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Abstract The exponential distribution is one of the fundamental lifetime models and
is widely used for describing a failure mechanism of a system. Different applications
of this distribution in survival analysis and reliability theory can be found in statistical
literature. In this article, some powerful tests for exponentiality based on the likelihood
ratio are proposed. The critical points of the test statistics are obtained byMonte Carlo
simulations. The power values of the proposed tests are computed against a wide
variety of alternative hypotheses and then these values are compared with the power
values of the recent published exponentiality tests. It is shown that these tests have a
reasonable power for various kinds of departures from exponentiality. For illustrative
purpose, real examples are finally presented.

Keywords Life testing · Likelihood ratio · Hazard rate · Test for exponentiality ·
Goodness of fit · Monte Carlo simulation · Power study

1 Introduction

It is well known that, the exponential distribution is one of the fundamental lifetime
models and iswidely used for describing a failuremechanismof a system.Applications
of this distribution in survival analysis and reliability theory are presented in statistical
literature. Therefore, there is a clear need to checkwhether the exponential distribution
is a reasonable model for the observations.

Many investigators have been interested in testing exponentiality and then different
tests are developed for exponentiality in the literature. For example, see D’Agostino
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and Stephens [8] and Huber-Carol et al. [15]. Moreover, Ebrahimi [11,12], Balakr-
ishnan et al. [4,5], Park [22], Lim and Park [18], Lin et al. [19], Habibi Rad et al.
[14], and Pakyari and Balakrishnan [20,21] developed some tests based on censored
samples.

Recently, Zhang [27] introduced three test statistics based on the likelihood ratio
and used them for testing normality and showed that these tests have higher power
than the competitor tests. In the present paper, we apply these test statistics to test the
hypothesis of exponentiality against a wide variety of alternative hypotheses.

In Sect. 2, we introduce three exponentiality tests based on the likelihood-ratio.
The properties of the test statistics are discussed. Also, the critical values of the test
statistics are obtained by Monte Carlo simulations. In Sect. 3, the power values of the
proposed tests are computed and then compared with the power values of the recent
published exponentiality tests. All simulations were carried out by using R 3.0.2 and
with 30,000 replications. Section 4 contains applications of the tests in real examples.

2 Testing Exponentiality

Suppose X1, . . . , Xn are a random sample from a continuous probability distribution
F with density f over a non-negative support andwithmeanμ < ∞.We are interested
to test the hypothesis

H : F(x) = F0(x) = 1 − exp(−λx), for all x ∈ (0,∞),

against the general alternative

H̄ : F(x) �= F0(x), for some x ∈ (0,∞).

where λ = 1/μ is unspecified.
Let Ht : F(t) = F0(t) = 1 − exp(−λt), and H̄t : F(t) �= F0(t). According to

Zhang [27], testing H vs H̄ is equivalent to testing Ht vs H̄t for every t ∈ (0,∞) in
the sense that

H =
⋂

t∈(0,∞)

Ht and H̄ =
⋃

t∈(0,∞)

H̄t .

Zhang [27] defined a binary random sample to test Ht vs. H̄t for each t ;

Xit = I (Xi ≤ t) i = 1, 2, . . . , n,

where P (Xit = 1) = F(t) and P (Xit = 0) = 1 − F(t).
Let Zt denotes a statistic based on Xit for testing Ht vs H̄t where large values of

Zt reject Ht . For testing H vs H̄ , Zhang [26,27] proposed two test statistics given by

Z =
∫

Ztdw(t) and Zmax = sup
t∈(0,∞)

[Ztw(t)] ,
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where w(t) is some weight function. Also, large values of these statistics reject
H .

Zhang [27] for Zt considered Pearson’s Chi squared statistic

X2
t = n [Fn(t) − F0(t)]2

F0(t) [1 − F0(t)]
,

and the likelihood ratio statistic

G2
t = 2n

{
Fn(t) log

Fn(t)

F0(t)
+ [1 − Fn(t)] log

1 − Fn(t)

1 − F0(t)

