
Testing for a change in correlation

at an unknown point in time

using an extended functional delta method

by

Dominik Wied *

Fakultät Statistik, TU Dortmund
D-44221 Dortmund, Germany
wied@statistik.tu-dortmund.de

Walter Krämer
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Abstract

We propose a new test against a change in correlation at an unknown

point in time based on cumulated sums of empirical correlations. The

test does not require that inputs are iid under the null. We derive its

limiting null distribution using a new functional delta method argument,

provide a formula for its local power for particular types of structural

changes, give some Monte Carlo evidence on its finite sample behavior

and apply it to recent stock returns.
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1 Introduction and Summary

There is quite a consensus in empirical finance and elsewhere that correlations among

returns of all sorts cannot be assumed to remain constant over longer stretches of

time (Longin and Solnik, 1995; Krishan et al., 2009, among many others). While

conditional correlations are easily modeled as time-varying in various ways (see e.g.

McAleer et al., 2008), including procedures to test for this, unconditional correla-

tions are often taken as constant, which seems to be at odds with various stylized

facts from various applications. In particular, correlations among stock returns seem

to increase in times of crisis, as evidenced by the most recent joint downturn in stock

markets worldwide.

Yet, there is a surprising lack of methods to formally test for a change in cor-

relation. Existing procedures either require strong parametric assumptions (Dias

and Embrechts, 2004), assume that potential break points are known (Pearson and

Wilks, 1933; Jennrich, 1970; Goetzmann et al., 2005), or simply estimate corre-

lations from moving windows without giving a formal decision rule (Longin and

Solnik, 1995). Only recently, Galeano and Peña (2007) and Aue et al. (2009) have

proposed formal tests for a change in covariance structure that do not build upon

prior knowledge as to the timing of potential shifts. Both are based on cumulated

sums of second order empirical cross moments (in the vain of Ploberger et al., 1989)

and reject the null of constant covariance structure if these cumulated sums fluctu-

ate too much.

While Galeano and Peña (2007) operate in a parametric setting, the Aue et al.

(2009) approach is quite similar to ours. However, the null hypotheses considered

here and by Aue et al. (2009) are not identical but overlapping, none is encom-

passing the other. It can happen that correlations remain constant, but covariance

changes and vice versa: The correlation changes, while covariance remains constant.

This distinction is important for instance when testing for contagion in international

finance (see e.g. Forbes and Rigobon, 2002). What is termed “shift contagion” in
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this literature is equivalent in certain models to a change in covariance induced by

a change in correlation. Our test will then detect such types of contagion, while the

Aue et al. (2009) procedure might not.

Similar to Aue et al. (2009), our test statistic is a suitably standardized cumulated

sum of empirical correlation coefficients. To derive its asymptotic null distribution,

we use a functional delta method argument that has not been considered before,

extending conventional functional central limit theorems which are the workhorse

in much of the existing literature on structural changes (see e.g. Ploberger et al.,

1989, Ploberger and Krämer, 1990, 1992, or Inoue, 2001, just to name a few).

2 The test statistic and its asymptotic null

distribution

Let (Xt, Yt), t = 0,±1, ... be a sequence of bivariate random vectors with finite

(4+δ)th absolute moments for some δ > 0. We want to test whether the correlation

between Xt and Yt,

ρt =
Cov(Xt, Yt)√

V ar(Xt)
√
V ar(Yt)

,

is constant over time in the observation period, i.e. we test

H0 : ρt = ρ0 ∀t ∈ {1, . . . , T} vs. H1 : ∃t ∈ {1, . . . , T − 1} : ρt 6= ρt+1

for a constant ρ0. Our test statistic is

QT (X, Y ) = D̂ max
2≤j≤T

j√
T
|ρ̂j − ρ̂T |, (1)

where

ρ̂k =

∑k
i=1(Xi − X̄k)(Yi − Ȳk)√∑k

i=1(Xi − X̄k)2

√∑k
i=1(Yi − Ȳk)2

4



and X̄k = 1
k

∑k
i=1Xi, Ȳk = 1

k

∑k
i=1 Yi. The value ρ̂k is the empirical correlation

coefficient from the first k observations. The scalar D̂ is needed for the asymptotic

null distribution and will be specified below. The test rejects the null hypothesis of

constant correlation if the empirical correlations fluctuate too much, as measured

by max2≤j≤T |ρ̂j − ρ̂T |, with the weighting factor j√
T

scaling down deviations at the

beginning of the sample where the ρ̂j are more volatile.

Of course, other functionals of the ρ̂j-series are likewise possible as suitable test

statistics, such as some standardized version of

max
2≤j≤T

(ρ̂j)− min
2≤j≤T

(ρ̂j),

or simply some suitable average (see Krämer and Schotman, 1992, or Ploberger and

Krämer, 1992), but for ease of exposition we stick to expression (1) for the purpose

of the present paper.

The following technical assumptions are required for the limiting null distribution:

(A1) For Ut :=
(
X2
t − E(X2

t ), Y 2
t − E(Y 2

t ), Xt − E(Xt), Yt − E(Yt), XtYt − E(XtYt)
)′

and Sj :=
∑j

t=1 Ut, we have

lim
T→∞

E
(

1

T
STS

′
T

)
=: D1 (finite and positive definite).

