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SUMMARY

We suppose that our observations can be decomposed into a fixed signal plus random

noise, where the noise is modelled as a particular stationary Gaussian random field in N-

dimensional Euclidean space. The signal has the form of a known function centered at an

unknown location and multiplied by an unknown amplitude, and we are primarily interested

in a test to detect such a signal. There are many examples where the signal scale or width

is assumed known, and the test is based on maximising a Gaussian random field over all

locations in a subset of N-dimensional Euclidean space. The novel feature of this work is

that the width of the signal is also unknown and the test is based on maximising a Gaussian

random field in N + 1-dimensions, N dimensions for the location plus one dimension for the

width. Two convergent approaches are used to approximate the null distribution: one based

on the method of Knowles and Siegmund (1989), which uses a version of Weyl's (1939) tube

formula for manifolds with boundaries, and the other based on some recent work by Worsley

(1993b), which uses the Hadwiger characteristic of excursion sets as introduced by Adler

(1981). Finally we compare the power of our method with one based on a fixed but perhaps

incorrect signal width.
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1 Introduction

Given a fixed value to E C, non-negative ý, and positive ao, assume that the random field

{Z(t),t E RN I satisfies

dZ(t) = aoN12f[aoj1(t - t 0)Jdt + dW(t). (1.1)

Here C is a subset of N dimensional Euclidean space, e.g., a rectangle, f is a square integrable

function, which without loss of generality can be assumed to satisfy

J f(t)2dt = 1, (1.2)

and W is Gaussian white noise. The unknown parameter (ý, to, ao) represents the amplitude,

location and scale of the signal. which is usually positive, symmetric and unimodal. We shall

be primarily interested in testing the hypothesis of no signal, i.e., that ý = 0, and to a lesser

extent in estimating the value of to when _ > 0. A case of special interest is the Gaussian

case, where

f(t) = ,--N/4 exp(-I1tII 2 /2). (1.3)

Although it is unrealistic to suppose that Z is defined throughout RN, this assumption

allows us to avoid problems of edge effects and may be a reasonable approximation when

ao is small compared to the distance between to and the boundary of the region where Z is

defined.

Models of at least approximately this form have been used in a number of scientific

contexts. One is the model of Worsley et al. (1992) of blood flow changes in the human

brain observed via positron emission tomography; here N = 3 and C is the brain. Another

is the model of Rabinowitz (1993) for the geographical clustering of disease incidence, where

N = 2. Focus for the current research came originally from questions raised by John H.

Cobb of the Physics Institute of the University of Oxford, who is involved in searching a

portion of the sky for evidence of a point source of high activity against a background of

Poisson, hence approximately Gaussian, white noise; here again N = 2.

Given an N dimensional kernel k, we define the Gaussian process

X(t'o) = a-N/2Ik~a-1(h - t)]dZ(h). (1.4)

Assuming that the value of 0o is known to lie in the interval [al, a2, we consider the test of

= 0 that rejects for large (positive) values of

X = = maxX(t,cj, (1.5)

tu

where the max extends over t E C and al1  a <_ a 2. If the shape of the signal, i.e., f, is

known, we can take k - f. It can be shown (see below) that the log likelihood function is

fX(to, o0) - ý2/2, (1.6)
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so the test defined by (1.5) is the likelihood ratio test. This is more or less obvious in the

case that one actually observes the process Z defined by (1.1). However, in many cases

one can only observe the smoothed process (1.4). Then this statement is a consequence of

the following general result. Let {Y(r), r E S} be a Gaussian random field with covariance

function R(r1 , r 2) and mean value function of the form E[Y(r)] = ýR(r, ro), parameterized

by ro E S and ý E IR. Let Q(.ro denote the distribution of Y. Then the log likelihood ratio is

log dQt,r,/dQo = ýY(ro) - ý2R(ro, ro)/2.

If S is finite, this is an easy direct calculation involving the multivariate normal density or an

exercise in linear models (see Worsley, 1993a). For S a complete, separable metric space the

theory of reproducing kernel Hilbert spaces delivers the goods (cf. Parzen, 1961, Theorem

7A).

Sections 3 and 4 of this paper are concerned with approximate evaluation of the signifi-

cance level of the test defined by (1.5), i.e., the probability when ý = 0 that X. exceeds a

constant threshold, say b. First order approximations for this can easily be derived from the

results going back to Belyaev and Pitaberg (1972) (see Adler, 1981, Theorem 6.9.1, p. 160)

who give the the following. Suppose Y(r) is a zero mean, unit variance, stationary random

field defined on an interval S C WR", and let Y,, = maxrEs Y(r) and

F(b) = ISIdet[Var(OY/Or)] 1 2bn-• (b)/(2ir)n/ 2, (1.7)

where IS is the Lebesgue measure of S and 0(b) = (2ir)- 1/2 exp(-b 2/2). Then

lrn P{YIDX f. b}/F(b) = 1.

In our case n = N + 1, Y(r) = X(t, o), S is the cartesian product of the the region C and

the interval [ai, a2]. It only remains to find the variance matrix of OY/8r, which in our case

depends on a, so the root determinant in (1.7) should be replaced by its average over S.

In practice, however, F(b) can be a poor approximation to the exceedence probability of

X,... In typical applications to medical images the range of a is small, and since F(b) is

proportional to the volume of S, then F(b) approaches zero as a2 - a, approaches zero. This

is obviously unsatisfactory; a better approximation can be obtained by fixing a at say a, and

repeating the above argument for n = N. The same phenomenon occurs if we shrink the

volume of S to zero; the approximation F(b) approaches zero and yet a better approximation

can be obtained by fixing t and applying n = 1 dimensional theory (see Leadbetter, Lindgren

and Rootzen, 1983). Clearly what is required is a higher order approximation. and we offer

two approaches.

Our first approach in section 3 to the distribution of X,.. is based on the Euler, or

more specifically the Hadwiger, characteristic of excursion sets. The second approach in
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section 4 is concerned with an extension of the method of Knowles and Siegmund (1989),

which involves a version of Weyl's (1939) tube formula for manifolds with boundaries. These

methods involve a substantial amount of geometric machinery to calculate a quantity related,

but not equal, to the probability of interest. Thus it is reassuring that the two methods give

essentially the same result and illuminate complementary aspects of the calculation. An

interesting aspect of the method of tubes is that for the relevant Gaussian fields an important

associated manifold has constant negative curvature.

Section 5 is concerned with the power of the likelihood ratio test We also compare the

power of the likelihood ratio test, which involves a data dependent estimate of ao, as indicated

in (1.5), with the analogous test based on an arbitrary fixed choice of a, which in general

differs from ao. Section 6 contains a simple example and an application to positron emission

tomography images, and Section 7 contains some additional discussion.

2 Preliminaries

Under the null hypothesis of no signal we can write

X(t, a) = a-N12 f k[a-o(h - t)]dW(h)

where k(h), h E IRN, is a smooth kernel with f k(h)2dh = 1; sufficient smoothness is

discussed below. Then X(t, a) is a zero mean, unit variance Gaussian random field with

correlation function

Cor[X(tl,ul),X(t 2 , a 2)] = (ala2)-NI2 J k[ual 1(h - t,)]k[or2 1 (h - t,)]dh.

Note that for fixed a, X(t, or) is stationary in t and for fixed t, X(t, a) is stationary in log a.

Introduce s = - log a and with a slight abuse of notation let X(t, s) = X(t, a). Then

Cor[X(t 1,s8),X(t 2 ,3 2)] = eN(81+82)12 k[(h - ti)esl]k[(h - t 2)e' 2]dh (2.1)

= eN(&2-sh)/2J klh + (t 2 - t1)eu']k[he'2-'1]dh (2.2)

but note that X(t,s) is not stationary in (t,s).

We shall need the joint distribution of the derivatives of the field up to second order.

