlet-higgs mixing. In our choice of parametrization, the higgs

acquires a VEV 〈h〉 = v = µ/
√
λ ≈ 246GeV and a mass at tree-levelmh =

√
2µ ≈ 125GeV.

In section 3 we adopt renormalization conditions to ensure that loop corrections do not

change these values from their tree-level expectation. Therefore we can define the higgs

Lagrangian parameters λ =
m2

h

2v2
≈ 0.129 and µ = mh√

2
≈ 88.4GeV.

2.2 Physical parameter space

The model is determined by three new parameters, µS , λHS and λS . However, in the

context of our nightmare scenario, it is straightforward to show that all relevant physics

1For simplicity, we use h for the neutral real component of H as well as the SM higgs.
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Figure 1. The parameter space of the Z2 symmetric SM+S extension with mS > mh/2 (our

nightmare scenario). Left: the red shaded region indicates when µ2 is negative. The dotted red

contours indicate Sign(µ2
S
)|µS |. The blue contours show the minimum S4 quartic coupling λS

required for the electroweak symmetry breaking (EWSB) vacuum to be the ground state of the

universe, while the green contours show the minimum λS to avoid negative runaways. Right: gray

regions indicate where theoretical control is lost due to non-perturbative λS . Perturbative analysis

of the phase transition breaks down in the blue shaded regions, see section 3. The red and white

regions are the possible parameter space of this nightmare scenario.

can be recast into the simple two-dimensional plane of the physical singlet mass and its

coupling to the higgs.

Without excluding the possibility of a two-step phase transition where the singlet

acquires a VEV at some point in cosmological history, we operate under the assumption

that we live in a zero-temperature vacuum where the higgs has a VEV and the singlet does

not. The mass squared of the singlet in our vacuum, required to be positive, is then

m2
S = µ2

S + λHSv
2 > 0. (2.3)

The other parameter which dictates the phenomenology of the singlet is its coupling to our

sector through the higgs, the hSS coupling. This coupling determines singlet production

and annihilation cross sections and is given by λHS .
2 The singlet self interaction, λS , is

important when discussing regions with a possible phase transition, but does not play a

direct role in the phenomenology of this model. Thus, all the relevant features of our

nightmare scenario can be shown in the (mS , λHS) plane.

The (mS , λHS) plane can be divided into regions where all couplings are under per-

turbative control or not, and further divided based on the sign of µ2
S . This division has

consequences for the vacuum structure of the theory, and hence the qualitative mechanisms

at play to produce strong phase transitions. If all the quartics are positive, then for positive

2When discussing the effective potential at one-loop in section 3 we choose a scheme in which the

tree-level parameter λHS corresponds to the physical hSS coupling Leff ⊃ −vλHShSS.
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µ2
S the only minimum is the EWSB vacuum at (h, S) = (v, 0). When λHS > m2

S/v
2, µ2

S

is negative. This region is shaded red in figure 1 (left). In this case, there are two local

minima: the EWSB vacuum and a “singlet-VEV vacuum” at (h, S) = (0, w). A surviving

Z2 symmetry prevents higgs-singlet mixing in both vacua.

For the scenario with negative µ2
S , we can ensure that our universe ends up in the

correct EWSB vacuum by requiring that the potential V0(h, s) satisfies V0(0, w) > V0(v, 0).

It is clear that this requires a minimum value of λS which depends on the choice of mS

and λHS :

λmin
S = λ

µ4
S

µ4
=

2(m2
S − v2λHS)

2

m2
hv

2
(2.4)

The blue contours in figure 1 (left) show this minimum λS at tree-level, which rapidly

becomes non-perturbative as we move deeper into the shaded red region. Requiring λS < 8

excludes the gray region in the top corner of figure 1 (right) from being part of the viable

parameter space. In the remaining red strip, it is possible to choose a quartic coupling λS

to ensure the universe eventually ends up in the EWSB vacuum.

There are additional constraints on λS that come from avoiding runaway directions in

the potential at large field values. Avoiding a negative runaway3 at tree-level requires

λ > 0 , λS > 0 , λHS > −
√

λλS . (2.5)

For a given negative λHS , which in our scenario implies µ2
S > 0, this requirement leads to

a minimum value of λS :

λmin′

S =
λ2
HS

λ
= λ2

HS

2v2

m2
h

(2.6)

which is indicated by the green contour lines in figure 1 (left). Again, the required quartic

coupling λS becomes non-perturbative as we move to larger negative λHS . Applying the

same λS < 8 cutoff as before excludes the lower gray shaded region in figure 1 (right). This

corresponds to the requirement that

λHS & −1.0. (2.7)

In allowing λS to be as big as 8 we are being somewhat generous — theoretical con-

trol could break down at smaller couplings. However, the purpose of this demarcation of

parameter space is to identify regions that we would need to probe, with either direct or

indirect measurements, to exclude this model as a viable EWBG scenario. It is therefore

sensible to charitably assess theoretical control and slightly over-estimate the size of param-

eter regions with a strong phase transition. This ensures that no viable EWBG scenarios

are missed. In particular, as we will show in future sections, the region that is explored

with a more optimistic definition of perturbative control is always easier to probe directly

or indirectly, thereby not changing the conclusions of our study.

3In the presence of negative runaways the tree level potential has local minima at h, S 6= 0. However, by

the positivity assumption of eq. (2.3), these local minima are always at higher potential than the electroweak

breaking minimum.
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The constraints that excise certain regions of parameter space thus far are based on

tree-level considerations requiring couplings at non-perturbative values. There are addi-

tional perturbativity constraints from quantum effects. In section 3, we will demonstrate

that a one-loop perturbative analysis of the phase transition breaks down for λHS & 6 for

µ2
S < 0 and for λHS & 5 for µ2

S > 0. (This roughly coincides with regions where the quar-

tic couplings develop Landau Poles below 10–100TeV, as we discuss in section 7.) These

regions, which are meant to be approximate indications of where perturbative calculations

become very unreliable, are shaded blue in the top right corner of figure 1 (right).

The viable parameter space of the nightmare scenario is therefore the red and white

regions in figure 1 (right). As we will see, these two regions behave very differently with

regards to EWBG as well as their signals for direct and indirect measurements. The

phenomenology of regions with large couplings is further discussed in section 7.

3 Electroweak phase transition

In this section, we will discuss the different types of phase transitions that occur in the

nightmare scenario and lay out the physical parameter space in which a strong electroweak

phase transition could occur.

Successful EWBG requires a phase transition stronger than that found in the SM. This

can be achieved with a variety of different mechanisms, such as thermally-driven scenarios,

tree-level modifications to the scalar potential from renormalizable or non-renormalizable

operators, and zero-temperature loop effects (see e.g. [46]). In principle, a given model

can realize several different mechanisms in different regions of its parameter space. In

particular, we will demonstrate that the singlet model can have thermal, tree-level, and

loop-level induced first-order EW phase transitions. This observation is not novel, and

the different mechanisms have been demonstrated individually in the literature [50–56].