}
,

where Fn(t) is the empirical distribution function.
Zhang [27] chose Zt = X2

t with

w(t) = n−1F0(t) [1 − F0(t)] , dw(t) = n−1F0(t) [1 − F0(t)] dF0(t),

and w(t) = F0(t). Next, he obtained traditional Kolmogorov–Smirnov, Cramer–
von Mises and Anderson–Darling statistics. Moreover, he considered Zt = G2

t
with w(t) = 1, dw(t) = F0(t)−1 [1 − F0(t)]−1 dF0(t) and dw(t) = Fn(t)−1

[1 − Fn(t)]−1 dFn(t), respectively, and further, Fn(X(i)) = i−0.5
n . Thus, he obtained

the following statistics:

ZA = −
n∑

i=1

(
log F0(X(i))

n − i + 0.5
+ log

[
1 − F0(X(i))

]

i − 0.5

)
,

ZC =
n∑

i=1

(
log

{
F0(X(i))

−1 − 1

(n − 0.5)/(i − 0.75) − 1

})2

,

ZK = max
1≤i≤n

(
(i − 0.5) log

{
i − 0.5

nF0(X(i))

}
+ (n − i + 0.5) log

{
n − i + 0.5

n(1 − F0(X(i)))

})
,

where X(1) ≤ X(2) ≤ . . . ≤ X(n) are the order statistics based on X1, . . . , Xn .
It is obvious that for large values of the test statistics the null hypothesis H will be

rejected.
Here, we consider F0(x) = 1 − exp(−λx), that is, the exponential family with

unknown parameter and then compared the performance of the tests with the recent
exponentiality tests. Note that the likelihood ratio tests are distribution-free for the
exponential family.

It is clear that we need to estimate the scale parameter first and then we can apply
the tests. We estimate λ by the sample mean X̄ = 1

n

∑n
i=1 Xi and thus, λ̂ = 1/X̄ .

The test statistics are invariant under any affine transformation on the sample data
(see Zhang [27]). Therefore, they are distribution-free within the exponential distrib-
ution family.

For different sample sizes, the critical values of the tests are obtained by Monte
Carlo simulations. These values are presented in Table 1.
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Table 1 Critical values of the ZA , ZC , ZK statistics

n ZA ZC ZK
α α α

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

5 4.387 4.019 3.835 15.153 10.598 8.638 2.343 1.569 1.235

6 4.333 3.959 3.787 16.456 11.185 9.107 2.553 1.693 1.343

7 4.238 3.902 3.749 17.397 11.877 9.605 2.744 1.830 1.447

8 4.192 3.858 3.721 18.535 12.255 10.048 2.895 1.927 1.541

9 4.125 3.837 3.693 18.949 12.985 10.361 2.985 2.063 1.614

10 4.069 3.787 3.669 19.673 13.182 10.706 3.085 2.087 1.681

15 3.892 3.674 3.588 21.978 14.532 11.968 3.520 2.361 1.917

20 3.782 3.602 3.537 23.068 15.585 12.940 3.726 2.542 2.085

25 3.704 3.558 3.498 24.124 16.594 13.410 3.891 2.688 2.182

30 3.653 3.531 3.473 25.487 17.247 14.061 4.079 2.832 2.266

35 3.613 3.504 3.455 25.948 17.863 14.577 4.161 2.925 2.377

40 3.578 3.480 3.437 26.526 18.136 14.833 4.232 2.993 2.430

45 3.557 3.462 3.426 26.768 18.333 15.248 4.286 3.036 2.508

50 3.536 3.448 3.417 27.816 18.890 15.611 4.438 3.071 2.544

In the next section, the power values of ZA, ZC and ZK are compared with the best
existing tests, namelyCramer–vonMises [24],Kolmogorov–Smirnov [16],Anderson–
Darling [3], Sahpiro–Wilk [23], Ebrahimi et al. [13], Alizadeh Noughabi and Arghami
[1], Baratpour and Habibi Rad [6], Dhumal and Shirk [10] tests.

3 Power Study

In this section, the power values of the likelihood ratio tests are computed and compared
with the other tests. We consider the following tests in power comparisons.

1. The Cramer–von Mises statistic [24]:

W 2 = 1

12n
+

n∑

i=1

(
2i − 1

2n
− F0(X(i))

)2

.

2. The Kolmogorov–Smirnov statistic [16]:

D = max(D+, D−).

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i))

}
; D− = max

1≤i≤n

{
F0(X(i)) − i − 1

n

}
.
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3. The Anderson–Darling statistic [3]:

A2 = −n − 1

n

n∑

i=1

(2i − 1)
{
log F0(X(i)) + log

[
1 − F0(X(n−i+1))

]}
.