(A2) The r-th absolute moments of the components of Ut are uniformly bounded

for some r > 2.

(A3) The vector (Xt, Yt) is L2-NED (near-epoch dependent) with size − r−1
r−2

, where

r from (A2), and constants (ct), t ∈ Z, on a sequence (Vt), t ∈ Z, which is

α-mixing of size φ∗ := − r
r−2

, i.e.

||(Xt, Yt)− E ((Xt, Yt)|σ(Vt−m, . . . , Vt+m))||2 ≤ ctvm

with vm → 0, such that

ct ≤ 2||Ut||2

with Ut from Assumption (A2) and the L2-norm || · ||2.
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(A4) The moments E(X2
t ), E(Y 2

t ), E(Xt), E(Yt), E(XtYt) are uniformly bounded

and ”almost” constant, in the sense that the deviations dt from the respective

constants satisfy

lim
T→∞

1√
T

T∑
t=1

|dt| = lim
T→∞

1

T

T∑
t=1

d2
t = 0.

Of course, (A4) allows for weak-stationary, i.e. dt = 0 for all t. Note that our

assumption (A3) is more general than the dependence assumption of Aue et al.

(2009), because in their case, the (Vt), t ∈ Z, have to be independent.

As an alternative to (A4), our main results also hold when variances vary more

widely (although not arbitrarily widely), but are proportional to each other, as

often happens in financial markets:

(A5) For a bounded function g that is not identically zero and that can be approx-

imated by step functions,

E(X2
t ) = a2 + a2

1√
T
g

(
t

T

)
E(Y 2

t ) = a3 + a3
1√
T
g

(
t

T

)
E(XtYt) = a1 + a1

1√
T
g

(
t

T

)
,

while E(Xt) and E(Yt) remain constant.

As an example, the function g might be piecewise constant with jumps in z0 from

0 to g0, which implies that the covariance changes in [Tz0]. Assumption (A4) is

violated because E(XtYt) = mxy + dt with

lim
T→∞

1√
T

T∑
t=1

|dt| = lim
T→∞

1

T

t∑
t=1

∣∣∣∣g( t

T

)∣∣∣∣ =

∫ 1

0

|g(u)|du > 0.

In case of (A5), the correlation is constant and equal to a1/
√
a2a3. Note that we

operate with a triangular array in this case (see also Section 3 and the beginning of

Appendix A.2).
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Assumption (A3) guarantees that

U∗t :=
(
X2
t , Y 2

t , Xt, Yt, XtYt

)′
is L2-NED with size 1

2
, see Davidson (1994). It could be modified to φ-mixing, requir-

ing only finite 4-th moments, but this would admit less dependence than we allow

here. In particular, assumption (A3) allows for GARCH-effects (see e.g. Hansen,

1991 or Carrasco and Chen, 2002), which are observed in financial data.

Given these assumptions, we next derive the limiting null distribution of our test

statistic (1). To this purpose, we first rewrite it as sup0≤z≤1 |KT (z)| with

KT (z) = D̂
τ(z)√
T

(ρ̂τ(z) − ρ̂T ), (2)

where τ(z) = [2 + z(T − 2)], z ∈ [0, 1].

Theorem 1. Under H0 and assumptions (A1) - (A4) or (A1) - (A3) and (A5), we

have

sup
0≤z≤1

|KT (z)| →d sup
0≤z≤1

|B(z)|,

where B is a one-dimensional Brownian bridge.

The explicit form of the distribution function of sup0≤z≤1 |B(z)| is well known, see

Billingsley (1968); its quantiles provide an asymptotic test.

The situation in (A5) explicitly allows for changing variances and covariances, while

correlations remain constant. This setup is not included in the Aue et al. (2009)-

test, because the test is based on a different null hypothesis.

As an illustration, consider testing for a break in correlation between S&P 500 and

DAX returns, using daily data from early 2003 to the end of 2009. Panel a of

Figure 1 shows the evolution of the right-hand-side of (1), with a maximum value
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of QT = 2.593. This is well beyond the 5% critical level (in fact, the corresponding

p-value is less than 0.001). Interestingly enough, it is attained just after the Lehman-

Brothers breakdown on September 15, 2008. Panel b of Figure 1 plots the evolution

of the successively estimated correlations themselves. It is seen that these start at

a high level, then decrease for a long time and increase again after the breakdown,

approaching a final value of 0.612.

- Figure 1 here -

If we apply the correlation test for the time period early 2004 to the end of 2006, then

the null hypothesis of constant correlation is not rejected (QT = 0.546 with a p-value

of 0.927). This fits to the fact that this time period did not contain any dramatic

economy changes which would have lead to changing correlations. However, the Aue

et al. (2009)-test (applied with the critical values from Kiefer, 1959) rejects the null

hypothesis of constant covariance matrix with a value of the test statistic of 3.409 (p-

value less than 0.003) as well as the hypothesis of constant marginal variance of the

DAX (3.194 with a p-value less than 0.004, respectively). Thus, both procedures

give complementary information about the co-movement of this time series; with

our test we conclude that the dependence structure remains constant, what the Aue

et al. (2009)-test does not show. Note that there are of course other time periods

where either both or none of the tests rejects.