However, rather than simply doing a parameter scan for possible phase transitions, we

examine the physics of each type of first-order phase transition, and map the effects onto the

relevant phenomenological parameter space (mS , λHS) for testing the EW phase transition.

This ensures we consider every possibility for EWBG.

Before demonstrating the details of the parameter space for each type of first-order

phase transition, it is useful to summarize the underlying mechanisms and how they operate

in the context of this nightmare scenario.

In section 2 we outlined how the most important order parameter separating different

phases of the theory is µ2
S , the scalar mass at the origin. The singlet potential is positive

definite for µ2
S > 0. In this case, the phase transition occurs purely along the higgs direction.

However, if the singlet is sufficiently strongly coupled to the higgs, its zero-temperature loop

corrections to the higgs potential can be big enough to allow SM thermal effects to trigger

a strong phase transition. On the other hand, if µ2
S is negative there can be two vacua.

The universe can then undergo a two-step phase transition, first to a singlet VEV vacuum,

and then to the true EWSB vacuum. This tree-level modification of the higgs potential

can result in an arbitrarily strong phase transition by adjusting the potential difference

between the two vacua via the choice of λS . If µ2
S . −(100GeV)2 and the singlet self-

– 7 –
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and scalar-couplings are just right, it is also possible for a one-step transition to occur via

thermal effects, akin to the MSSM light stop scenario. This is only realized for a small

region of parameter space, entirely contained within the two-step phase transition region of

the (mS , λHS) plane. It is therefore clear that the two different regions of parameter space

delineated in section 2 also realize strong phase transitions differently: one with relatively

low mS and negative µ2
S , and one with large mS and stronger singlet-higgs coupling.

In what follows, we review the phase transition calculation in detail and define the

regions of parameter space which can realize EWBG. It is important to note that while

these regions are very distinct from the point of view of the phase transition, they are

continuously connected in the phenomenological parameter space (mS , λHS).

3.1 µ2

S
> 0: one-step transition via loop effects

For µ2
S > 0 and without negative runaways, the singlet never attains a VEV, and there are

no tree-level effects to enhance the phase transition. However, it is still possible to induce

a strong electroweak phase transition via sizable one-loop zero-temperature corrections to

the SM higgs potential.

3.1.1 Effective potential

The finite-temperature effective higgs potential [7–12] is made up of four components:

Veff(h, T ) = V0(h) + V CW
0 (h) + VT (h, T ) + Vr(h, T ). (3.1)

V0 is the tree-level potential defined in eq. (2.2). V CW
0 is the one-loop zero-temperature

correction [68] , VT is the one-loop finite-temperature potential, and Vr are the ring-terms.

See appendix A for the full expressions.

The singlet quartic λS does not contribute to any mass term when S = 0. In fact,

its sole appearance is in the zero-momentum polarization tensor ΠS(0). This only affects

Vr(h, T ) and has only a very minor effect on the one-step phase transition, as we will see

below. Therefore, at one loop, the strength of the phase transition for µ2
S > 0 is almost

entirely determined by the two parameters (mS , λHS).

3.1.2 Electroweak phase transition via loop effects

We compute the total Veff(h, T ) in eq. (3.1) for different choices of (mS , λHS) in the white

region of figure 1 (right).4 We set λS = 0; increasing it to λS ∼ O(1) slightly weakens

the phase transition, so setting the self-coupling to zero shows the largest possible region

where EWBG can occur. Varying the temperature, we find T = Tc where the two local

minima h = 0 and h = vc are degenerate, and check the ratio vc/Tc to see whether EWBG

is possible according to eq. (1.1).5

4The imaginary part of Veff is a spurious artifact of the perturbative expansion and is ignored [69].
5The ratio vc/Tc is not gauge invariant, and obtaining an explicitly gauge-invariant baryon-number

preservation criterion requires special care to obtain a fully consistent perturbative expansion for the quan-

tities vc and Tc separately, but the numerical impact of using the fully gauge invariant criterion is much

smaller than the effect of 2-loop corrections [45].
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The result is shown in figure 2. Orange contours show the value of vc/Tc, with orange

shading indicating the region vc/Tc > 0.6 where EWBG could proceed with an efficient

baryon number generation mechanism. However, the exact choice of the minimum vc/Tc

does not qualitatively affect the definition of the EWBG-compatible region. Strong cou-

plings λHS & 2 are needed. The critical temperature decreases with increasing coupling

and is in the range of Tc ∼ 130− 160GeV.

To understand this mechanism for generating a strong phase transition, we repeat

the above calculation with various contributions to the total effective potential eq. (3.1)

switched off. We find that using

Veff = V0 (tree-level potential)

+ (only singlet contributions to V CW
0 )

+ (only SM thermal contributions)

gives a very similar result, with the λHS necessary for a strong phase transition underesti-

mated by about 10%. This implies that sizable zero-temperature one-loop higgs potential

contributions from the singlet reduce the potential difference between the EWSB vacuum

and the origin, which then makes it easier for SM thermal contributions to generate an

energy barrier between the two degenerate local minima at some T = Tc. This is illustrated

in figure 3.

For very strong coupling, the one-loop effects create an energy barrier even at zero

temperature. This is the case above the dashed green line in figure 2. However, as we

discuss in the next subsection, our one-loop analysis may not be valid for such high coupling.

3.1.3 Reliability of perturbative analysis

We have found that a strong one-step electroweak phase transition requires rather large

quartic singlet-higgs couplings λHS & 2. It is prudent to examine the validity of the

perturbative expansion to understand the trustworthiness of this result. In this discussion

we only consider zero-temperature loop-effects, since those are the singlet contributions

responsible for a strong phase transition.