4. The Shapiro–Wilk statistic [23]:

SW = n(X̄ − X(1))
2

(n − 1)S2
.

5. Ebrahimi et al. statistic [13] based on entropy:

KL = −HVmn + log(X̄) + 1,

where

HVnm = 1

n

n∑

i=1

log
( n

2m

(
X(i+m) − X(i−m)

))
.

6. Alizadeh Noughabi and Arghami statistic [1]:

T = 1

n′
n′∑

i=1

∣∣∣Yi f̂ (Yi ) − F0(Yi )
∣∣∣,

where n′ = n(n − 1), Yi j = X(i)
X(i)+X( j)

, i �= j, i, j = 1, 2, . . . , n, and

f̂ (xi ) = 1

nh

n∑

j=1

K (
xi − x j

h
).

7. Baratpour and Habibi Rad statistic [6]:

CKL =

n−1∑
i=1

n−i
n

(
log n−i

n

) (
X(i+1) − X(i)

) +
n∑

i=1
X2
i /2

n∑
i=1

Xi

n∑
i=1

X2
i /2

n∑
i=1

Xi

.

8. Dhumal and Shirke statistic [10]:

TDS = 1

n(n − 1)

n(n−1)∑

i=1

∣∣∣ f̂ (Yi ) − f0(Yi )
∣∣∣.
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To facilitate the comparison of the power values of the proposed tests with those of
the existing tests, we selected the same alternatives listed in Alizadeh Noughabi and
Arghami [2] and their choices of parameters:

• the Weibull distribution with density θ xθ −1 exp
(−xθ

)
, denoted by W (θ),

• the gamma distribution with density �(θ)
−1xθ −1 exp (−x), denoted by �(θ),

• the lognormal law LN(θ) with density (θ x)−1(2π)−1/2 exp
(−(log x)2/(2 θ

2)
)
,

• the half-normal HN distribution with density �(2/π)1/2 exp
(−x2/2

)
,

• the uniform distribution U with density 1, 0 ≤ x ≤ 1,
• the modified extreme value EV (θ), with distribution function 1 − exp(

θ
−1(1 − ex )

)
,

• the linear increasing failure rate law LF(θ) with density (1 + θ x) exp(−x − θ x2/2
)
,

• Dhillon’s [9] law DL(θ) with distribution function 1 − exp
(− (log(x + 1))θ +1),

• Chen’s [7] distribution CH(θ), with distribution function 1− exp
(
2

(
1 − ex

θ
))

.

Alizadeh Noughabi and Arghami [2] used these alternatives in their study of power
comparisons of several tests for exponentiality. The considered alternatives comprise
of widely used alternatives to the exponential model. Also, the considered alternatives
include densities f with decreasing hazard rates (DHR) f (x)/[1 − F(x)], increasing
hazard rates (IHR) as well as models with non-monotone hazard functions.

We estimated the powers of the present tests based on 30,000 samples of size n equal
to 10 and 20. Table 2 shows the estimated powers at the significance level α = 0.05.

For each alternative, the bold type inTable 2 indicates the test achieving themaximal
power.

From Table 2, we can not determine the best test in term of power for testing
exponentiality against all alternatives. We observe that for some alternatives, the tests
A2, T and CKL are powerful. But for other alternatives these tests are not powerful.
For example, let n = 20 and alternative be �(2), the power of A2 is 0.458 and it is not
powerful but the power of T is 0.627 and is a powerful test. If we look at the power of
the proposed tests we can see that the power of ZA is 0.578 and the difference between
power of this test with the powerful test is small. For another example, let n = 20 and
alternative be W (0.8), the power of T and CKL are 0.006 and 0.079 and they are not
powerful but the power of A2 is 0.273 and is powerful test. The power values of the
proposed tests are not very low, for example, the power of the ZK is 0.221.

Therefore, from the above discussion, we can conclude that the power values of
the proposed tests are not very low and also very high. But the proposed tests have a
reasonable power (it is not very low and not high) for all types of alternatives. Then,
if we don’t have any information about the alternative (e.g., DHR, IHR, and etc.), it
is reasonable to use the proposed tests because we will obtain a good power (not high
or low).