The proof of Theorem 1 is in the appendix. Simply applying a standard functional

central limit theorem as in Aue et al. (2009) is not possible in the present case: The

proof relies on an adapted functional delta method argument which is presented and

proven in the appendix. One major difficulty in the proof is that we first have to

show convergence on the interval [ε, 1] for arbitrary ε > 0 and then show that the

statistic vanishes on the interval [0, ε] if ε tends to zero.

3 Local power

Next, we consider local alternatives of the form

ρt,T = ρ0 +
1√
T
g

(
t

T

)
t = 1, . . . , T,
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where g is as in (A5). Using a piecewise constant function g would lead to multiple

change points as e.g. Inoue (2001) deals with. This form of local alternatives

is similar to the ones in Ploberger and Krämer (1990) who analyze local power

properties of the CUSUM and CUSUM of squares test. Now, the random vectors

(Xt, Yt), t ∈ Z, and (Vt), t ∈ Z, from assumption (A3) form a triangular array, but

we stick to the former notation for simplicity, i.e. (Xt, Yt) := (Xt,T , Yt,T ), (Vt) :=

(Vt,T ), t ∈ Z;T = 1, 2, . . .. However, (A4) is replaced by

(A6) E(XtYt) = mxy + 1√
T
g
(
t
T

)
,

E(X2
t ) = m2

x,E(Y 2
t ) = m2

y,E(Xt) = µx,E(Yt) = µy.

This is a special case of the general local alternative, but we stick to it for ease of

exposition. As was shown for (A5), Assumption (A4) is violated here as well.

Theorem 2. Under assumptions (A1) - (A3) and (A6),

sup
z∈[0,1]

∣∣∣∣D̂ τ(z)√
T

(ρ̂τ(z) − ρ̂T )

∣∣∣∣→d sup
z∈[0,1]

|B(z) + C(z)|,

where C(z) is a deterministic function which depends on the specific form of the

local alternative under consideration, characterized by g.

With this theorem and Anderson’s Lemma, we can deduce that the asymptotic level

is always larger than or equal to α, see Andrews (1997) or Rothe and Wied (2011).

The proof is in the appendix; it relies on similar arguments as the derivation of the

null distribution.

The supremum is now taken over the absolute value of a Brownian bridge plus a

deterministic function C(z). Its distribution is rather unwieldy, but the local power

of the test is easily established for large g. To this purpose, rewrite assumption (A6)

as g(z) = Mh(z) for a function h and a factor M . The function h represents the

structural form of the alternative, whereas M captures its amplitude.
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Corollary 1. Let PH1(M) be the rejection probability for given M under the alter-

native. Let ε > 0 and h be arbitrary but not constant. Then there is a M0 such

that

lim
T→∞

PH1(M) > 1− ε

for all M > M0.

This means that local rejection probabilities become arbitrarily large as structural

changes are increasing.

4 Some finite sample simulations

First, we check the test’s finite sample null distribution. To that purpose, we consider

both friendly (i.e. iid) and unfriendly environments defined by some serial correlation

under the null. Both situations are encompassed by the AR(1)-modelXt

Yt

 =

φXt−1

φYt−1

+

ε1t
ε2t

 ,

where (ε1t , ε
2
t )
′ has correlation ρ and (ε1t ε

2
t )
′ is iid-bivariate t5 to make our data

better resemble empirical data such as stock returns. The friendly environment is

given by φ = 0 (i.e. iid observations), the unfriendly environment is given by some

nonzero value of φ which is compatible with our assumption (A3). Similar to Aue

et al. (2009) we use φ = 0.1. We also ran additional simulations for time-series

correlations as large as φ = 0.8, which are likewise allowed for under H0, given our

assumptions. As autocorrelations that large are usually not observed for stock or

FX-returns, we do not dwell on the resulting figures here - they are available from

the corresponding author upon request.

Table 1 gives our results for the cases relevant in practice, based on 5000 replications

and a nominal significance level of five percent.

-Table 1 here -
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The table shows that convergence to the nominal significance level is not monotone,

and that the test overrejects quite dramatically for small samples and large values

of the correlation coefficient. For correlations in the range that is relevant for e.g.

financial applications, the performance is satisfactory, however. Similar results were

obtained with GARCH-processes of various types and again, there is overrejection

in small samples. Detailed results are available from the corresponding author upon

request.

Next, we check the size-adjusted power of our test for the following alternatives, in

which variances remain constantly equal to 1 and correlations change, and compare

it to Aue et al. (2009) (maximum-based version, size-adjusted):

(1) ρi = 0.5, i ≤ T
2
, and ρi = 0.7, i > T

2
,

(2) ρi = 0.5, i ≤ T
4
, and ρi = 0.7, i > T

4
,

(3) ρi = 0.5, i ≤ T
2
, and ρi = −0.5, i > T

2
,

(4) ρi = 0.5, i ≤ T
4
, and ρi = −0.5, i > T

4
,

(5) ρi = 0.5, i ≤ T
4
, and ρi = 0.7, T

4
< i ≤ 3

4
T , and ρi = 0.5, i > 3

4
T .

Table 2 gives the results.