The quartic term h4 in the one-loop improved zero-temperature effective potential can

be written as

V0 + V CW
0 ⊃ 1

4
[λ+∆λ(h)]h4. (3.2)

The one-loop singlet contribution to ∆λ is

∆λ(h) =
λ2
HS

16π2

(

log

[

1 +
(h2 − v2)λHS

m2
S

]

− 3

2

)

(3.3)

Two-loop corrections scale as ∼ (∆λ)2, and thus the validity of the perturbative anal-

ysis requires ∆λ not to be too large.6

6Similar, though less stringent, constraints on perturbativity are obtained by considering the correction

to other terms in the potential.
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Figure 2. Regions in the (mS , λHS) plane with viable EWBG. Red shaded region: for µ2
S
< 0 it

is possible to choose λS such that EWBG proceeds via a tree-induced strong two-step electroweak

phase transition (PT). Orange contours: value of vc/Tc for µ2
S

> 0. The orange shaded region

indicates vc/Tc > 0.6, where EWBG occurs via a loop-induced strong one-step PT. Above the

green dashed line, singlet loop corrections generate a barrier between h = 0 and h = v even at

T = 0, but results in the dark shaded region might not be reliable, see section 3.1.3.

mS ❂ 450 GeV

❧HS ❂ 3.2

V0 ❍tree✲level▲

VCW ❍SM▲

V0 ✰ VCW ❍SM▲

VCW ❍SM✰S▲

V0 ✰ VCW ❍SM ✰ S▲

0 50 100 150 200 250 300

�1➫108

�5➫107

0

5➫107

1➫108

h ❅GeV❉

V

✁G
eV

4

✂

Figure 3. Comparison of the zero-temperature potential contributions in the SM vs. the SM +

singlet with (mS , λHS) = (450GeV, 3.2) which has a strong first-order PT with vc/Tc > 1. The

one-loop contribution of the singlet reduces the potential difference between the origin and the

EWSB vacuum.
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Figure 4. Same as figure 2, but with contours of ∆λ(h = 0) eq. (3.3) shown in purple. Dark

shading above |∆λ| = 0.4 indicates approximately where the results of our analysis in section 3.1.2

are not trustworthy due to loss of perturbativity.

Figure 4 shows contours of ∆λ(h = 0) in the (mS , λHS) parameter space. The cor-

rection is evaluated at the origin to maximize its size and give a somewhat pessimistic

estimate of where our perturbative analysis is trustworthy.

For large couplings λHS , ∆λ(0) rapidly approaches unity. While it is difficult to

quantitatively define an exact region where the analysis becomes unreliable, clearly the

results for λHS & 5 should be taken with a grain of salt. We choose the |∆λ| = 0.4

contour in figure 4 as the approximate boundary of our regime of perturbative validity,

and indicate larger values with blue shading in all plots (see also figure 1). We conclude

that for λHS . 4− 5, zero temperature loop effects can induce a strong electroweak phase

transition and the calculation can be trusted.

We finish this discussion with a parenthetical remark. One could think of quantifying

a degree of “fine-tuning” by the size of ∆λ. Given that the zero-temperature quartic of the

higgs potential needs to be O(0.1), one might require ∆λ to “naturally” be of similar size,

otherwise the new sector at one-loop dominates the tree-level higgs potential. Of course,

given the contours shown in figure 4, this more restrictive naturalness requirement only

serves to greatly reduce the available parameter space for a strong phase transition, and as

such makes testing EWBG even easier without introducing a fixed measure for ruling it out.

3.2 µ2

S
< 0: two-step transition via tree-effects

It has long been understood that singlet extensions of the SM can lead to tree-level modi-

fications of the higgs potential, creating a barrier between local minima h = 0 and h = v.

This barrier makes the electroweak phase transition strongly first-order without requiring

particular quantum or thermal effects, as is the case for our model when µ2
S < 0.

– 11 –



J
H
E
P
1
1
(
2
0
1
4
)
1
2
7

We first explain how this occurs using simple tree-level arguments before confirming

this picture with a full one-loop analysis.

3.2.1 Tree-level argument

In the red region of figure 1 (right), µ2
S < 0, and we can choose a λS > 0 such that

there are two local minima, one at h = 0, S = w and a deeper one at h = v, S = 0 (at

zero temperature). When the universe is very hot T ≫ 100GeV, thermal contributions

stabilize both fields at the origin. Since the singlet couples to fewer degrees of freedom,

its thermal mass is lower than that of the SM higgs. Therefore, as the universe cools, the

singlet gets destabilized before the higgs (see e.g. [53]). The electroweak phase transition

then starts in the singlet-VEV minimum and ends in the EWSB minimum.

As outlined in section 2.2, we can always choose a λS to make the two local minima

degenerate. This corresponds to zero critical temperature, i.e. the universe never transitions

from the singlet-VEV minimum to the EWSB minimum. For any given point (mS , λHS)

in the red region of figure 1 (right) one can then imagine taking λS a little bit larger than

λmin
S in eq. (2.4). This gives an arbitrarily low Tc, and hence an arbitrarily large ratio

vc/Tc, easily satisfying the baryon number preservation criterion eq. (1.1), while ensuring

the singlet-VEV vacuum is short-lived.7

The above discussion may be modified slightly by loop and thermal effects. By and

large, however, in (or close to) the red shaded region of figure 1 (right) and figure 2,

EWBG is possible via a strong two-step phase transition, which is induced by tree-level

modifications to the higgs potential.

3.2.2 Full analysis

We confirm the validity of the above argument with an explicit calculation. The two-

dimensional effective potential Veff(h, S, T ) is obtained from eq. (A.2) by including the

singlet-dependence of the singlet and higgs masses:

m2
h = −µ2 + 3h2λ+ λHSS

2 , m2
S = µ2

S + 3λSS
2 + λHSh

2. (3.4)

The first step is finding the minimum value of λS = λmin
S (mS , λHS) required to satisfy

the condition

Veff(0, w, T = 0) > Veff(v, 0, T = 0). (3.5)

Requiring λmin
S (mS , λHS) < 8 at tree-level was used in section 2.2 to define the viable

µ2
S < 0 region of parameter space, shaded red in figures 1 (right) and 2. We find that

the definition of this region does not change significantly when including loop corrections,

except for the fact that λmin
S > 8 for all µ2

S < 0 when λHS & 6. Therefore we regard any

7The tunneling rate from the singlet-VEV minimum to the EWSB minimum is Γ ∼ e−SE , where SE

is the finite-temperature bounce action [70]. For SE ∼ 100, the false vacuum decays quickly in the early

universe [71]. We computed the zero temperature bounce action B in the triangle potential barrier approx-

imation [72] and found that B < 100 for some range of λS < 8 in most of the red shaded region of figure 1.

Thermal fluctuations greatly enhance the tunneling rate, SE < B. Therefore, the transition between the

two minima can be sufficiently fast to ensure a viable thermal history for the universe.
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calculation in the µ2
S < 0 region with larger λHS coupling as unreliable, indicated with the

blue shading above λHS = 6 in figure 1 (right) and all following figures.

A given choice of (mS , λHS) and λS > λmin
S (mS , λHS) completely defines the

temperature-dependent effective potential, and it is straightforward to analyze the two-

step phase transition. We will focus on values of λS = λmin
S +O(0.1).

At very high temperature both fields (h, S) are stabilized at the origin.8 As the universe

cools, the singlet transitions to a nonzero VEV first, in a second-order phase transition at

temperature Tc1 ∼ few 100GeV. The EWSB minimum eventually drops below the singlet-

VEV minimum at temperature Tc2 < Tc1. Since the tree-level barrier between the two min-

ima survives at Tc2, the universe undergoes a first-order phase transition to (vc2, 0), where

vc2 ≡ v(Tc2). Tc2 varies in the 2-step phase transition region, increasing as we take µ2
S → 0.