Suppose k(h) = k(-h). Let X = X(t, s), X. = OX/8s, X = OX/ot and D = 0 2X/iOt&t',

where prime denotes transpose. At a fixed point (X, X,, X. D) is multivariate Gaussian with

zero mean and variance matrix

Var X. _ 0 K 0 -e2'A

X 0 0 e 2*A 0
D -e(( A -e2sA 0 )
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where

A = J•(h)k'(h)dh, K = J[h'k(h) + (N/2)k]2dh.

k(h) denotes ak(h)/ah and e is such that the covariance between the (i.j) element of D

and the (k,l) element of D is symmetric in i,j, k 1, 1 < i,j,k,l < N (see Adler, 1981, p.

114). For the special case of a Gaussian kernel k(h) = f(h) from (1.3) we have A = 1/2,

where I is the identity matrix, and P = N/2.

Deriving these covariances takes some trial and error: we illustrate the method for

Cov(D, X.). From (2.1) we have

a Cor[X(ti, s).X(t 2, S))] = -e N(h2)/2 +s1 Jk(h - t)e m']k[(h - t2 )e'2]dh

= -e N(`'+2)/2+sl Jf[he"J]k[(h + t, - t 2 )e'2]dh,

a9,2Cor[X(tl' .i"\.(t 2. 2)] - e(N/ 2+1)(SI+S2) J -[he•k'l'[(h + t1 - t2 )e']dh(2.3)

Differentiating (2.3) with respect to S2, setting t1 = t 2 and si = S2 = s. and changing the

variable of integration we get

Cov(D. X.) = -eJk 2 l(h)[h'k(h) + (N/2 + 1)l'(h)Jdh. (2.4)

Changing the variable of integration in (2.3) first gives

a2 Cor[X(tj, i),X(t2,S2)] = -e(NI 2
+' (N/21)82 f J•he1-°'2lk'[h + (t, - t 2 )ep'2dh,

then differentiating with respect to S 2 , setting tj = t2 and a, = 82 = s, and changing the

variable of integration we get

Cov(D, X.) = e2s f[k(h)h + (N/2 - 1)l(h)]k'(h)dh. (2.5)

Taking the average of both sides of (2.4) and (2.5), and noting that D is symmetric, gives

Cov(D,X.) = -e2& (h)k'(h)dh = -e 28A.

The conditions we shall require on the smoothness of the kernel k(h) will ensure that

realisations of Y(r) = X(t, s) have almost surely continuous derivatives up to second order.

Exact conditions on the moduli of continuity of Y(r) are given by Adler (1981), Theorem

5.2.2, page 106. A simpler sufficient condition for Gaussian fields, using Theorem 3.4.1 of

Adler (1981), page 60. is the following. Let Y1j(r) be the second derivative of Y(r) with

respect to components i and j of r. Then we shall require that for some C > 0 and for all

r1 , r 2 E S

E{[Yij(r 1 ) - Yj(r 2 )12
1 = O(Ilog I r, - r21II-(I+e)
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for all rl, r2 E S, and all i, j = 1,..., n. This condition is satisfied if. for example, all third

derivatives of Y(r) have finite variance, which in turn is assured if the integral of the product

of any pair of third derivtives of k(h) times sixth powers of components of h is finite. This

latter condition is met. for example, by the Gaussian kernel (1.3).

3 Hadwiger characteristic approach

3.1 Motivation

Let Ab = {r : Y(r) _> b} be the excursion set of Y(r) above b, and let X(Ab) be the Euler

or Euler-Poincari characteristic of S n A6. The Euler characteristic counts the number

of connected components of a set, minus the number of "holes." As the threshold level b

increases Adler (1981) Theorem 6.4.1, p. 136. shows that the "holes" in Ab tend to disappear

and that we are left with isolated regions each of which contains just one local maximum.

Thus for large b the presence of holes is a rare occurrence and the Euler characteristic

approaches the number of local maxima above b. For even larger b near the global maximum

I',M, the Euler characteristic takes the value 0 if Y., < b and 1 if Y _> b. Hasofer (1978)

shows that

P{Yam > b} ; P{X(Ab) > 1} - E[x(Ab)] (3.1)

as P{x(Ab) > 1} -- 0 for b -- oo, and so the expected Euler characteristic approximates

the exceedence probability of Y.... The advantage of the Euler characteristic is that its

expectation can be found exactly; the only remaining point is how well this approximates

P{Y,, > b}.

Some justification for this is as follows. Let Ab = N. > b) be the indicator function for

Y.., where a logical expression in parentheses takes the value one if the expression is true

and zero otherwise (Knuth, 1992), so that P{Y.S > b} = E(16 ). Provided S is connected and

itself has no "holes" then the Euler characteristic of the excursion set X(Ab) approximates

the indicator function 16 both for large b (as shown above), and for small b (since Ab = S

for b small enough, and X(S) = 1). Moreover this property holds for any value of n, so that

if the region S is "squashed" to form a lower-dimensional manifold embedded in IRn, then

X(Ab) continues to approximate I4 in the same way. In particular, if n = 1, then the two are

identical for all b. Thus the Euler characteristic has the correct behaviour for all shapes of

S.

3.2 Definition

We now define a more convenient characteristic, the Hadwiger charactersitc, which is de-

fined on different classes of sets than the Euler characteristic, but which equals the Euler
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charactersitic within the domain of definition of both. The advantage for us is that it has

an iterative definition, given below, which is more amenable to statistical analysis.

Let C be a compact subset of IRv with a smooth boundary, let I = [si, s 2] be the closed

interval between s, and S2 and let S = C x I. Once again we define the excursion set Ab of

X(t. s) above a threshold b to be the set of points in S where X(t, s) exceeds b:

A- {(t,s) E S : X(t,s) > b}.

Define the Hadwiger characteristic W((A) of a basic complex A C S iteratively as follows. For

N = 0. let ?k(A) be the number of disjoint intervals in A. For N > 0, let

,(A) = -[i4(A n E.) - i(A n Eý-)],
U

where E4 = C x {u} and

L,(A n El-) = lim W(A n E).
t'TU

The Hadwiger characteristic is the only characteristic which satisfies the following additivity

property: if A, B, A U B and A n B are basic complexes then

Ob(A U B) = O(A) + u(B) - Ob(A n B).

If X(t,s) is sufficiently regular, as defined by Adler (1981), chapter 3. then the excursion

set Ab is almost surely a basic complex.

A crucial step in deriving statistical properties of excursion characteristics is to obtain a

point-set representation which expresses the characteristic in terms of local properties of the

excursion set rather than global properties such as connectedness. To do this, let 1kv be the

contribution to the point set representation from the interior of S, let WE be the contribution

from 8C x I, the "edges" in scale space, and let 4' be the contribution from E,,, the "base"

of S. Then with probability one

O( b = OV+ OE+ B

3.3 N= 1

Here t, X, D and A are scalars, and set A = A, say. For t E WC, let X1 be the derivative

of X with respect to t in the inwards direction to C. Then

?#v = E"(X, > 0)[(D < 0) - (D > 0)](X = 0)(X = b),

S

E = (X. > 0)(x. < 0)(X = b).

O~x7



We can evaluate the expectation of the point set representations following the methods

used to prove Theorem 5.1.1 of Adler (1981. p. 95) to get

E(?v) = -ICI E(X+DIX = O,X = b)Ol (O.b)ds.

E(OE) = -2 E[X+(X± < O)IX = b]O(b)ds,
ac I

where 01(x, x) is the density of (X, X). Taking expectations first over D conditional on X,,

X and X we get

-E(X+DIX = 0. X = b) = e2sAE[X+(b+ Xl/K)] = e UA[bc 1/2/(27r)1/ 2 + 1/2]

and so for the interior of S we have

E(v'v) = ICI 122 e6dsA1/ 2[bK l/ 2 /(27r)'/ 2 + 1/2](b)/(27)1/2

= ICj(e-' - eS)(AK) 1 2 b6(b)/(2.) + (ICI/2)(e 2 - ehlyAl/2 6(b)1(27r)'/2 .

For the "edges," each connected component of C contributes two points to WC, each with

X.L taken in opposite directions; since (X4. < 0) + (X1. > 0) = 1 and the number of such

points is 21b(C), then

E(OE) = ?P(C)(s2 - sI)K /2 (b)/(2r)1/2.