-Table 2 here -

It is seen that power increases rapidly with sample size and not surprisingly, it is

highest when the break in ρ is largest (i.e ρ changes from −0.5 to 0.5). In general,

the powers of both tests lie closely together, while the power of our test is often

slightly higher than the power of the Aue et al. (2009)-test for rather small samples

and in situations when the change points appears early and is always higher in the

case of several change points.

5 Discussion

In this paper, we have proposed a fluctuation test for constant correlation which

works under rather general assumptions. A major shortcoming of our test, which it
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shares with Aue et al. (2009), is the requirement of finite 4-th moments. Although it

has by now been firmly established that second or even third moments of financial

returns are finite, the existence of fourth moments remains doubtful, see Krämer

(2002). If the 4-th moment of one or both of the components of (Xt, Yt) does not

exist, our functional central limit theorem, from which we derive the null distribution

of our test, would not apply. As the asymptotic distribution of empirical cross-

correlations would then be different (see e.g. ?), this condition of finite fourth

moments is also necessary for our limit results. A multivariate extension of our

approach, i.e. testing for the constancy of a whole correlation matrix, is possible by

doing pairwise comparisons and rejecting the null hypothesis e.g. if the maximum of

the test statistics is too large. Circumventing the resulting multiple testing problem,

however, requires some more theory which goes beyond the scope of the present

paper. The problem might be overcome by relying on other multivariate dependence

measures as in Schmid et al. (2010). A general approach based on multivariate

empirical distributions can be found in Inoue (2001).
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A Appendix

A.1 The scalar D̂ from the test statistic

The scalar D̂ from our test statistic (1) can be written as

D̂ = (F̂1D̂3,1 + F̂2D̂3,2 + F̂3D̂3,3)−
1
2

where

(
F̂1 F̂2 F̂3

)
=


D̂3,1Ê11 + D̂3,2Ê21 + D̂3,3Ê31

D̂3,1Ê12 + D̂3,2Ê22 + D̂3,3Ê32

D̂3,1Ê13 + D̂3,2Ê23 + D̂3,3Ê33


′

,

Ê11 = D̂1,11 − 4µ̂xD̂1,13 + 4µ̂2
xD̂1,33,

Ê12 = Ê21 = D̂1,12 − 2µ̂xD̂1,23 − 2µ̂yD̂1,14 + 4µ̂xµ̂yD̂1,34,

Ê22 = D̂1,22 − 4µ̂yD̂1,24 + 4µ̂2
yD̂1,44,

Ê13 = Ê31 = −µ̂yD̂1,13 + 2µ̂xµ̂yD̂1,33 − µ̂xD̂1,14 + 2µ̂2
xD̂1,34 + D̂1,15 − 2µ̂xD̂1,35,

Ê23 = Ê32 = −µ̂yD̂1,23 + 2µ̂xµ̂yD̂1,44 − µ̂xD̂1,24 + 2µ̂2
yD̂1,34 + D̂1,25 − 2µ̂yD̂1,45,

Ê33 = µ̂2
yD̂1,33 + 2µ̂xµ̂yD̂1,34 − 2µ̂yD̂1,35 + µ̂2

xD̂1,44 + D̂1,55 − 2µ̂xD̂1,45,

D̂1 =



D̂1,11 D̂1,12 D̂1,13 D̂1,14 D̂1,15

D̂1,21 D̂1,22 D̂1,23 D̂1,24 D̂1,25

D̂1,31 D̂1,32 D̂1,33 D̂1,34 D̂1,35

D̂1,41 D̂1,42 D̂1,43 D̂1,44 D̂1,45

D̂1,51 D̂1,52 D̂1,53 D̂1,54 D̂1,55


=

T∑
t=1

T∑
u=1

k

(
t− u
γT

)
VtVu

′,

Vt =
1√
T
U∗∗∗t , γT = [log T ],

U∗∗∗t =
(
X2
t − (X2)T Y 2

t − (Y 2)T Xt − X̄T Yt − ȲT XtYt − (XY )T

)′
,

k(x) =

1− |x|, |x| ≤ 1

0, otherwise

,
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µ̂x = X̄T , µ̂y = ȲT , D̂3,1 = −1

2

σ̂xy
σ̂y
σ̂−3
x , D̂3,2 = −1

2

σ̂xy
σ̂x

σ̂−3
y , D̂3,3 =

1

σ̂xσ̂y

and

σ̂2
x = (X2)T − (X̄T )2, σ̂2

y = (Y 2)T − (ȲT )2, σ̂xy = (XY )T − X̄T ȲT .

Proof. See the discussion preceding Lemma 3.

A.2 Proof of Theorem 1 under (A1) - (A4)

The proof of Theorem 1 requires several lemmas. In all proofs, we assume (Xt, Yt), t ∈

Z, to be a triangular array, which generalizes the assumptions in Section 2 and cor-

responds to the assumptions in Section 3. The array is defined on the probability

space (Ω,A,P).