• For λS = λmin
S , Tc2 < 45GeV in the entire two-step region. The phase transition

is very strong, vc2/Tc2 ∼ 4 near µ2
S → 0 (outer boundary of 2-step phase transition

region) and & 8 as λmax
S approaches its maximum allowed value of 8 (inner boundary

of 2-step phase transition region).

• For λS = λmin
S +0.1, Tc2 ∼ 30− 100GeV in the entire 2-step phase transition region,

with vc2/Tc2 > 2.

Clearly a relatively small increase in λS compared to its minimum value guarantees that

the phase transition takes place at a cosmologically safe temperature, and the singlet-VEV

vacuum is short-lived.

This calculation demonstrates the validity of the tree-level arguments in section 3.2.1.

A strong two-step phase transition can be achieved in the entire viable µ2
S < 0 region,

shaded red in all our plots. The loop-level analysis reveals perturbativity is lost for λHS & 6,

which is shaded blue in all our plots.

3.3 µ2

S
< 0: one-step transition via thermal effects

It was found previously [73] that an unmixed singlet extension of the SM with a complex

scalar could, for µ2
S < 0 and sizable coupling to the higgs, induce a strong one-step phase

transition for some choice of self-coupling which stabilizes the singlet at the origin when

T = Tc.

We find that this mechanism can also be realized in our model, which only has a single

real scalar. In parts of our µ2
S < 0 two-step phase transition region, for some choices of

λS > λmin
S and |µS | . 100GeV, the singlet bare mass cancels its thermal mass and generates

a negative cubic term in the finite-temperature higgs potential, while also stabilizing the

singlet at the origin for T ≥ Tc. This replicates the well-known mechanism for a strong

phase transition realized, for example, by the Light Stop Scenario in the MSSM [13–27].

8This is not the case for large λS or λHS , since the singlet thermal potential develops a high-temperature

instability if 1

3
λHS + 1

3
λS > π2

9
≈ 1.1. At high temperature, the singlet then has nonzero VEV. This does

not affect our argument for a strong phase transition, since it essentially corresponds to Tc1 ≫ Tc2. It also

does not affect the one-step phase transition for µ2

S > 0.
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However, since the thermally driven phase transition only occurs for some finely tuned

λS in a very small part of the two-step phase transition region, we do not miss any EWBG-

viable regions by only discussing the µ2
S > 0 one-step and µ2

S < 0 two-step phase transition

regions in the phenomenological analysis of the following sections.

3.4 Summary

Figure 2 shows the two regions in the nightmare scenario’s parameter space where EWBG

is possible. For µ2
S < 0, a judicious choice of λS can always generate a strong two-step

phase transition via tree effects (and sometimes thermal effects) in the red-shaded region.

For µ2
S > 0, zero-temperature loop effects from the singlet raise the EWSB minimum,

which allows SM thermal contributions to generate a sizable energy barrier. This makes

EWBG possible in the orange-shaded region. For λSH . 5 (6) in the one (two) step

phase transition region our analysis is perturbatively reliable, with untrustworthy regions

indicated by the blue shading in all our figures.

This establishes the regions of the (mS , λHS) plane where EWBG could occur. We

now move on to discuss ways of directly and indirectly detecting signatures of the strong

phase transition.

4 Direct signatures of the phase transition

By construction, the only way to directly produce singlets in the nightmare scenario is

through pair production via an off-shell higgs. Since the singlets are observed as missing

energy, a visible object needs to be produced in association with the singlets in order to

discover them. Given that the only coupling of the singlets to the visible sector is through

the higgs, standard invisible higgs channels are potentially useful to examine: monojet,

associated production (AP), and vector boson fusion (VBF). The main differences are the

unknown invariant mass of the final state, and a much smaller cross section. Monojet

searches are the most difficult given the QCD background, but dedicated investigations

may yield some reach in this channel [74]. The cleanest channels in which to search for the

singlet are AP qq̄ → V SS, and VBF qq → SSqq, due to leptonic final states and distinctive

kinematics of the jets, respectively.

Cross-sections for AP and VBF, shown in figure 5, are very small even at a 100TeV

collider. This makes direct searches very challenging. Given that the VBF channel has

the largest cross section we use it as a litmus test for a putative 100TeV direct search

strategy. In principle, combining AP, VBF and monojet searches could improve the reach

somewhat [74], but the qualitative lessons we demonstrate below will hold.

The dominant background for VBF singlet production (with a moderate missing energy

requirement) is (Z → νν) + jets. The VBF production cross section of Z → νν is around

1000 pb for a 100TeV pp collider. This is already much larger than the < 10−2 pb for VBF

production of h → SS, and does not include non-VBF Zjj. Despite these discouraging

numbers, we will show it is still possible to have sensitivity to the parameter space relevant

for EWBG at a 100TeV collider.

– 14 –



J
H
E
P
1
1
(
2
0
1
4
)
1
2
7

VBF

W➧SS

ZSS

200 400 600 800 1000
10✲11

10✲9

10✲7

10✲5

0.001

mS ❅GeV❉

s

� p
b

✁

(a)
√
s = 14TeV.

VBF

W➧SS

ZSS

200 400 600 800 1000

10✲8

10✲6

10✲4

0.01

mS ❅GeV❉

s

� p
b

✁

(b)
√
s = 100TeV.

Figure 5. Production cross-sections at hadron colliders for various modes of singlet production

with λHS = 2. These calculations were computed at LO with MadGraph5 [75].

Figure 6. Dark green contours show S/
√
B for VBF production of the SSqq signal vs the main

background, (Z → νν̄)+ jj, for a 100TeV pp collider with 3000 fb−1 of data. We use VBF selection

criteria with a requirement that /ET > 150GeV to cut down on QCD background. Shading identical

to figures 2 and 4.

To see this, we consider a simple VBF analysis with the following criteria:

• exactly two jets with pTj1,2 > 40GeV, |ηj1,2 | < 5

• /ET > 150GeV,

• ∆ηjj = |ηj1 − ηj2 | > 3.5 and |ηj1,2 | > 1.8,

• Mjj > 800GeV.

• reject events with leptons satisfying |η| < 2.5 and pT > 15GeV.
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We consider (Z → νν) + jj background from both Drell-Yan and VBF production.

We use MadGraph5 v1.5.12 [75] evaluated with the CTEQ6l [76, 77] parton distribution

functions and Pythia8 [78, 79] showering & hadronization to generate the signal events.