For the "base," we have from Worsley (1993b),

E(OB) = IjCle1I 2 0(b)/(27r)l/2 + O(C)[1- 0(b)11

where O(b) = P{X < b} = f!. O(x)dx. Putting these together, substuting or e =e-,

a2 = e-*1 for the limits on o, and re-arranging, we have

E[E'(b)] = I~a" - a-1)(Ar•)1/2bW(b)/(27r)
E(tý(Ab)] = ICI(a7' -r

+ (ICI/2)(ao'j + ao2)AI/26(b)/(27r)
1 /2

+ t,(C) log(a 2 /al)Pc/ 2 (b)/(27r)1/ 2

+ 4'(C)[1 - 4(b)]. (3.2)

3.4 N> 1

At a point (t, s) E aC x I, let t±. E IRN be the inside normal to aC and let the columns of

(t±, A), A an N x N - 1 matrix, be an orthonormal basis for IRN. Let X±. = t'.X be the

derivative of X normal to S, let XT = A'X be the N - 1-vector of derivatives of X tangent

to S, and let DT = A'DA be the N - 1 x N - 1 second derivative matrix of X tangent to S.

Let CT be the N - 1 x N - 1 curvature matrix of OC at t. Finally for a symmetric matrix
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M, let X(M) take the value +1 if M has an even number of negative eigen values, and -1 if

M has an odd number of negative eigen values, including multiplicities. Then generalising

the results of Adler(1981. p. 84) we have

Ov = 1(., > O)x(D)(X = O)(X = b),
S

I'E = E (X, > O)X(DT + CTX.)(Xi <0)(XT = O)(X = b).
aCxI

We evaluate the expectation of the point set representations following the methods used

to prove Theorem 5.1.1 of Adler (1981, p. 95) to give

E(Ov) = (-1)NICIi E[X det(D)IX = O.X = b] i(O,b)ds,

E(O'E) = (-1.)N-d [" E[X det(DT + CTXJ.)(X± < O)IXT = OX = b)dA(Ob)dA'tds,

where 6A(x, x) is the density of (A'X, X). -We shall evaluate E(?,v) by first taking expec-

tations over D conditional on X5, X and X. Let v = (1 + 1/C) 1/ 2 and let HeN(x) be the

Hermite polynomial of order N in x. Following the arguments of Adler(1981, p. 114) we get

E[det(D)j = e2N det(A)(--v)NE{HeN[(b + X./K)lv]}. (3.3)

For E(kE), we shall first take expectations over X.L conditional on DT, Xs, XT and X. Let

AT = A'AA, so that the distribution of DI = AT1 /2DTAT1/ 2 is invariant under rotations

in the tangent plane. Then letting cl = AT'/2CTAT1/ 2 we can write

det(DT + CTXi.) = det(AT)det(D; + c;Xi.).

For any m x m matrix M, define detrj(M) to be the sum of the determinants of allj xj

principal minors of M. 1 <5 j _5 m, and one if j = 0. Then since any principal minor of D;

has the same distribution we can expand in powers of Xz. to get

N-i

E[det(D; + cjX±.)j = E[det(D *(N-l-J))Idetrj(cl)X'.

where D,(N-1-j) is any N - 1 - j x N - 1 - j principal minor of D;. Now from (3.3) we

have
Efdet(D•N-l-3))] - e2(N-I-j)*( -v)Nv--jE{HeNI.j[(b + X,/ )/v]}.

Since

E[XIX(X± < 0)] = Var(X±.)j/ 2(--1)J2(-J)/2r[(j + 1)/2]/(27r) 1/ 2, (3.4)

9



we get

Eldet(DT + CTX.L)(X. < 0)] " (-v),v-1 e2 (v-)det(AT)
N-i

x 1 e- 2"t,-'E{HeN.Ij[(b + X,/,c)/v]}detr,(cl)
j ---0

x Var(Xj.)'1 /2'-')/2F[(j + 1)/2]/(27,.)1/2. (3.)

In principle we can expand (3.3) and (3.5) in powers of X,, multiply by X+, take expectations

using (3.4), and find a general expression for E[k(Ab)]. The algebra is very tedious so we

shall now consider the cases of most interest where N = 2 or N = 3 and the process is

isotropic in t for fixed s.

3.5 N=2

We can evaluate (3.3) by expanding and using (3.4):

t?'2E{X,+He 2[(b+X./,)/v]} = E{Ix+[(b+X./,K) 2-(I+ 1/x)]} = ,x/2(b 2 1 + 1/K)/(27r)i1/2 +b,

so that, substituting and integrating over s, we get

E(Ov) = (ICj[2)e(s2-(s)det(A)1/ 2 [K/ 2(6' - I + I/x)/(27r)1/ 2 + b61(b)/(27r).

It is hard to simplify (3.5) without making the further assumption that the field is isotropic

in t for fixed s, so that we can write A = Al. Then conditional on Xo, X = 0 and X = b

E[det(DT + CTX±L)(X.L < 0)] -e 2sA(b + X./ic)/2 - CTCA'1/ 2 /(27r) 1 /2

so that conditional on X = 0 and X = b

E[X+det(DT + CTXJ.)(XJ. < 0)] = -e2A[bc'1/ 2 /(27r) 1/2 + 1/21/2 - CTea(AX )/ 2/(27r).

Now since aC CTdtT = 2irO(C) we get

E(OE) = {IaCleaAi/2[bc 1/2/(2r)1/2 + 1/2]/2 + 4'(C),c112/}(b)/(27r) 1 / 2ds
11

= {IOCIe2-1A1/ 2[bi/2/(27r)1/ 2 + 1/21/2 + O(C)(S2- Sl)OCI} -(b)/(2r )1/.

Finally, from Worsley (1993b), we have

E(OB) = ICle 2.1 AbO(b)/(2r) + (t0C112)edl A'/20(b)/(27r)1/ 2 + 10(C)[1 - 4I(b)].

10



Combining these and substuting , - e-1 2 , a2 = e-' for the limits on a. we have

Elt,(Ab)) = (ICI/2)(ai- 2 
- 02

2 )AK/ 2(b2 - 1 + l/t)P(b)/(21)3/2

+ (IC1/2)(ao 2 + a2 )Abo(b)/(27r)

+ (IOCI/2)(or-' - a-')(Atc) 1/2bO(b)/(27r)

+ (10C114)(a-" + a-')A'/26(b)/(2-)1/2

+ t(C) log(at2 /o'l )K"/26(b)/(27r)
1/2

+ (C)[1 - (b)]. (3.6)

3.6 N =3

We can evaluate (3.3) by expanding and using (3.4):

&3E{X+He3 [(b+X 5/l)/vJ} - E{X,+[(b+ XIK)3 - 3(1 + 1/K)(b+ X,/K)]}

X K1/ 2(b 3 - 3b + 3b/pc)/(27r)1/2 + 3(b2 - 1)/2,

so that. substituting and integrating over s. we get

E(tOv) = (ICI/3)e(-2-°2)det(A)1/2f[X/ 2(b3 - 3b + 3b/K)/(2r. )1/ 2 + 3(b2 _ 1-)/21(b)/(27r)3/2.

It is hard to simplify (3.5) without making the further assumption that the field is isotropic

ir t for fixed s, so that we can write A = Al. Then conditional on X8, X = 0 and X = b

E[det(DT + CTX.L)(X. < 0)] = e
4 A*2[(b + X/sK)

2 
- (1 + 1/tc)]/2

+trace(cT)e3 A3 /2•(b + Xo/c)/(22r)1/ 2 + det(cT )e2sA/2,

so that conditional on X = 0 and X = b

E[X+det(DT + CTX±.)(XJ. < 0)] = e4*A2 [#c/ 2(b2 
- 1 + 1/r.)/(2r. )1/2 + b]/2

+trace(cT)e 3 A3/ 2[bil/ 2/(27r)1/ 2 -+ 1/2]/(2r )1/2 + (det(cT)/2)e2AC11/2/(27r)1/ 2 .