Further, from the power values in Table 2, we observe that the KL, T , TDS
and CKL tests are not unbiased tests but the EDF-tests and the proposed tests are
unbiased.

For testing normality, Zhang and Wu [28] concluded that the likelihood ratio tests
are very powerful and robust for various kinds of departures from normality. In terms
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Table 2 Monte Carlo power estimates of the tests at 5 % significant level

n Alter. W 2 A2 D SW KL T TDS CKL ZA ZC ZK

10 W (0.8) 0.120 0.178 0.110 0.107 0.016 0.013 0.015 0.028 0.124 0.132 0.154

W (1.4) 0.187 0.132 0.161 0.092 0.238 0.269 0.242 0.218 0.204 0.185 0.129

�(0.4) 0.452 0.677 0.411 0.269 0.047 0.001 0.001 0.066 0.641 0.658 0.660

�(1.0) 0/048 0.049 0.049 0.049 0.048 0.051 0.047 0.048 0.049 0.049 0.049

�(2.0) 0.251 0.185 0.219 0.092 0.316 0.352 0.337 0.262 0.284 0.258 0.184

LN(0.8) 0.188 0.138 0.171 0.084 0.249 0.289 0.277 0.156 0.253 0.207 0.162

LN(1.5) 0.351 0.371 0.323 0.348 0.059 0.008 0.007 0.141 0.262 0.245 0.297

HN 0.122 0.085 0.112 0.090 0.159 0.172 0.164 0.170 0.124 0.120 0.084

U 0.361 0.285 0.283 0.320 0.499 0.389 0.387 0.586 0.313 0.319 0.189

CH(0.5) 0.340 0.535 0.308 0.199 0.024 0.003 0.002 0.043 0.477 0.495 0.511

CH(1.0) 0.096 0.069 0.091 0.068 0.125 0.136 0.127 0.135 0.093 0.092 0.068

CH(1.5) 0.447 0.357 0.364 0.240 0.530 0.538 0.529 0.549 0.442 0.440 0.291

LF(2.0) 0.159 0.114 0.141 0.102 0.202 0.203 0.212 0.214 0.158 0.152 0.107

LF(4.0) 0.220 0.160 0.187 0.134 0.266 0.286 0.273 0.279 0.214 0.209 0.142

EV(0.5) 0.097 0.068 0.090 0.071 0.126 0.133 0.121 0.136 0.097 0.094 0.068

EV(1.5) 0.230 0.174 0.195 0.165 0.289 0.280 0.277 0.327 0.213 0.212 0.139

DL(1.0) 0.136 0.094 0.124 0.075 0.185 0.212 0.212 0.139 0.170 0.144 0.109

DL(1.5) 0.350 0.273 0.302 0.094 0.416 0.474 0.463 0.327 0.407 0.372 0.270

20 W (0.8) 0.204 0.273 0.171 0.155 0.031 0.006 0.006 0.079 0.176 0.200 0.221

W (1.4) 0.356 0.313 0.286 0.222 0.375 0.451 0.445 0.348 0.386 0.357 0.254

�(0.4) 0.758 0.901 0.701 0.475 0.324 0.000 0.000 0.251 0.877 0.888 0.885

�(1.0) 0.054 0.053 0.050 0.051 0.050 0.049 0.052 0.050 0.050 0.050 0.049

�(2.0) 0.494 0.458 0.405 0.208 0.510 0.627 0.613 0.390 0.579 0.536 0.402

LN(0.8) 0.344 0.339 0.302 0.113 0.418 0.524 0.510 0.182 0.596 0.472 0.405

LN(1.5) 0.616 0.624 0.569 0.609 0.255 0.002 0.002 0.444 0.482 0.496 0.511

HN 0.220 0.179 0.181 0.197 0.231 0.267 0.258 0.285 0.198 0.185 0.124

U 0.676 0.632 0.522 0.741 0.869 0.647 0.649 0.931 0.679 0.624 0.368

CH(0.5) 0.622 0.787 0.560 0.350 0.188 0.001 0.001 0.168 0.717 0.740 0.745

CH(1.0) 0.156 0.125 0.132 0.140 0.183 0.195 0.192 0.219 0.146 0.136 0.092

CH(1.5) 0.802 0.767 0.663 0.646 0.834 0.839 0.836 0.874 0.798 0.789 0.573

LF(2.0) 0.293 0.244 0.238 0.256 0.298 0.353 0.349 0.359 0.271 0.256 0.171

LF(4.0) 0.426 0.366 0.342 0.349 0.414 0.488 0.484 0.490 0.393 0.376 0.259

EV(0.5) 0.150 0.119 0.126 0.146 0.180 0.192 0.185 0.220 0.146 0.136 0.094

EV(1.5) 0.453 0.391 0.356 0.462 0.490 0.494 0.484 0.605 0.400 0.384 0.243

DL(1.0) 0.244 0.221 0.209 0.110 0.270 0.358 0.351 0.164 0.355 0.286 0.228

DL(1.5) 0.664 0.642 0.573 0.241 0.662 0.803 0.788 0.490 0.771 0.728 0.592

of power performance, the overall ranks of the considered statistics by Zhang [27]
are:

ZA � ZC � SW � ZK � A2 � D.
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For exponentiality test, we can not exactly rank the tests in term of power performance
but we observed that they have good powers against all types of alternatives and
therefore the proposed tests are recommended in practice.

4 Applications to Real Data