For detector simulation, we use Delphes 3.1.2 [80] with the same detector card as the

100TeV Snowmass Studies [81–83]. For the background, we used pre-computed Bj-4p

and Bjj-vbf event samples without pile-up from the Snowmass database [84]. Pile-up

was neglected. Figure 6 shows the resulting S/
√
B contours in the (mS , λHS) plane for a

100TeV pp collider with 3000 fb−1 of data.

Our naive estimate suggests S/
√
B is order unity in the entire two-step phase transition

region. The actual sensitivity will depend on the detector capabilities and total luminosity

of the potential future 100TeV collider program, but probing the entire two-step region

via singlet VBF production may be possible. More sophisticated search and background

reduction techniques may improve on these estimates.

This search will be challenging in practice due to its sensitivity to systematic errors.

However, there are potential data-driven methods for addressing this. For example, the

(Z → νν)jj background is kinematically identical to the (Z → ℓℓ)jj background under the

replacement of pTℓℓ → /ET . This suggests a very statistically precise background template

could be derived from data, greatly reducing systematics compared to a naive estimate.

Most of the parameter space for the strong one-step phase transition seems entirely

out of reach by direct detection. However, as we see below, indirect measurements can be

sensitive to the rest of the relevant parameter space.

5 Indirect signatures of the phase transition

As we saw in section 4, direct searches at a 100TeV collider can probe the two-step but not

the one-step phase transition region. However, indirect searches have very complementary

reach and are a promising avenue for detection. Past works using EFT formulations [71, 85,

86] and complex singlets [73] have shown a strong connection between a strong first-order

phase transition and shifts in the triple higgs coupling or the Zh cross-section. However,

these results are not directly applicable to our model. The EFT formulation describes a

different type of phase transition than what we consider and maps poorly onto our theory.

On the other hand, [73] studied only thermally driven transitions, and only in models with

more than one real scalar degree of freedom with large couplings.

This lends credence to our label of a “nightmare scenario” for the model we study, since

a strong phase transition can occur with much weaker indirect collider signatures than in

the above two examples. However, it will still be testable with certain future colliders.

5.1 Triple-higgs coupling

The triple-higgs coupling in our EWSB vacuum 〈h〉 = v, 〈S〉 = 0 is related to the third

derivative of the zero-temperature effective potential

λ3 ≡
1

6

d3
(

V0(h) + V CW
0 (h)

)

dh3

∣

∣

∣

∣

∣

h=v

=
m2

h

2v
+

λ3
HSv

3

24π2m2
S

+ . . . (5.1)
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Figure 7. Blue contours show λ3/λ
SM
3 . Measuring λ3 with a precision of 30%, 20%, and 8% can

be achieved at 14TeV, 33TeV, and 100TeV hadron colliders with 3 ab−1 of data, respectively. A

1000GeV ILC with 2.5 ab−1 could achieve a precision of 13%. See text for details.

The first and second term above is the SM tree-level and singlet loop-level contribution.

Other subdominant SM loop contributions are not shown. Figure 7 shows λ3/λ
SM
3 in the

(mS , λHS) plane. For illustrative purposes, the contours are also shown in the areas where

λS is non-perturbative.

As pointed out by [52], a strong one-step phase transition via the effects of a real singlet

is correlated with a large correction to λ3. Figure 7 shows that requiring vc/Tc > 0.6 (1.0)

implies λ3/λ
SM
3 > 1.2 (1.3). Such a sizable deviation makes it possible to exclude this type

of strong phase transition.

One can measure λ3 through double higgs production. The cross-section for producing

a pair of higgs bosons is roughly three orders of magnitude smaller than the cross-section for

producing a single higgs, which highlights the challenge of the measurement and the neces-

sity for high luminosity. Although the 4b final state has the largest rate, it also suffers from

a huge QCD background. Instead, the most promising channel is in bbγγ, whose main back-

grounds are QCD and tt̄h production. Various studies have found that λ3 can be measured

between 30%-50% accuracy at the 14TeV LHC with 3 ab−1 [87–91]. The accuracy can be

refined to 20% and 8% for a 33TeV and 100TeV collider with 3 ab−1, respectively [91].

The precision attainable for measuring λ3 at lepton colliders is generally below that

achievable at the HL-LHC. However, a high-luminosity, high-energy ILC with
√
s =

1000GeV and 2.5 ab−1 of data could measure λ3 with a precision of 13% [92, 93].

The results of these studies imply that while it is unlikely a definitive exclusion will

be achieved at a 14 or 33TeV collider, a 100TeV collider could exclude the entire one-step

phase transition region of figure 7 (orange shaded region) with a confidence of better than

2 to 5 σ, depending on mS . A high-energy ILC could exclude most, though not all, of the

one-step transition region at the 2σ level. Such measurements would also be sensitive to

the two-step transition from tree-effects (red shaded region) for λHS & 2.
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Figure 8. Dashed blue contours: the one-loop corrections to the associated production cross-

section of Zh at lepton colliders eq. (5.2), in % relative to the SM.

5.2 Zh production cross section at lepton colliders

The singlet can also affect higgs couplings by generating a small correction to the higgs wave

function renormalization, which modifies all higgs couplings by a potentially measurable

amount. In particular, precision measurements of the Zh production cross section at lepton

colliders might be another avenue for indirect detection of such a singlet. [94]

At one loop, the fractional change in Zh production relative to the SM prediction is

given by [94, 95]

δσZh =
1

2

|λHS |2v2
16π2m2

h

[1 + F (τφ)] (5.2)

where we have modified the equation to comply with our convention of v ≈ 246GeV, and

inserted a factor of 1

2
since S is a real and not a complex scalar. The loop function F (τ),

with τφ = m2
h/4m

2
S , is given by

F (τ) =
1

4
√

τ(τ − 1)
log

(

1− 2τ − 2
√

(τ(τ − 1))

1− 2τ + 2
√

(τ(τ − 1))

)

. (5.3)

δσZh is shown as a function of (mS , λHS) in figure 8. In the regions relevant for

EWBG, the shift is at most ∼ 0.5%. For the one-step transition (orange region) it can be

as small as 0.1%. Recent analyses show that future measurements of δσZh might be pushed

to O(0.5)% [96, 97]. It is clear that this indirect measurement has very limited potential

to detect the singlet-induced electroweak phase transition, unless the measurements are

pushed very close to the absolute statistical uncertainty limit of 0.07% by combining all

four TLEP detectors without any background or systematics [97]. Instead, it is very likely

that the higgs self-coupling measurement described in the previous subsection has superior

sensitivity.
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log10
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ΩCDM
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ΩS

ΩCDM
× σSI

S

)

Figure 9. Dark matter properties of the singlet scalar S, assuming it is a stable thermal relic. Left :

magenta contours show contours of log10
ΩS

ΩCDM
. In practically all of the parameter space viable for

EWBG, the singlet scalar is a subdominant dark matter component. Right : green contours show

the singlet scalar’s direct detection cross section rescaled with relic density, log10
(

ΩS

ΩCDM
× σSI

S

)

.