Define the mean curvature of WC (see Santal6, 1976, p. 222) to be

H(OC) = 8c trace(T)dtT/2.

Now since Jac det(cT)dtT = 47rtP(C) we get

E(OE) = 1- + 1/r.)/(27r).' 2 + b1/2

+ 2H(OC)eA' /2 [bcl/ 2/(2r,)1/2 + 1/2]/(2,r)1/ 2 + w(C)(27rx )1 /2}6(b)/(27r)ds

- {(IOCI/2)(e 2 2 - e2 &')A[CIc/ 2 (b62 - 1 + 1/xc)/(27r) 1 / 2 + b]/2

+ 2H(8C)(e°2 - e°a )A1/ 2[bK 11/ 2/(27r) 1/2 + 1/21/(2r. )1 /2 + WP(C)(s 2 - s,)(2r.)1/2} O(b)/(2r).
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Finally, from Worsley (1993b), we have

E(OB) = ICle3JIA3/2(b2 
- ) / ) (IaCI/2)e2 Abo(b)/(2r)

+ [H(aC)/rjeI1A'/ 2O(b)I(27r)'/ 2 + Wv(C)[1 - 4b(b)].

Combining these and substuting a, = e-' 2 , 02 = e-" for the limits on a. we have

E[O(Ab)] = ICI(1/3)(0 3 
- o'23)A312Kl/2(b3 - 3b + 3b/K)o(b)/(2ir)2

+ (ICI/2)(a 13 + a 2 3 )A3/2(b2 - 1)0(b)/(27r)312

+ (IaCI/4)(ao2 _ a2 - )Apil/ 2(b2 
- 1 + 1/ic)4(b)/(27r) 3/2

+ (16CI/4)(ai 2 + or
2 )b)A6(b)/(21r)

+ [H(OC)/r](aoj' - a 1 )(A1C)"1 2b¢(b)/(27r)

+ [H(aC)/(2ir)](a11 + a01 )A1/ 2 O(b)/(2i'r) 1/2

+ 0 (C) log('•/al )Kl/ 26(b)/(2r,)l12

+ OQ(C)[1 - 4(b)]. (3.7)

It is straightforward, though cumbersome, to generalise to piece-wise smooth sets C. Let

WCs be the smooth part of WC, and let aCE be the smooth curves or "edges" that bound

the smooth parts of OC. Let 6 be the internal angle between the normals to the two parts

of aCs on either side of aCE, and let tE be a unit vector tangent to 8CE. Then the above

results will hold with H(OC) replaced by

H(aC) = (A CS trace(CT)dtT + LaCE bdtE) /2.

If OC is smooth everywhere, so that the second term is zero, then H(9C) is the mean

curvature of aC as before. If C is a polyhedron, so that the first term is zero, then H(OC)

is half the sum of the lengths of the edges of C multiplied by their angular deficiency. If

C is convex, let A(OC) be the average, over all rotations, of the maximum perpendicular

distance between two parallel planes that touch OC; this is known in stereology as the mean

caliper diameter of C. Then it can be shown that A(OC) = H(OC)/(27r) (see Santal6, 1976,

p. 226). Values of H(OC) for some common geometric solids are given by Santal6 (1976, p.

229).

3.7 Manifolds in ]R3

We can now find the result for a piece-wise smooth two dimensional manifold C embedded

in WR3 by thickening it slightly, applying the above, and taking the limit as the thickness

tends to zero. ZFrom (3.7) we see that the result is identical to (3.6) in two dimensions,

obviously a special case when C is flat. Thus no matter how C is folded or even creased, the

12



expectation of the Hadwiger characteristic is the same, even though the correlation structure

on C depends on the folding and is not necessarily stationary unless C is flat.

If C is a piece-wise smooth two dimensional surface homeomorphic to the surface of a

sphere, 149CI = 0 and w(C) = 2. This result could be useful for directional data, such as the

astronomical example. which is modelled as a random field on the surface of a sphere. How-

ever the fact that C contains a "hole" means that E[1(Ab)] may not be a good approximation

to P{Xmn. _> b} fo: small b.

4 Volume of tubes

An alternative to the methods of Section 3 is the differential geometric method of Weyl

(1939). See also Naiman (1990), Knowles and Siegmund (1989), Sun (1993), and Siegmund

and Zhang (1994). As will become apparent below, it is not obvious that we are in general

evaluating the same quantity as was calculated in Section 3, so it is reassuring to obtain

the same answer in particular cases. However. our main goal is not only to reproduce the

answer by different means. but also to try to add some insight. The method of tubes breaks

the complicated calculation into a large number of small pieces whose relative importance

can to some extent be assessed without performing the entire calculation. Hence the method

might be suitable for application when one would prefer a simple approximate result to a more

complicated exact one. Alternatively, since each of the pieces has its own geometric meaning,

the method illuminates some mysterious expressions obtained by the formal evaluations of

Section 3. To this end we show the geometric origin of the somewhat enigmatic term involving

1/r, which appears in the display (3.6) for the case N = 2 and in the corresponding formulas

for larger values of N, but which does not appear in (3.1) for N = 1.

Since there is no particular advantage in reparameterizing ar as exp(-s) as in Sections

2 and 3, we consider the Gaussian X(t, a) defined in (1.4), which has the Karhunen-Loive

expansion (cf. Lo~ve (1963, p. 478)):

X(t, o') = --•k(t, a)Zk, (4.1)
k

where the Z's are independent standard normal and

Cov[X(tl, a 2), X(t 2 , O2)] = 'yk(ti, arl)'yk(t2, a2). (4.2)
k

If the series in (4.1) terminates after a finite number of terms, the following discussion

yields a very precise approximation to the tail of the distribution of X, when ý = 0. It

presumably applies approximately otherwise, but a delicate interchange of limits is involved.

See Sun (1993) for a detailed discussion of the nature of this approximation in a special case.
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We omit discussion of these technicalities and henceforth proceed formally as if the series

(4.1) contains m terms. It turns out that ultimately all our calculations are intrinsic to the

manifold M defined below, so the quantities we evaluate are the same whether or not the

series terminates after finitely many terms.

If (4.1) is divided and multiplied by the norm of the vector Z = (Z,, ... , Z,)', it takes

the form of the product of (7 (t,o'),U) and IiZ11, where -y(t,a) = (', 1(t,a'),...

U is uniformly distributed on the unit sphere in m dimensions and IIZII is independently

distributed as a X random variable with m degrees of freedom. By conditioning on IIZII, we

can reduce the problem of evaluating the tail of the distribution of (1.5) when • = 0 to that

of evaluating

P{max (-i(t.cr), U) > w} (4.3)

for values of w close to one. Moreover, by (4.2) the vector -y defines a parameterized subman-

ifold of the unit sphere. so (4.3) can be interpreted geometrically as the volume of the tube

of geodesic radius cos-'(w) about this manifold. divided by the volume of the unit sphere.

We seek to calculate the volume of that tube.

Let M = {,Y(t.oa) : t E C,ar _5 a' < a2 }. The metric tensor (first fundamental form) of

the manifold M is given by the (N + 1) x (N + 1) matrix with entries (-fi, -y), where the

subscripts denote differentiation with respect to the corresponding argument. Assuming k

is symmetric about zero in each of its arguments and invariant under permutation of its

arguments, we see from the covariance calculations of Section 2 that the matrix is diagonal:

the first N diagonal entries equal A/a 2 , and the final entry is K/a'
2 . It will be useful below to

note that in the special case A = K. = 1, this is the metric tensor of hyperbolic space having

constant curvature -1 (e.g., Boothby (1986, p. 404)).