Let I be some interval, e.g. I = [ε, 1] for some ε ∈ [0, 1). For an integer k ≥ 1, let

D(I,Rk) be the set of all functions θ : I → Rk which are càdlàg in each of the k

components, equipped with the multi-dimensional supremum norm

||θ||∞ := sup
z∈T
||θ(z)||,

where || · || denotes the maximum norm in Rk. Let in addition m2
x,m

2
y, µx, µy,mxy

be the respective constants from (A4) and

σx :=
√
m2
x − µ2

x, σy :=
√
m2
y − µ2

y, σxy := mxy − µxµy.

The first lemma is a straightforward application of the functional central limit the-

orem in Davidson (1994, p. 492) which relies on a univariate invariance principle

from Wooldridge and White (1988).

Lemma 1. On D([ε, 1],R5), for arbitrary ε > 0, we have

1√
T

τ(·)∑
t=1

U∗∗t :=
1√
T

τ(·)∑
t=1



X2
t −m2

x

Y 2
t −m2

y

Xt − µx
Yt − µy

XtYt −mxy


=
τ(·)√
T



(X2)τ(·) − m2
x

(Y 2)τ(·) − m2
y

X̄τ(·) − µx

Ȳτ(·) − µy

(XY )τ(·) − mxy


=: U(·)→d D

1
2
1 W5(·),
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where Wk(·) is a k-dimensional Brownian Motion and

D1 = D′1 = lim
T→∞

1

T

T∑
t=1

T∑
u=1

Cov(X2
t , X

2
u) Cov(X2

t , Y
2
u ) Cov(X2

t , Xu) Cov(X2
t , Yu) Cov(X2

t , XuYu)

· Cov(Y 2
t , Y

2
u ) Cov(Y 2

t , Xu) Cov(Y 2
t , Yu) Cov(Y 2

t , XuYu)

· · Cov(Xt, Xu) Cov(Xt, Yu) Cov(Xt, XuYu)

· · · Cov(Yt, Yu) Cov(Yt, XuYu)

· · · · Cov(XtYt, XuYu)


.

Proof.

1√
T

τ(z)∑
t=1



X2
t −m2

x

Y 2
t −m2

y

Xt − µx
Yt − µy

XtYt −mxy


=

1√
T

τ(z)∑
t=1



X2
t − E(X2

t )

Y 2
t − E(Y 2

t )

Xt − E(Xt)

Yt − E(Yt)

XtYt − E(XtYt)


+

1√
T

τ(z)∑
t=1



E(X2
t )−m2

x

E(Y 2
t )−m2

y

E(Xt)− µx
E(Yt)− µy

E(XtYt)−mxy


=: A1 + A2.

Consider the first component of A2:

A2,1(z) =
1√
T

τ(z)∑
t=1

(
E(X2

t )−m2
x

)
.

We have

||A2,1(z)||∞ ≤
1√
T

T∑
t=1

∣∣E(X2
t )−m2

x

∣∣ .
With assumption (A4), the righthand side tends to zero. In the same way, all other

components of A2 converge to zero, hence also A2.

The sum in A1 can be separated into one term from i = 1 to [Tz] called A3 and

one term from [Tz + 1] to [Tz + (1− z)2], called A4. We show that A4 converges in

probability to the zero function in the supremum norm. To this end, we first show

that for fixed z, A4 converges to zero in probability. If

[Tz + (1− z)2] < [Tz + 1],

15



A4 is equal to zero. For

[Tz + (1− z)2] ≥ [Tz + 1]

our argument builds on the Markov inequality. A4 consists of two terms at most so

that we have for the first component A41

sup
z∈[ε,1]

|A41(z)| ≤ 2√
T

max
1≤t≤T

|X2
t − E(X2

t )|.

Now, for arbitrary δ > 0

P( sup
z∈[ε,1]

|A41(z)| > δ) ≤ T max
1≤t≤T

P

(
|X2

t − E(X2
t )| >

√
T

2δ

)
.

By Assumption (A2) E|X2
t −E(X2

t )|r is uniformly bounded for r > 2. With Markov’s

inequality the righthand side converges to 0.

The same argument applies for the other components of A4. Therefore, all finite-

dimensional distributions converge to zero in probability and thus in distribution.

We show the tightness of the process similar to the method on page 138 in Billingsley

(1968). At first, we show the tightness of every single component (without loss of

generality for the first); the tightness of the whole vector follows.

B := E
(
|A41(z)− A41(z1)|1+α

2 · |A41(z2)− A41(z)|1+α
2

)
≤ 1

T 1+α
2

C

for ε ≤ z1 ≤ z ≤ z2 ≤ 1 and a constant C because of uniform boundedness. If

[Tz2]− [Tz1] = 0, then B = 0. If [Tz2]− [Tz1] ≥ 1, we get

1

T 1+α
2

C ≤ ([Tz2]− [Tz1])1+α
2

1

T 1+α
2

C = C

(
[Tz2]− [Tz1]

T

)1+α
2

and the condition of Theorem 15.6 in Billingsley (1968) holds. Thus, A4 as a process

converges in distribution (and also in probability) to the zero function. We apply to

A3 the multivariate invariance principle from Davidson (1994, p. 492) which relies

on a univariate invariance principle from Wooldridge and White (1988). The value

cλT,i in this theorem is given by (λ′D−1
1 T−1λ)

1
2 in our case. The theorem is actually

given for a function space equipped with Skorohod metric, but it also holds in our

uniform topology, because the limit process is continuous almost surely, see Gill

(1989), p. 106, for details.