The singlet-nucleon cross section is in units of cm2. The dark green shaded region is excluded by

LUX [100]. The light green shaded region can be probed by XENON1T [101].

6 Singlet scalar dark matter

We now consider the consequences of the singlet scalar S acting as a stable thermal relic.9

This is not quite as unambiguous a consequence of EWBG as the bounds considered in

sections 4 and 5. The hidden sector could be more complicated than just a singlet scalar,

without the additional components affecting the phase transition. Indeed, we assume the

presence of additional physics to generate the CP -violation necessary for EWBG. All of

this could change the singlet scalar’s cosmological history. Nevertheless, the minimal model

could well be realized, and dark matter direct detection experiments represent a particularly

exciting avenue for discovery in the relatively short term.

The singlet thermal annihilation cross section has been presented in [53]. Using

standard methods [98], it is straightforward to compute the relic density ΩS and compare

it to ΩCDMh20 ≈ 0.12 [99], see figure 9 (left). As already pointed out e.g. in [53], in

practically all of the parameter space relevant for EWBG, the large singlet-higgs coupling

annihilates away much of the relic density, leaving the singlet scalar as a subdominant

fraction of the dark matter density.

Direct detection constraints can be obtained by rescaling the cross section for higgs-

mediated singlet-nucleon scattering [53, 102] by the relic density ratio ΩS/ΩCDM. The

9A very similar computation was performed most recently in [54], showing results in the same (mS , λHS)

plane as is relevant for our model. However, we repeat the calculation here for completeness, and to show

how the resulting bounds overlap with the various regions in the nightmare scenario’s parameter space.
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resulting effective WIMP-nucleon scattering cross section is shown in figure 9 (right). The

shaded dark green region is already excluded by LUX [100], while the light-green region

can be excluded at the future XENON1T experiment [101].

In these calculations, we have assumed the freeze-out temperature of S to satisfy

Tf < Tc. This is certainly true in the one-step region, where Tc > 100GeV. In the two-

step region, Tf < 22GeV, and we find in section 3.2.2 that even λS = λmin
S + 0.1 results

in Tc = Tc2 > 30GeV for almost the entire two-step region. In this case, if S is stable

then the bounds calculated in this section apply to our model. However, it is possible to

tune λS → λmin
S and achieve Tc < Tf . For this case, there are two possibilities for singlet

freeze-out in the two-step phase transition region:

• The singlet freezes out in the unbroken phase at temperature T h=0
f . Since the universe

resides in the singlet-VEV vacuum before the phase transition, the singlet can decay

via S → hh. This could deplete the singlet density to values much lower than

indicated in figure 9 (left).

• The singlet is in thermal equilibrium just before the phase transition at Tc < 22GeV.

If the singlet becomes lighter, it remains in thermal equilibrium and our above freeze-

out estimate should apply. If it becomes heavier, it likely freezes out instantly.

Understanding the consequences of the second possibility would require further study, but

it is clear that dark matter relic density may be considerably reduced in the two-step region,

resulting in lower relic density and correspondingly weaker direct detection bounds than

those shown in figure 9.

That being said, assuming these direct detection bounds (with Tf < Tc and a stable

thermal relic S) apply to our model, the nightmare scenario for EWBG is already excluded

for mS < mh by LUX. Interestingly, the entire EWBG-viable parameter space for both

a one- and two-step phase transition is excludable at XENON1T. This provides a much

earlier discovery possibility than a 100TeV collider or a high-energy ILC.

7 Strong coupling effects

In large regions of our (mS , λHS) parameter space we either manifestly have non-

perturbative couplings, or relatively strong couplings to cause a one-loop first-order phase

transition. In the non-perturbative regions, lack of theoretical control prevents us from

conducting detailed studies. Nevertheless, we can make some qualitative statements about

the possibility of a strong phase transition and its testability.

There are two distinct regions with non-perturbative λS in the (mS , λHS) plane. In

the first, with negative µ2
S , the large λS is required to ensure the EWSB vacuum is the

universe’s true ground state. In the second, with µ2
S > 0 but λHS < 0, the large self-

coupling is required to avoid a runaway potential for the singlet. In the absence of full

theoretical control, the most conservative approach in examining these two regions is to

assume that they maintain the basic vacuum structure implied by a naive classical analysis.

Therefore, if the first region were viable, it would simple enlarge the allowed parameter

space for a two-step phase transition in the direction of large λHS . These strong phase
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transitions would be much more discoverable (by all experimental avenues) than the cases

we have examined, meaning our statements about testability of the strong phase transition

remain valid. The non-perturbative region with negative λHS is more difficult to interpret.

However, this region is not close to any region with a strong phase transition that is under

theoretical control, and is likely not viable due to the appearance of a singlet runaway.

One may also ask whether there are any interesting effects due to large λHS in regions

where a strong phase transition is possible without large λS . Continuing our conservative

line of reasoning, increasing λHS would maintain the basic characteristics of the theory

(strong phase transition) while making the theory even more testable. New phenomena may

also arise in this direction, which has been considered previously in the context of a strongly

interacting phase of the MSSM [103]. In such a scenario, the singlets could turn into new

composite states bound together by higgs exchange, similar to the stop-balls in [103].

Finally, in regions of parameter space with moderately large but still perturbative cou-

plings, understanding the theory’s RG evolution is of critical importance. If the couplings

required at low energy for a strong phase transition become non-perturbative at higher

energies, it could invalidate our calculation of the universe’s thermal history to find regions

with acceptable phase transitions. The couplings need not stay perturbative to the GUT

or Planck scale, merely in a sufficiently large range to ensure our calculations of the phase

transition are trustworthy. To answer this question, we investigate the renormalization

group equations (RGEs) of the nightmare scenario below.

7.1 RG evolution

The RGEs are easiest to work with in the MS scheme. For completeness, we give the

RGEs in this scheme in appendix B. Note that this is a different choice than the on-shell

scheme with cutoff regularization used in calculating the one-loop potential in section 3.

These RGEs would naively suffice for understanding our model, since for small couplings,

the physical matching calculation in the two schemes gives similar Lagrangian parameters.

However, due to the large hierarchy of couplings λ ≪ λHS , this correspondence breaks down

in the one-step phase transition region. Therefore, we repeat some of our calculations in

the MS scheme, which we briefly summarize here. (This also serves as a useful cross-check.)