For N = 1, Corollary 2 of Knowles and Siegmund (1989) (corrected for minor errors of

calculation) yields

P{max (y(t, a'), Z) > b} = IMjbd(b)/(2wr) + (IOMI/2)0(b)/(2r)1 /2 + X(M)[1 - 0)(b)][1 + o(1)]
(4.4)

as b -+ oo. Here IMI is the area of the manifold, 18MI is the length of its boundary, and X(M)

is its Euler-Poincari characteristic (equal to I if, as we assume for simplicity, C is an interval

of real numbers). In the present case the area element of the manifold is (A) 1 I/2dtda'/l 2 , so
[MI = ICI(oi 1 

- a' 1 )(AK) 1/2; also [OMI = ICI(a'i' + ar'ý)AI/ 2 + 1•/2 log(a'2/a 1 ), so the right

hand sides of (4.4) and (3.2) are the same.

It is interesting to note that in the derivation of (4.4) the Euler characteristic X(M) arises

via an application of the Gauss-Bonnet Theorem as (27r)-l times the sum of three terms: (i)

the Gaussian curvature of the manifold integrated with respect to the area element, (ii) the

geodesic curvature of the boundary of M integrated with respect to arc length, and (iii) the

sum of the angles through which the tangent to the boundary of M rotates at the corners.
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See, for example, Millman and Parker (1977, p. 185). In the present case it may be shown by

standard elementary calculations based on the metric tensor given above that the Gaussian

curvature is the constant -I/ic. For fixed t, as a function of a the curve -(t, a) is geodesic,

so its geodesic curvature is 0. For a = a,, as a function of t the geodesic curvature of y(t, a,,)

is (-l )(0-O)/,c/, provided the boundary is oriented in the customary counterclockwise order

in the (t, a) plane. We omit the details, since the case N = 2 discussed below is similar in

principle and more complcated in detail. Hence. before adding the integral over the manifold

of the Gaussian curvature and the integral over the boundary of the geodesic curvature, we

have obtained two terms involving 11ir 2 , which then sum to zero.

We now consider the case N = 2. As the arguments of Weyl (1939) show, the first and

second order terms again involve the volume of the manifold M and the area of OM, and

are easily evaluated. (See Knowles and Siegmund (1989) or Naiman (1990) for details.) For

example. in the present case the volume element is dV = A.'/l2dtidt2da/o 3 . so

IMI = ICI(oa2 
-_1

2 )Aic "/2. (4.5)

The terms in b2
V(b) and bW(b) are the same as in (3.6). For many applications these terms

will provide an adequate approximation by themselves.

The other terms involve the curvature of the manifold. the curvature of the boundary,

and lower dimensional boundary corrections. A complete derivation involves more advanced

tools of differential geometry. We sketch the possibilities here by deriving the term involving

1/ic in the first line of (3.6).

By the methods of Knowles and Siegmund (1989) one can see that this term arises from

MJdV + 2 HdA,. (4.6)

The expressions in (4.6) are as follows. Let n., Y = 1, -. , m - N - 1 be mutually orthogonal

unit normals to the tangent space of M. Then J is the sum over v of the sum of pairwise

products of the eigenvalues of the Weingarten map (Millman and Parker (1977, p. 125))

in the direction ni,; dV is the volume element of the manifold; He is the geodesic mean

curvature of the boundary, i.e., the mean curvature in the direction of a vector which is

normal to the boundary of M, but lying in the tangent space of M pointing into the interior

of M; and dA8 is the area element of the boundary. (The expression (4.6) appears in a brief

discussion of the case of a three dimensional manifold in a preliminary version of Knowles

and Siegmund (1989), but not in the published version.)

Up to a constant multiple, J is the scalar curvature of the manifold. It can be identified

as such and laboriously calculated directly from the metric tensor of the manifold. See

Sun (1993) for a discussion and summary of the algorithm. (For a manifold of the simple

structure of M, we suggest a different method below.) The result is J = -3/ic. a constant,
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so by (4.5) so MJdV = -3A-,/11 2 CI(a I -_a2)/2. (4.7)

We now consider the geodesic mean curvature of the boundary. It turns out that we are

primarily interested in the image of OC x {al, a2}, since the rest of the boundary gives rise

to one of the other terms in (3.6). Hence assume that a is fixed and consider the surface

-y(t, a) as a function of t with unit normal -y3lc/1/2. From the covariance calculations in

Section 2 it follows easily that (7i,73) = A/a3 for i - 1,2. Hence since the metric tensor

is diagonal, the matrix of the Weingarten map (Millman and Parker (1977, p. 125)) has

diagonal entries (Y.,-f3)/(II1y3II1hyj 11
2) = [aA/(iC1/2a3)j/(A/a 2) = # 1 /2 , so 2H =- 2r1/ 2 . In

order to maintain our convention that H be calculated with respect to an inward pointing

normal. its sign should be negative at a = a2 and positive at or = a,. Since the area element

is Aa-2dtidt 2 , it follows that the integral of twice the geodesic mean curvature over the image

of aCx {Xal, a2} is

2HjdAa = 2A.- 112 1ICI(aj1 2 
- ora22). (4.8)

Addition of (4.7) and (4.8) yields the coefficient associated with the 1/K term on the first

line of (3.6).

The geodesic mean curvature at a point p on the image of .C x (a,, a2) leads to another

term in (3.6). For simplicity we assume that C has a smooth boundary. The point p can be

represented parametrically by p = a(t, a), where for each fixed value of a, as a function of

t, a is a unit speed curve. Tangent vectors to the surface a are Oa/Gaa = -3 and Oa/ot =
A-1/2a[-11 cos(0)+-y2 sin(0)]. The relevant (unit) normal is n = A- 1/2 a[[-f1 sin(0)+-/2 cos(O)].

Obviously 0 is the angle of rotation carrying -fl, -y2 into 8a/O3t, n. By differentiating the

relation I I'Y3112 = K;/a2 with respect to t, and (-f3, -yi) = 0 with respect to ar, we see that

(y-, yi) = 0 for i = 1,2. It follows that one diagonal element of the second fundamental

form, and since the metric tensor is diagonal one diagonal element of the matrix of the

Weingarten map is zero. The other diagonal entry is (a 2a/8i 2 , n), which is by definition the

geodesic curvature of the curve a in the surface -(t, a) considered as a function of t with a

fixed. Hence the trace of Weingarten map is 2H1 = k., the geodesic curvature of a. The

area element at p is given by dAa = (C)1
/

2 r-dtda. Since the surface -y(t, a) for fixed a has

as metric tensor a multiple of the identity, its Gaussian curvature is zero. Hence the integral

of the geodesic curvature of the boundary with respect to arc length is 27r times the Euler

characteristic of the surface, or equivalently the Euler characteristic of C. Hence the integral

of 2H" over this part of OM yields 2ir0b(C)iC1/ 2 1og(a2/a1), which appears in the third line

of (3.6).

The use of differential forms simplifies certain calculations associated with the volume

of tubes. It is a particularly attractive alternative in the present case of a diagonal metric

tensor. since it allows us to calculate directly and easily the curvature J without necessarily
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identifying it as a multiple of the scalar curvature of the manifold. Although these calcula-

tions should be regarded as standard, there does not seem to be a convenient reference, and

it is not difficult to proceed from first principles, at least in low dimensional problems. A

useful general reference is Boothby (1986).

Since our main goal here is insight, we shall consider the case of a tube about a manifold

embedded in m-dimensional Euclidean space. The added features of the calculation for a tube

about a manifold embedded in the unit sphere are discussed in Knowles and Siegmund (1989).

Except for a brief remark at the end of this section, we shall also restrict ourselves to the

case of present interest, namely a three dimensional manifold. Although the methods work

also in higher dimensions, the computational complications can become quite substantial.

We denote by ej, i = 1.---. m an orthonormal moving frame for 1R". with the first three

elements a frame for the tangent space of the manifold M and the rest orthogonal to M.

Let {w'} and {w ) denote the dual forms and connection forms respectively. As usual we

assume the w's are restricted to the tangent space of the manifold, so W4= ... = , = 0. A

point on the manifold satisfies dp = E3w'ej. Recall also that

m

de, = e (4.9)
j=1

d =w w ^ (4.10)

and wý = -wk.

For all sufficiently small a, a point in the tube of radius a about M (except for points

whose closest point in the manifold is on the boundary of the manifold) can be parameterized

as
q +1 tie,, (4.11)

4

where t? <_ a2 . We want to identify 1-forms {(,', = 1,... ,m) such that dq -,'=ej.