In this section, two real data sets to illustrate how the proposed tests can be applied in
real cases are presented. Figure 1 presents the histograms of these data sets.

Example 1 The times between arrivals of 25 customers at a facility presented by
Wadsworth [25] are considered. The data are

1.80, 3.43, 3.98, 4.23, 4.65, 2.89, 3.48, 4.06, 4.34, 4.84, 2.93, 3.57, 4.11, 4.37, 4.91,
3.03, 3.85, 4.13, 4.53, 4.99, 3.15, 3.92, 4.16, 4.62, 5.17.

Their quantile plot shows a clear departure from the exponentiality hypothesis.
Here, we use all tests for hypothesis of exponentiality. For the proposed tests, we
obtain

ZA = 6.105, ZC = 82.207, ZK = 15.596,

and the critical values at 5 % significance level are 3.558, 16.593 and 2.702, respec-
tively. Hence, we conclude that the data don’t follow an exponential distribution. The
other tests A2, D,W 2,KL, SW,CKL, T and TDS, like the proposed tests, reject the
null hypothesis.

Example 2 The following data are failure times for 36 appliances subjected to an
automatic life test. These data are obtained from one real-life data analysis from
Lawless [17].

11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327,
2400, 2451, 2471, 2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214,
3478, 3504, 4329, 6367, 6976, 7846, 13403.
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Fig. 1 Histogram for data sets in Examples 1 and 2
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Ebrahimi et al. [13] based on the sample entropy fitted the exponential distribution
for the data successfully. Recently, the same conclusion has been drawn by Baratpour
and Habibi Rad [6].

For this data set the values of the proposed test statistics are computed as

ZA = 3.421, ZC = 10.264, ZK = 2.468.

For 5 % significance level, the critical values for ZA, ZC and ZK are 3.494, 17.659
and 2.910, respectively. Since the value of the test statistics are less than the critical
values, the tests accept the null hypothesis that failure times follow an exponential
distribution.

Moreover, if we consider the other tests we will see that the tests A2, D,W 2, T and
TDS reject the null hypothesis but the tests KL, SW and CKL, like the proposed tests,
don’t reject the exponential hypothesis.

5 Conclusions

In this article, we have proposed tests of exponentiality based on the likelihood ratio.
The critical points of the test statistics have obtained byMonte Carlo simulations. The
power values of the proposed tests have computed against a wide variety of alternative
hypotheses and then these values have compared with the power values of the recent
published exponentiality tests. It has shown that the proposed tests have a reasonable
power for various kinds of departures from exponentiality.

Our simulation study shows that any tests can not be the best test in term of power
for testing exponentiality against all alternatives. We observed that the performance of
the proposed tests (ZA, ZC and ZK ) is good and the difference between power values
of these tests with those of the other powerful tests are small. Based on the simulation
results, we concluded that the power values of the proposed tests are not very low and
also very high and they have a reasonable power for all types of alternatives. Therefore,
if we don’t have any information about the alternative (e.g., DHR, IHR, and etc.), it is
reasonable to use the proposed tests because we will obtain a good power (not high or
low). Lastly, for illustrative purpose, real examples have presented and it is concluded
that the proposed tests can be applied in practice.
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