With the Continuous Mapping Theorem, CMT, see van der Vaart (1998, p. 259),

the lemma follows.

16



Lemma 2. On D([ε, 1],R), for arbitrary ε > 0,

τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d D3D2D
1
2
1 W5(·),

where

ρ∗0 =
σxy
σxσy

,

D2 =


1 0 −2µx 0 0

0 1 0 −2µy 0

0 0 −µy −µx 1

 and

D3 =
(
−1

2

σxy
σy
σ−3
x −1

2

σxy
σx
σ−3
y

1
σxσy

)
.

The proof of Lemma 2 relies on a functional delta method argument which we present

in a form slightly more general than is actually needed.

Theorem 3 (Delta method). Consider a sequence (θT )T of functions in D(I,Rk)

converging uniformly to a function θ ∈ D(I,Rk). Furthermore, let (sT )T be a se-

quence of functions sT : I → R\{0} such that ||s−1
T ||∞ → 0, and let MT be stochastic

processes on I with values in Rk and bounded sample paths such that

||ZT ||∞ = Op(1) with ZT := sT (MT − θT ).

Furthermore, let f : Rk → Rl be a mapping which is continuously differentiable on

an open set Ω ⊂ Rk. Suppose that

θ(I) is a compact subset of Ω,

where θ(I) stands for the closure of the set {θ(t) : t ∈ I} in Rk. Then it holds

1. sT (·) (f(MT (·))− f(θT (·))) = Df(θ(·))ZT (·) +RT

with a stochastic process such that

||RT ||∞ = op(1).

2. If ZT also converges in distribution (in D(I,Rk)) to a stochastic process Z,

then

sT (·) (f(MT (·))− f(θT (·)))→d Df(θ(·))Z(·).

17



Proof. Assertion 2 immediately follows from Assertion 1 with the usual continuous

mapping theorem.

To prove the expansion from Assertion 1, note that for any z ∈ I,

RT (z) := sT (z) (f(MT (z))− f(θT (z)))−Df(θ(z))ZT (z)

= sT (z)
(
f
(
θT (z) + s−1

T (z)ZT (z)
)
− f(θT (z))

)
−Df(θ(z))ZT (z)

=

∫ 1

0

Df
(
θT (z) + us−1

T (z)ZT (z)
)
ZT (z)du−Df(θ(z))ZT (z)

=

∫ 1

0

(
Df

(
θT (z) + us−1

T (z)ZT (z)
)
−Df(θ(z))

)
du · ZT (z), (3)

provided that

rT := ||θT − θ||∞ + ||s−1
T ||∞||ZT ||∞ = op(1)

is smaller than

ρ := inf
x∈θ(I),y∈Rk\Ω

||x− y|| > 0.

The latter condition is needed for (3) to be well defined.

Hence

||RT ||∞ ≤ sup
{
||Df(y)−Df(x)|| : x ∈ θ(I), y ∈ Rk, ||y − x|| ≤ rT

}
· ||ZT ||∞.

(4)

Here ||Df(y)−Df(x)|| is the usual operator norm of the matrix Df(y)−Df(x) in

case of y ∈ Ω. (In case of y /∈ Ω define ||Df(y) − Df(x)|| = ∞.) One can easily

deduce from continuity of Df(·) on Ω, compactness of θ(T ) ∈ Ω and rT = op(1)

that the right hand side of (4) converges to zero in probability.

Proof of Lemma 2

We apply the generalized delta method from Theorem 3.2 twice to U(·) with I = [ε, 1]

for arbitrary ε > 0 and sT (·) = τ(z)√
T

. The first transformation of U(·) is

f1 : R5 → R3,

f1(x1, x2, x3, x4, x5) =


x1 − x2

3

x2 − x2
4

x5 − x3x4


18



with, for θ = (θ1, θ2, θ3, θ4, θ5),

Df1(θ) =


1 0 −2θ3 0 0

0 1 0 −2θ4 0

0 0 −θ4 −θ3 1

 .

The second transformation is

f2 : R3 → R,

f2(x1, x2, x3) =
x3√
x1x2

with, for θ = (θ1, θ2, θ3),

Df2(θ) =
(
−1

2
θ3√
θ2
θ
− 3

2
1 −1

2
θ3√
θ1
θ
− 3

2
2

1√
θ1θ2

)
.

The lemma follows then from the fact that U(·) converges in distribution to the

stochastic process D
1
2
1 W5(·). �

We need the restriction on [ε, 1] because the function rT (z) =
√
T

τ(z)
would not tend

to 0 in the supremum norm on [0, 1].