Then the volume of the tube can be obtained by integrating the volume element

dV ) = ^A... A ra(4.12)

Differentiating (4.11) and applying the structural equation (4.9), we see after collecting

terms that 4 = w, - Z 4 tiwt, for i = 1,2, 3 and C, = dt, - 4 tj,,I for 4 < j _ m. In

taking the wedge product of the Ca', we note that since the manifold M is three dimensional

any wedge product involving more than 3 among the various wi and w? vanishes. Hence for

4 _< j _< m the sums 'i4 t~wi can be neglected. It follows that the volume element (4.12)

can be expanded as a sum of wedge products of the following form. Each term contains

dt4 A ... A dt,. One term contains w A ... A W3. When integrated over the product of M
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and the ball of radius a. it yields the volume of the manifold multiplied by the volume of the

ball. There are also terms containing some of the t, raised to the first or the third power.

These terms vanish when integrated over the ball of radius a. Finally there is an expression

of the form

t2 [w' A 'a A wJ, +u A A w +wJ' AY AW 3 ] A dt4 A .. A dtm. (4.13)

Integration of (4.13) over the ball of radius a yields the same constant for all values of j,

so there remains the problem of evaluating the integral over the manifold of

E[w' A J2 A w3l + 1' A• A..3J + - A• "? 3]. (4.14)

j-=4

Since this is a 3-form on a 3 dimensional manifold, it must be a scalar multiple of the volume

element w1 A W2 A W3 . From w1 A W2 A W&3(el, e2, e3 ) = 1 it follows that to evaluate this scalar,

it suffices to evaluate (4.14) at (el, e2 , e3 ), and since w'(ek) = 6 i.k, this evaluation yields a

sum over j of a sum of three determinants of 2 x 2 matrices whose i, k element is &i(ek). In

terms of the curvature forms
3

1=1

(i,k = 1,2,3) (cf. Boothby (1986, p. 390), which by (4.10) equals - Ejff4 :ij A wk', this

evaluation of (4.14) becomes

- f £Z!(e1,,ek). (4.16)

Finally, to evaluate (4.16), we follow with minor changes the example in Boothby (1986,

p. 408), which deals with the special case of our manifold with A = K = 1. We find that
Wik = K-1/2( 63,k.i - 63 ,,Wk) (i, k = 1,2,3), and hence flý = -w3 A wk = rC-Iwi A wk. Hence

(4.16) equals -3/1, which is exactly the value of J given above, as it should be.

Remarks. Evaluation of the geodesic mean curvature of the boundary by this method is also

easy. For example, in the case of fixed a,, we put e3 = 13/11-1311 (subject to a correct selection

of the sign). A calculation similar to that given above shows that the desired quantity is

w1 Aw• +w• AwC, evaluated at e 2,e2 . This equals w2(e 2 ) +w3(ei) = 21-/ = 2H, as above.

The case N = 3 can be handled similarly, although now there are some additional terms

to consider. The most interesting, although in the end it makes no contribution to the

final formula, involves the Gauss-Bonnet integrand for the four dimensional manifold. It

arises from the 4-form fl2 A fl". As in the case N = 1, where the integral of the Gaussian

curvature over the manifold is exactly canceled by the integral of the geodesic curvature

of the boundary, the integral over the manifold of this 4-form is canceled by the integral

over the boundary faces where a' = al or 0'2 of a three form involving the sum of twice

18



W4 Aw• Aw• and W4 A f1 - A f1 + f2 A u. These forms are defined in terms of the frame

el" ** e4 adapted to the manifold with el, e2 , e3 spanning the tangent space of the boundary

and e4 = 1v4/111v411 perpendicular to the boundary.

5 Power

Suppose now that a signal is present, so we observe the field satisfying

dZ(t) = c, '/2 4f[Oo(t - to)]dt + dW(t),

where f is a positive, smooth function, to is the unknown location of the signal, t, a0 are

nuisance parameters and dW is white noise. After smoothing with the kernel a-N1/
2k[o.-(h-

t)1, where k is chosen to equal f and a to equal aO insofar as possible. we are interested in

the Gaussian field

X(t, o) = o-N1/2 k[o-'(h - t)]dZ(h), (5.1)

which has mean value

S= 4 (OGo)-N/2 f f[ao'(h - to)]k[ou-(h - t)]dh (5.2)

and the covariance behavior described in Section 2. The power of the test suggested in

Section 1 is

P{Xmu > b}. (5.3)

Both (5.2) and (5.3) depend on the unknown parameters 4, to, ao, although this dependency

is suppressed in the notation. If the range of a includes the true value ao, we expect most

of the probability (5.3) to arise from the probability that X(to, 0o) exceeds b, which equals

1 - 6(b - po), where po = u(to, oo) and 0 is the standard normal distribution function.

Hence we begin with the decomposition of (5.3) as

1 -(b - po) + P{Xma > bIX(to,ao)ldP. (5.4)

We consider below two different situations regarding the choices of k and a: (i) k = f

and a is chosen adaptively as discussed in Sections 2-4, and (ii) k and a are arbitrary, but

fixed, and in general differ from f and ao. In the former case we assume that a, < 0o < a2.

We begin with consideration of case (i). Note that in this case po = C. Also, from the

form (1.6) of the likelihood function it follows that X(to, a0) is sufficient for t and hence

the conditional probability in (5.4) can be evaluated assuming that 4 = 0. To emphasize

this situation we write Po in place of P. Our approximation is based on the following

considerations that have proved useful in related contexts (e.g., Siegmund (1985, pp. 202-

203), James, James, and Siegmund (1987)). If b and 4 are large, then large values of the
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sample paths of X are likely to occur near to to, a0. The conditional probability in (5.4) will

be small unless X(to, ao) is close to b, say X(to, ao) = b - y, with y close to 0. Hence if the

sample paths of the field are to cross the level b. they must do so in a small neighborhood of

the value to, oo. Moreover, as noted by various authors (e.g., Adler (1981, p. 157), Aldous

(1989. p. 65), Leadbetter, Lindgren Rootzin (1983. pp. 201 ff.), if X takes on a large

value at to, ao, then in a small neighborhood of that point it will behave very much like a

quadratic function whose random part will come from the linear term. This suggests the

local approximation

X(t,a) ;i (b- y) + u'Xk(to, ao) + u'Eo[X.(to, ao)IX(to, ao) = b - ylu/2, (5.5)

where u = ((t - to)', a - no)'. The right hand side of (5.5) will exceed b for some value of u

if and only if its maximum does. A straightforward maximization of the right hand side of

(5.5) yields

b - y - .(to, ao)'{Eo[X(to, ao) X(to, ao) = b - y]} 1-A'(to, ao)/2, (5.6)

which after an evaluation of the indicated conditional expectation of the Hessian of X yields

b - y + X(to, ao)'XE-',(to, ao)/[2(b - y)], (5.7)

where

S= -Eo[X(to, ao)f(to, ao)] = Eo[D(to, ao)Xý(to, ao)']. (5.8)

The quadratic form in (5.7) is independent of X(to, ao) and is distributed as a X2 random

variable with n = N + 1 degrees of freedom. Hence the conditional probability in (5.4) is

approximately, in the obvious notation,

n > 2y(b - y)}. (5.9)

Since we are assuming that b is large and expect that the important values of y are close

to 0, we propose to replace b - y by b in (5.9) when we substitute into (5.4). Likewise we

neglect the term involving y 2 in O(b - ý - y). Then the integral in (5.4) takes the form of a

Laplace transform, which after an integration by parts is easily shown to equal

1 - O(b - t) + O(b - ý)[1 - (b/)d/,2 ]/(f - b). (5.10)

Remarks. Except for the smoothness and behavior for large t necessary to permit the

expansion (5.5) and the integration by parts implicit in (5.8), there are essentially no con-

ditions imposed on f. It appears that with a more careful analysis the preceding argument

requires that X be only once continuously differentiable, not twice differentiable, although

the stronger assumption is satisfied in the applications discussed below.
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We now turn to case (ii). Although the conditional probability in (5.4) now depends

on the underlying parameters. the argument given above continues to hold with suitable

modifications. In particular. in the following analogue of (5.5) the gradient vector X and