The zero-temperature one-loop correction to the higgs potential in MS is given by

V CW,MS

0 (h) =
∑

i

gi(−1)Fi

64π2
M4

i

(

log
M2

i

µ2
r

+ Ci

)

(7.1)

where the masses, Fi and gi are the same as in appendix A, µr is the renormalization scale,

and Ci = 5/6 for vectors and 3/2 for fermions and scalars. For a given choice of BSM

parameters (µ2
S , λHS , λS) we have to find (µ, λ) to set mh ≈ 125GeV and v ≈ 246GeV.

We choose a renormalization scale of µr = 175GeV, and find that the required value

for the Lagrangian parameter λ is negative, though still O(0.1), when λHS & 3. This

illustrates that negative quartic parameters do not necessarily signal a vacuum instability

in the MS scheme, since the resulting Veff has no runaways with arbitrarily high field values

consistent with our perturbative expansion.
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In the on-shell scheme, mS and λHS correspond to the physical observables of mass

and hSS coupling respectively. This is not true in MS , but the “effective” λHS coupling

λeff
HS ≡ 1

2v

∂3Veff

∂2S∂h

∣

∣

∣

∣

h=v,S=0

= λHS

[

1 +
3

16π2

(

λ log
3λv2 − µ2

µ2
r

+ λS log
µ2
S + λHSv

2

µ2
r

)]

(7.2)

is within a few (ten) percent of λHS for λS ∼ 0.1(1). Thus, the (mS , λHS) plane in MS is

approximately equivalent to the same plane in on-shell.

Finally, we compare the shape of the zero-temperature effective potential in this plane

obtained using MS and on-shell. On the lower boundary of the one-step phase transition

region they are nearly indistinguishable, while some scheme-dependent differences become

apparent as we raise λHS to values where the perturbative expansion is untrustworthy

according to section 3.1.3.10 Since the important W,Z, t contributions to the thermal

potential are the same in both schemes, our determination of the one-step phase transition

region is robust across different scheme choices.11

We are now ready to examine the RG evolution of the model. The boundary conditions

are set at µr = µ0
r = 175GeV. Fixing λS(µ

0
r) = 0 and setting λ(µ0

r) to the value obtained

by the physical matching calculation, we find that the theory remains perturbative up to

scales of ∼ 10 (100)TeV for λHS(µ
0
r) . 3 (4). This conclusion is not significantly altered

by letting |λS(µ
0
r)| ∼ O(1).

Therefore our analysis of the phase transition is sound in most of the region where

we claimed perturbative reliability in section 3.1.3. Furthermore, additional hidden-sector

physics must enter before the 10-100TeV scale if the one-step phase transition is realized,

but this does not influence our calculation of the phase transition.

Requiring no Landau Poles up to ∼ 100TeV could also slightly expand our definition

of the non-perturbative (gray) regions in the (mS , λHS) plane, but this does not affect our

conclusions regarding the detectability of the phase transition.

We conclude our RG discussion with a final comment on vacuum stability. It is well

understood that for the measured higgs mass in the SM, the universe is in a metastable

state [104], since the y4t term in the λ RGE pushes the quartic down towards negative

values at high energies. Eq. (B.1) makes clear that this can be counteracted by turning

on a positive λHS coupling, where λHS . 1 to avoid λS becoming non-perturbative before

the GUT scale. Therefore, there exists a part of the viable EWBG parameter space in

the two-step region near (mS , λHS) ∼ (200GeV, 0.5) that is valid to high scales, and also

allows for an absolutely stable universe. Interestingly, this is in the most difficult part of

the EWBG-viable region to test, with small couplings that will require the highest energy

and luminosity to investigate.
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Figure 10. Summary of the nightmare scenario’s parameter space. Gray shaded regions require

non-perturbative λS > 8 and are not under theoretical control, see section 2.2. Red shaded region

with red boundary: a strong two-step PT from tree-effects is possible for some choice of λS , see sec-

tion 3.1. Orange shaded region with orange boundary: a strong one-step PT from zero-temperature

loop-effects is possible, see section 3.1.2. Gray-Blue shading in top-right corner indicates the one-

loop analysis becomes unreliable for λHS & 5(6) in the one-step (two-step) region, see section 3.1.3

and 3.2.2. In the blue shaded region (demarcated with blue lines), higgs triple coupling is modified

by more than 16% compared to the SM, which can be excluded at the 2σ level by a 100TeV col-

lider, see section 5.1. In the green shaded region, our simple collider analysis yields S/
√
B = 2, 1, 0.5

(green dashed lines from left to right) for VBF production of h∗ → SS at a 100TeV collider, see

section 4. (In both cases assume 3 ab−1 of data.) Note that both EWBG preferred regions are

excludable by XENON1T if S is a thermal relic, see section 6.

8 Conclusions

In this paper, we have started investigating the possibility of formulating a “no-lose” theo-

rem for testing EWBG at future colliders. To this end, we consider a “nightmare scenario”

which minimizes experimental testability while realizing several different mechanisms of

generating a strong first-order EW phase transition.

10We find (vc/Tc)MS
≥ (vc/Tc)on−shell.

11The tree-level argument leading to the derivation of the two-step phase transition region in section 3.2

are unchanged.
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The nightmare scenario is simple — we add one real scalar singlet to the SM, which

couples through the higgs portal with a Z2 symmetry and has a mass of greater than half

the higgs mass. The entire parameter space of this nightmare scenario can be represented in

the (mS , λHS) plane and we provide a diagrammatic summary of our findings in figure 10.

There are two distinct regions allowing for a strong electroweak phase transition, a one-

step transition marked in orange and a two-step (or thermal) transition marked in red.

The blue region marks where indirect measurements of the triple-higgs coupling λ3 at a

100TeV collider are sensitive, while the green region marks where direct searches through

VBF production of h∗ → SS at a 100TeV collider are sensitive. The entire one-step

phase transition region, and much of the two-step region, can be probed with the λ3

measurements. Furthermore, our simple collider analysis for the sensitivity of VBF direct

singlet production yields S/
√
B ∼ O(1) in the entire two-step region. It may therefore be

possible to exclude the entire two-step region with a more complete analysis [74], or with

more optimistic assumptions for the capabilities of a future 100TeV collider.

Critically, we find that a 100TeV machine such as the SPPC/FCC is required, and

maybe even sufficient, to exclude EWBG in the nightmare scenario via direct and indirect

measurements. Our finding of S/
√
B ∼ O(1) in the entire two-step phase transition region

should serve as strong motivation to optimize the capabilities of a future 100TeV collider

program. Indirect searches at higgs factories such as CEPC, ILC, or TLEP as well as the

HL-LHC will not have sufficient sensitivity to the EWBG scenarios studied here.

Future dark matter searches have the potential to beat future colliders to the punch

in observing low-lying EW states. This was already observed in [105] for neutralino dark

matter. In our scenario, if the scalar S is a thermal relic with Tf < Tc, then the entire

EWBG-viable parameter space of the nightmare scenario can be ruled out by XENON1T.