Now, one can show that

(D3D2D1D
′
2D
′
3)−

1
2
τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d W1(·)

onD[ε, 1], whereW1 is a one-dimensional Brownian Motion. The parameter (D3D2D1D
′
2D
′
3)−

1
2

has to be estimated consistently. It is a continuous composition of moments of Xi

and Yi that appear in the matrices D3 and

E =


E11 E12 E13

E21 E22 E23

E31 E32 E33

 := D2D1D
′
2

with

E11 = D1,11 − 4µxD1,13 + 4µx
2D1,34,

E12 = E21 = D1,12 − 2µxD1,23 − 2µyD1,14 + 4µxµyD1,34,

E22 = D1,22 − 4µyD1,24 + 4µy
2D1,44,

E13 = E31 = −µyD1,13 + 2µxµyD1,33 − µxD1,14 + 2µx
2D1,34 +D1,15 − 2µxD1,35,

E23 = E32 = −µyD1,23 + 2µxµyD1,44 − µxD1,24 + 2µy
2D1,34 +D1,25 − 2µyD1,45,

E33 = −µy2D1,33 + 2µxµyD1,34 − 2µyD1,35 + µx
2D1,44 +D1,55 − 2µxD1,45.
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In addition,

D3D2D1D
′
2 =


D3,1E11 +D3,2E21 +D3,3E31

D3,1E12 +D3,2E22 +D3,3E32

D3,1E13 +D3,2E23 +D3,3E33


′

=:
(
F1 F2 F3

)
and

(D3D2D1D
′
2D
′
3)−

1
2 = (F1D3,1 + F2D3,2 + F3D3,3)−

1
2 .

Thus, (D3D2D1D
′
2D
′
3)−

1
2 is a continuous composition of moments of Xi and Yi

from the matrices D3 and E. The only non-trivial task is to estimate the matrix

D1 consistently because the other elements can easily be estimated by Maximum-

Likelihood. We solve the problem with a kernel estimator proposed by de Jong and

Davidson (2000) using the bandwidth γT = [log T ] and the Bartlett-kernel k(·) with

k(x) =

1− |x|, |x| ≤ 1

0, otherwise

.

Other choices would also be possible, but we restrict to our choice for ease of expo-

sition. Because of assumption (A4), D1 is asymptotically equivalent to

Σ̂T =
T∑
t=1

T∑
u=1

k

(
t− u
γT

)
VtVu

′

with Vt = 1√
T
U∗∗t and U∗∗t from Lemma 1. The vector U∗∗t depends on

θ0 =
(
m2
x m2

y µx µy mxy

)
∈ (R ∩ (0,∞))2 ×R3; a consistent estimator for this

is the sequence

θT =
(

(X2)T (Y 2)T X̄T ȲT (XY )T

)
.

Thus, from de Jong and Davidson (2000), we get a consistent estimator given in

Appendix A.1.

Now, we extend the convergence result to the interval [0, 1].

Lemma 3. On D([0, 1],R),

WT (·) := D̂
τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d W1(·).
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Proof. Consider the following functions:

W ε
T (z) =

WT (z), z ≥ ε

0 z < ε

,

W ε(z) =

W1(z), z ≥ ε

0 z < ε

.

The previous lemmas then imply that

W ε
T (·)→d W

ε(·)

for T →∞ on D[0, 1] and also

W ε(·)→d W1(·)

for rational ε→ 0 on D[0, 1]. The convergence of WT (·) on D([0, 1],R) then follows

from Theorem 4.2 in Billingsley (1968) if we can show that

lim
ε→0

lim sup
T→∞

P( sup
z∈[0,1]

|W ε
T (z)−WT (z)| ≥ η) = lim

ε→0
lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) = 0

for all η > 0. Note that the separability condition of this theorem is not necessary

in our case, because supz∈I |A(z)| is always a random variable when A(·) is a right-

continuous random function. Now,

sup
z∈[0,ε]

|WT (z)|

= sup
z∈[0,ε]

∣∣∣∣∣∣
1√
T

∑τ(z)
t=1 (Xt − X̄τ(z))(Yt − Ȳτ(z))− ρ0√

T

√
1

τ(z)

∑τ(z)
t=1 (Xt − X̄τ(z))2 1

τ(z)

∑τ(z)
t=1 (Yt − Ȳτ(z))2√

1
τ(z)

∑τ(z)
t=1 (Xt − X̄τ(z))2 1

τ(z)

∑τ(z)
t=1 (Yt − Ȳτ(z))2

∣∣∣∣∣∣
=: sup

z∈[0,ε]

∣∣∣∣D1(z)

D2(z)

∣∣∣∣ .
By the strong law of large numbers and the CMT, D2 goes to σxσy almost surely for

fixed z > 0. The same holds for X̄T and ȲT with the limit µx and µy. Now let δ > 0

be arbitrary. By Egoroff’s Theorem, see Davidson (1994, theorem 18.4), there is a

set Ωδ ⊂ Ω with P(Ωδ) ≥ 1− δ and a number M(δ) > 0 so that |D1(z)− σxσy| < δ,
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|X̄τ(z) − µx| < δ and |Ȳτ(z) − µy| < δ on Ωδ for τ(z) ≥ M(δ). Hence, for z ≥ M(δ)
T

,

for large enough T ,

sup
z∈[

M(δ)
T

,ε]

∣∣∣∣ 1

D2(z)

∣∣∣∣ ≤ 1

σxσy − δ
<∞.

Straightforward calculation yields

sup
z∈[

M(δ)
T

,ε]

|D1(z)| ≤ C1(δ) sup
z∈[

M(δ)
T

,ε]

D3(z)

for some constant C1(δ), where D3(z) is the sum of finitely many functions Di
3(z)

with

sup
z∈[

M(δ)
T

,ε]
|Di

3(z)| →d supz∈[0,ε] |W1(z)|.