Hessian matrix k involve differentiation with respect to the N spatial variables, but not the

scale factor a, which is constant. Instead of (5.5) we have

X(t,o') k b-y+(t - to)'X(to,a)+(t -to)'E[Xk(to,oa)jX(to,a) = b-y](t -to)/2. (5.11)

Also

E[XCIXI = E[X] - Cov[X,A']E(X) + Cov[X, X]X, (5.12)

but unlike case (i) above the sum of the first two terms does not vanish. We shall assume

that f and k are symmetric about zero in each argument and invariant under permutations

of the arguments, so that the right hand side of (5.12) is the product of the identity matrix

and a scalar of the form

ý77 + Ao- 2X(tooa). (5.13)

Here ý and A are as defined above, and q is easily evaluated in terms of integrals involving

k, f, and their partial derivatives. We omit the general expression. In the special case that

both k and f are the Gaussian kernels (1.3)

71 = (2a 2)-1[2.•ol/(a2 + a02)JN/2[(0 .2 _ 0,.2)/(a.2 + o,)]. (5.14)

The right hand side of (5.11) can be maximized as above, and the resulting quadratic form

is a multiple of a X2 random variable with N degrees of freedom. This can be substituted

into (5.4) and integrated approximately as above to yield as an approximation to the power

in case (ii)

1 -0(b - Ao) + (Ao - b)- 1 O(b- Io){1 - [(b+ 0.2fj77/A)/(iAo + a2f7/A)]N/2 }. (5.15)

For the special case of Gaussian kernels, -q is given by (5.14), A = 1/2, and

yo0= f [2aa0o/(a 2 + 0 2)]]N/2. (5.16)

Note that (5.10) and (5.15) are the same if a = ao and N = n.

We have investigated the numerical accuracy of the approximation (5.15) for the special

case N = 1, a = O'o. In one dimension it is possible to use the expected number of upcross-

ings of the process X to give a tight upper bound on the conditional probability in (5.4),

which can then be integrated numerically to give a tight upper bound on (5.4) (cf. Davies

(1977), Knowles, Siegmund, and Zhang (1991)). From such a comparison, it appears that

the X2 approximation for the conditional probability is very good for small y, although it de-

teriorates for larger values. Over a wide range of values for b and f the upper bound and the
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approximation (5.15) are in quite good agreement- usually to the first two significant figures.

We also tried substituting the X2 approximation for the conditional probability directly into

(5.4) and integrating numerically with essentially the same results.

An interesting application of the preceding calculations is to compare the efficiency of

adaptive choice of the scale parameter a, as suggested above, with an arbitrary fixed (but

frequently incorrect) value. For an example we suppose that N = 2. WVe also assume that

both f and k are Gaussian and that C is a T x T square with T = 100. (This is roughly the

size of the region corresponding to the astronomical example mentioned in the introduction,

although in that case the shape and hence the boundary of the region C are different.) Under

these assumptions, when • = 0, an approximation to the probability that maxtX(t, a) > b

is

[ICIb/(47ra 2) + I9CI/(4ir 12 o)]O(b). (5.17)

Assume that c0 is thought to equal 1. but this value may be in error to the extent that the

true value may be as small as 0.5 or as large as 2.0. For the test based on a fixed choice of

a. it is easy to see from (5.15) that one makes a slightly more serious error by choosing a

larger than ao than by choosing it smaller. For significance level 0.05 and power 0.9 some

experimentation shows that the choice a =z 0.9 minimizes the maximum value of C necessary

to obtain the desired power at both ao = 0.5 and 2.0. In particular b = 4.58 and ( = 6.8

satisfy these requirements.

Suppose, on the other hand we search adaptively for 00 over the range (0.33, 3.0). By

(3.5) the value of b yielding a significance level of 0.05 is b t 5.1. Assuming that the value

of ý is proportional to the square root of the sample size, we might reasonably measure

the relative efficiency of these two procedures by the square of the ratio of the values of

f necessary to obtain a given power. For a power of 0.9, at ao = 1.0, the non-adaptive

procedure is about 16% more efficient, while at ao = 0.5 or 2.0 the adaptive procedure is

about 22% more efficient. The range of values of ao over which the non-adaptive procedure

is more efficient is from about .63 to about 1.5. Similar results hold at power of 0.80 and

0.95.

As one might expect from the form of (5.16), these relative efficiencies are larger in higher

dimensions. For a similar scenario with N = 3, the adaptive procedure is about 33% more

efficient when ao is misspecified by a factor of 2, whereas the nonadaptive procedure is about

25% more efficient when ao = 1.
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6 Example and Application

6.1 Example

We illustrate the methods in this paper on some simulated data for N = 1. Gaussian white

noise was simulated on the interval [-40.40] and smoothed for t E C = [-10. 10] using the

Gaussian kernel (1.3) for ar E I = [0.2.5.0]. This was repeated for the same Gaussian white

noise plus a Gaussian signal located at to = 0 with scale a0o 1 and height • = 6. The

results are shown in Figure 1 for the lower limit a, = 0.2, the upper limit a2 = 5, and the

true scale ao = 1. Figure 2 shows the same data for all a plotted on the log scale for a, so

that the field is stationary in separate horizontal and vertical directions (but not jointly).

The test statistic is X.. = 2.24 for noise only, and X.=. 6.92 for signal plus noise; in the

latter case the maximum is located at t = -0.16 and a = 1.18, close to the location and

scale of the signal. Adler (1981. p. 117 ff.) gives a simple and fast way of approximating

the Hadwiger characteristic from equally spaced sample data, and we plot this against the

threshold b in Figure 3. It is in reasonable agreement with the expected value (3.2) for the

noise only data. The approximate level 0.05 critical value for X.. is 3.40, found by equating

(3.2) to 0.05 and solving for b. No signal is detected in the noise only data, but the signal is

detected in the signal plus noise data. The contributions of the individual terms in (3.2) at

b = 3.40 are 0.032 for the first "interior" term, 0.018 for the second 'location' term, 0.001 for

the third "scale" term, and P{X > 3.40} = 0.0003 for the last term. Thus in this example

the "scale" corrections to the first term are an important part (38%) of the approximate

probability. However the contribution from the sides is relatively unimportant, despite the

25-fold range of kernel scale; this can be seen from Figure 2, where the image appears a lot

smoother in the vertical direction than along the base, so that the excursion set touches the

sides a lot less than the base. If we use the data along the base only, that is we restrict a,

to ,1 = 0.2, then the maximum X(t, a,) is unchanged for noise only and still high (5.07)

for signal plus noise; the approximate 0.05 critical value is slightly lower at 3.30 and we

reach the same conclusion as before. Thus in this case searching over kernel scales does not

appreciably alter the analysis.

6.2 Application

We apply our results to N = 3 dimensional medical images. Talbot et al. (1991) carried out

an experiment in which PET cerebral blood flow images were obtained for 9 subjects while a

thermistor was applied to the forearm at both warm (37 0C) and hot (48°C) temperaratures,

each condition being studied twice on each subject. The purpose of the experiment was to

find regions of the brain that were activated by the hot stimulus, compared to the warm
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stimulus. Individual images were aligned and sampled on a 128 x 128 x 80 lattice of voxels,

separated at approximately 1.4mm. 1.7mm and 1.5mm on the front-back, left-right and

vertical axes, respectively. For the present work. we analysed the difference images of the

two warm conditions as a dataset which should have an expectation of zero throughout. We

also analysed the difference between the average of the two hot conditions and the average

of the two warm conditions to search for activation due to the painful heat stimulus. These

difference images were averaged over subjects to increase the signal to noise ratio. Worsley et

al. (1992) estimated the voxel standard deviation by pooling the voxel sample variance (with

8 degrees of freedom) over all voxels. A normalized image was produced by dividing each

voxel by the pooled standard deviation and multiplying by the square root of the number of

subjects.