However, as with all DM related searches, this exclusion depends on the cosmological

history and, as mentioned in section 6, could be altered in our scenario without influencing

the phase transition.

Our study yields several avenues for future investigation. Given that much or all of

our nightmare scenario’s parameter space is in reach of a 100TeV collider, the question

arises whether a more rigorous “no-lose” theorem for EWBG at future colliders can be

constructed. The nightmare scenario could in principle be made even more difficult to

discover. Thus, it would be interesting to explore the extent to which its experimental

signatures can be suppressed while maintaining a strong phase transition. There may be

scenarios in which exclusion has to proceed by investigating the required new sources of CP

violation. Regardless of the model, if EWBG is realized in our universe, confirming this

will require studying the phase transition together with the new sources of CP violation.
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A Finite-temperature effective potential

The four components of the finite-temperature effective potential

Veff(h, T ) = V0(h) + V CW
0 (h) + VT (h, T ) + Vr(h, T ). (A.1)

are given as follows. V0 is the tree-level potential defined in eq. (2.2). The Coleman-

Weinberg potential V CW
0 [68] is the zero-temperature one-loop correction. In the on-shell

renormalization scheme with cutoff regularization it is given by

V CW
0 =

∑

i

(−1)Fi
gi

64π2

[

m4
i (h)

(

log
m2

i (h)

m2
i (v)

− 3

2

)

+ 2m2
i (h)m

2
i (v)

]

, (A.2)

where we have applied the renormalization conditions

V CW
0

′
(h)
∣

∣

∣

h=v
= 0 , V CW

0

′′
(h)
∣

∣

∣

h=v
= 0 (A.3)

so the higgs mass and VEV are not perturbed from their tree-level values, see e.g. [11, 71].

These renormalization conditions also ensure that the hSS coupling is not modified from

its tree-level value of −2vλHS at one-loop, naturally allowing us to phrase our results in

terms of physical parameters. Fi is fermion number, 1 for fermions and 0 for bosons.

Following the notation of [52], the masses of the SM and BSM particles are given by

M2
i (h) = M2

0,i + aih
2, where the relevant contributions are

i = (t,W,Z, h,G, S)

M2
0,i = (0, 0, 0,−µ2,−µ2, µ2

S)

ai =

(

λ2
t

2
,
g2

4
,
g2 + g′2

4
, 3λ, λ, λHS

)

(A.4)

gi = (12, 6, 3, 1, 1, 1) . (A.5)

In practice we neglect the numerically insignificant Goldstone contributions as well, since

handling them correctly near h = v takes special care [69].

The one-loop finite temperature potential is given by [106, 107]

VT (h, T ) =
∑

i

(−1)Fi
giT

2π2

∫

dkk2 log

[

1− (−1)Fi exp

(

1

T

√

k2 +M2
i (h)

)]

(A.6)

For T ≫ Mi, the boson thermal contributions contain multi-loop infrared-divergences

which must be resummed by adding ring terms,

Vr(h, T ) =
∑

i

T

12π
Tr
[

M3
i (h)− (M2

i (h) + Πi(0))
3/2
]

, (A.7)
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where i runs over the light bosonic degrees of freedom and Πi(0) is the zero-momentum

polarization tensor [108]:

Πh(0) = ΠG(0) = T 2

(

3

16
g2 +

1

16
g′

2
+

1

4
λ2
t +

1

2
λ+

1

12
λHS

)

, (A.8)

ΠS(0) = T 2

(

1

3
λHS +

1

4
λS

)

,

ΠGB(0) =
11

6
T 2 diag(g2, g2, g2, g′

2
) ,

and we use the gauge boson mass matrix in gauge basis

M2
GB(h) =

h2

4











g2 0 0 0

0 g2 0 0

0 0 g2 −gg′

0 0 −gg′ g′2











. (A.9)

B Renormalization group equations

The one-loop RGEs in the MS scheme are

16π2dλ

dt
=

3

8
g41 +

9

8
g42 +

3

4
g21g

2
2 − 6y4t + 24λ2 + 12y2t λ− 3g21λ− 9g22λ+

1

2
λ2
HS

16π2dλHS

dt
= λHS

(

12λ+ 6λS + 4λHS + 6y2t −
3

2
g21 −

9

2
g22

)

16π2dλS

dt
= 2λ2

HS + 18λ2
S

16π2dg1
dt

=
41

6
g31 (B.1)

16π2dg2
dt

= −19

6
g32

16π2dg3
dt

= −7g33

16π2dyt
dt

= yt

(

9

2
y2t −

17

12
g21 −

9

4
g22 − 8g23

)

.
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[78] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/0550-3213(93)90635-3
http://arxiv.org/abs/hep-ph/9207227
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9207227
http://dx.doi.org/10.1016/0370-2693(96)00076-7
http://arxiv.org/abs/hep-ph/9603388
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9603388
http://dx.doi.org/10.1016/j.nuclphysb.2006.09.003
http://arxiv.org/abs/hep-ph/0606298
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0606298
http://dx.doi.org/10.1103/PhysRevD.70.035005
http://arxiv.org/abs/hep-ph/0404184
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404184
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.154
http://arxiv.org/abs/hep-ph/0608017
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608017
http://arxiv.org/abs/1405.1152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1152
http://arxiv.org/abs/1407.4134
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4134
http://dx.doi.org/10.1103/PhysRevD.90.075004
http://arxiv.org/abs/1312.4992
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4992
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://inspirehep.net/search?p=find+J+Phys.Rev.,D7,1888
http://dx.doi.org/10.1103/PhysRevD.90.016013
http://dx.doi.org/10.1103/PhysRevD.90.016013
http://arxiv.org/abs/1406.2355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2355
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://inspirehep.net/search?p=find+J+Phys.Rev.,D15,2929
http://dx.doi.org/10.1088/1126-6708/2008/04/029
http://arxiv.org/abs/0711.2511
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2511
http://dx.doi.org/10.1016/0370-2693(92)90128-Q
http://dx.doi.org/10.1016/0370-2693(92)90128-Q
http://inspirehep.net/search?p=find+J+Phys.Lett.,B291,109
http://dx.doi.org/10.1007/JHEP07(2014)108
http://dx.doi.org/10.1007/JHEP07(2014)108
http://arxiv.org/abs/1401.1827
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.1827
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/1106.0522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0522
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://arxiv.org/abs/hep-ph/0201195
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201195
http://dx.doi.org/10.1103/PhysRevD.78.013004
http://dx.doi.org/10.1103/PhysRevD.78.013004
http://arxiv.org/abs/0802.0007
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0007
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175


J
H
E
P
1
1
(
2
0
1
4
)
1
2
7
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