We have

sup
z∈[0,

M(δ)
T

]

|WT (z)| ≤ C2(δ)√
T
→ 0

for a constant C2(δ).

Since W (0) = 0 P-almost everywhere, we have

lim
ε→0

lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) = 0

on Ωδ. Since δ > 0 was arbitrary, the lemma follows.

Lemma 4. On D([0, 1],R),

BT (·) := D̂
τ(·)√
T

(ρ̂τ(·) − ρT )→d B(·),

where B(·) is a one-dimensional Brownian bridge.

Proof. Define

WT (·) := D̂
τ(·)√
T

(ρ̂τ(·) − ρ∗0)

and

BT (z) = WT (z)− τ(z)

T
WT (1) =: h

(
WT (z),

τ(z)

T

)
.

Since τ(z)
T

converges to z, the lemma follows with the CMT and the definition of the

Brownian bridge.

Applying the CMT another time proves Theorem 1.
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A.3 Proofs of the local power

Proof of Theorem 2

Transferring the proof of Lemma 1, we obtain that U(·) converges to D
1
2
1 W5(·) +A

with A =
(

0 0 0 0
∫ z

0
g(u)du

)′
because

A2 =
1√
T

τ(z)∑
i=1

(
0 0 0 0 1√

T
g( i

T
)
)′
.

The fifth component converges as a process to the deterministic function
∫ ·

0
g(u)du.

Also all other proofs can be transferred and it holds

τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d D3D2D
1
2
1 W5(·) +D3D2A

L
= (D3D2D1D

′
2D
′
3)

1
2W1(·) +D3D2A

and

(D3D2D1D
′
2D
′
3)−

1
2
τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d W1(·) + (D3D2D1D
′
2D
′
3)−

1
2D3D2A

L
= W1(·) + (D3D2D1D

′
2D
′
3)−

1
2 ·
∫ ·

0
g(u)du

σxσy
.

The estimator D̂ converges in probability to (D3D2D1D
′
2D
′
3)−

1
2 . Thus,

D̂
τ(·)√
T

(ρ̂τ(·) − ρT )→d B(·) + C(·),

where

C(z) =
(D3D2D1D

′
2D
′
3)−

1
2

σxσy

(∫ z

0

g(u)du− z
∫ 1

0

g(u)du

)
,

a deterministic function depending on z.

Proof of Corollary 1

Similar to the proof of Theorem 2, we have

sup
z∈[0,1]

∣∣∣∣D̂ τ(z)√
T

(ρ̂τ(z) − ρ̂T )

∣∣∣∣→d sup
z∈[0,1]

|B(z) +MC(z)|

= M sup
z∈[0,1]

∣∣∣∣B(z)

M
+ C(z)

∣∣∣∣ ,
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where C(z) 6= 0 for at least one z. Hence,

M sup
z∈[0,1]

∣∣∣∣B(z)

M
+ C(z)

∣∣∣∣ ≥MC2

for a constant C2. Thus, the test statistic becomes arbitrarily large, in particular,

larger than every quantile of the distribution under H0.

It is necessary that h is not constant because the test statistic would be equal to

supz∈[0,1] |B(z)| otherwise. Since we integrate Mh from 0 to 1, even late structural

changes are detected asymptotically if M is sufficiently large.

A.4 Proof of Theorem 1 under (A1) - (A3) and (A5)

Analogously to A.3, we transfer the proof of Lemma 1 with

A2 =
1√
T

τ(z)∑
i=1

(
a2

1√
T
g( i

T
) a3

1√
T
g( i

T
) 0 0 a1

1√
T
g( i

T
)
)′
.

Straightforward calculation yields that C(z) then equals to 0.
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Figure 1: Evolution of cumulated deviations and successive empirical correlations

(a) Evolution of cumulated deviations
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(b) Evolution of successive empirical correlations
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Table 1: Empirical rejection frequencies under the null hypothesis

T ρ

−0.9 −0.5 0 0.5 0.9

a) iid-case

200 0.144 0.054 0.039 0.053 0.142

500 0.064 0.040 0.035 0.041 0.064

1000 0.048 0.038 0.034 0.039 0.049

2000 0.043 0.038 0.036 0.038 0.043

b) serial dependence

200 0.150 0.052 0.038 0.053 0.144

500 0.070 0.049 0.037 0.044 0.064

1000 0.055 0.046 0.039 0.044 0.053

2000 0.046 0.043 0.043 0.045 0.051

Table 2: Empirical size-adjusted rejection frequencies when correlations change

T Alternative

1 2 3 4 5

a) Our test

200 0.309 0.255 0.953 0.880 0.101

500 0.587 0.488 0.996 0.989 0.207

1000 0.830 0.733 0.998 0.998 0.422

2000 0.967 0.928 1 0.999 0.750

b) Aue et al. (2009)

200 0.241 0.159 0.977 0.842 0.083

500 0.586 0.400 1 0.998 0.163

1000 0.858 0.690 1 1 0.284

2000 0.980 0.929 1 1 0.609
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