In PET imaging the resolution of the image is determined by the "point response func-

tion." which is measured by placing a point source of isotope in the PET camera and

measuring the response. It can be reasonably approximated by a Gaussian kernel with

a = 2.87mm. Worsley et al. (1992) found that the distribution of the noise component

of the normalized image is well approximated by that of a stationary white noise Gaussian

random field smoothed with the point response function. We are thus able to observe the

smoothed process X for a = 2.87mm but not the unsmoothed process Z. If the value

ao in the unobserved model (1.1) exceeds o'l = "2.87 (and the signal shape is Gaussian),

it would be appropriate to introduce additional smoothing by a Gaussian kernel with scale

S= (a - y)1 I. Since ao is unknown, the normalized image was smoothed with seven Gaus-

sian kernels ranging in scale from zero to 14.0mm so that the scale ranged from al = 2.87mm

to a2 = (a 2 + 14.02)1/2 - 14.3mm. The Gaussian kernels were chosen so that the the resulting

log(a) values were uniformly spaced on [log(ai), log(a,)]. The choice of seven kernels gave

a sampling interval to resolution ratio on the log(a) scale that approximated the sampling

interval to resolution ratio of locations in the highest resolution (a = al) image.

The region of the brain C of interest was chosen to be a hemisphere with radius r=7cm

covering the top part of the brain. The test statistic was Xm., = 4.05 for noise only,

and X,,, = 7.47 for signal plus noise; in the latter case the maximum was located at

a = a2 = 14.3mm in the anterior cingulate/supplementary motor area, plus three other local

maxima all with X(t, a) > 5. The volume of C was ICI = (2/3)7rr 3 = 718cm 3 , its area was

IOCI - 2,rr2 +irr 2 = 462cm2 , and its mean caliper diameter was A(0C) = r+7rr/4 = 12.5cm

giving H(OC) = 79cm. The observed Hadwiger characteristic is plotted against the threshold

b in Figure 4, together with the expected value (3.7). There is reasonable agreement for the

noise only data, but when the signal is present there are some discrepancies in the upper

tail. The approximate level 0.05 critical value for X,,,. is 4.92, found by equating (3.7) to

0.05 and solving for b, so that no signal is detected in the noise only data, but the signal
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is detected in the signal plus noise data. The contributions of the individual terms in (3.2)

at b = 4.92 are 0.028 for the first "interior" term. 0.018 for the second -location* term, and

0.0028 and 0.0013 for the third and fourth 'scale' terms; the rest are below 0.0001. As in

the N = 1 example the "edge- corrections to the first term are an important part (43%) of

the approximate probability, but the contribution from the scale is relatively unimportant.

If we use the data along the base only, that is we restrict o to a, = 2.87mm, then the

maximum X(t, a,) is unchanged for noise only but much lower (4.89) for signal plus noise;

the approximate 0.05 critical value is slightly lower at 4.86 and so we fail to detect a signal

in the noise only data set and we just detect a signal in the signal plus noise data set. This

nicely illustrates the advantages of our approach of searching over kernel scales as well as

locations.

7 Discussion and Open Problems

There remain a number of related problems, which we discuss briefly below.

7.1 Confidence Regions

When a signal 's present, i.e., ý > 0, we may want to estimate its location and size, say by

a confidence region. This problem is related to finding confidence sets for a change-point,

and we can make use of ideas appearing in that literature. For a review of a number of

possibilities see Siegmund (1988a) and references cited there. For example, suppose that we

know the signal shape f. Then from the form (1.6) for the likelihood function, it follows

that a 1 - a conditional likelihood ratio confidence region for to, o0 is given by

{(to, ao) : X(to, ao) >_ X. - c},

where c = c[X(to, 0o)] is such that

P{Xf X. _ X(to, ao) + clX(to,ao0)} =.

Since X(to, ao) is sufficient for (, the conditional probability does not depend on the unknown

nuisance parameter.

The same conditional probability appears in (5.4), so the method suggested in Section

5 for evaluating this probability is applicable. The only difference is that when we come to

assess the accuracy of the approximation given in (5.9), we are now interested in the con-

ditional probability itself, and particularly in values of b and y which make the conditional

probability small. Since the power calculations in Section 5 and hence the argument given

there involve values of b and y for which the conditional probability is large, and since the
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approximation (5.9) is not even monotonic in y when y is a substantial fraction of b, it is

not clear whether the same approximation will work here. We have performed numerical

calculations assuming that N = 1 and a0o is known to compare conditional likelihood ra-

tio confidence regions based on the approximation (5.9) with the presumed gold standard:

numerical calculation of the expected number of upcrossings (cf. Knowles, Siegmund, and

Zhang (1991)). For Xm,, = 5.0, 4.0, and 3.5. we find that the two approximations give

essentially the same 0.95 confidence regions. At 5.0 they also give essentially the same 0.99

regions, but at 4.5 the regions differ somewhat and at 3.5 the use of the approximation (5.9)

breaks down.

It would be interesting to study this issue in more detail and give an approximation to

the conditional probability in (5.4) that is more generally accurate when that probability is

small.

7.2 Box Shaped Kernels and Signals

In some cases it might be thought appropriate to use a discontinuous kernel, either because it

appears that the signal itself is discontinuous or as a convenient approximation. An example

would be the box shaped kernel k(x) = 1 if maxlxi _< 1/2 and 0 otherwise. A systematic

study of this case is beyond the scope of the present paper. To illustrate briefly some of the

essential features, we suppose that ao is known and for definiteness that N = 2. Then if C

is large relative to a, so edge effects can be neglected, we find by the methods of Siegmund

(1988b) or Loader (1991) that when ý = 0,

efmaxtX(t,a) > b} ;t (lCl/Or2)b3o(b). (7.1)

Because of the extra roughness in the sample paths of X(t, a) in this case. the tail probability

involves two extra powers of b in comparison with (5.17) and even one power more than (3.5),

where we also search for the correct ao. (Another consequence of this sample path roughness

is that in most cases one will also want to make a correction for the inevitable discrete grid

of observations, for which the model of continuously observed white noise usually does not

provide an adequate approximation. We omit discussion of this aspect of the problem. See,

for example, Siegmund (1988b).)

A substantial elaboration of the argument of James, James, and Siegmund (1987) shows

that if in this case f = k and a = Oro, the power of the likelihood ratio test is given

approximately by

1 -t(b- .) +- ±(b- ý){[4b2 (b + .) + ý2 (3b+ ý)1/(b+ )121. (7.2)

It is interesting to consider the possibility that we use a box shaped kernel when the

signal is smooth or conversely a smooth kernel when the signal is box shaped. Suppose,
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for example, that f is Gaussian but one uses a box shaped kernel. It is easy to see that

the expectation of X(to, a) is maximized by taking o, about equal to 2.8ao and that the

maximum value is about Mo = 0 .94 3 5 5N x - 0.89ý. Solely on the basis of this effect on the

non-centrality parameter, one would expect the relative efficiency of the box shaped kernel

to the Gaussian kernel to be about 80%. However, this analysis neglects the effect of the

different kernels on the threshold b and the contribution of the second term in (5.4) to the

power of the test. For a 0.05 test for the same 100 x 100 square in the example at the end

of Section 5, the threshold with a box shaped kernel and a = 2.8, aro = 1 is about b = 5.34

compared to b = 4.53 when using a Gaussian kernel with a = ao = 1 (cf. (5.17)). This

difference suggests the relative efficiency of the box shaped kernel is even less. Although

greater fluctuations in the sample paths of the observed process when a box shaped kernel

is used lead one to expect the contributions of the second term in (5.17) to be larger, even

without evaluating this term it seems reasonable to conclude that use of the box shaped

kernel when the signal is Gaussian leads to a substantial loss of efficiency.

There seems to be a smaller loss of efficiency if the signal is actually box shaped but

one uses a Gaussian kernel. For a numerical example, suppose that C is again a 100 x 100

square and that f is box shaped with aio = 1. From (7.1) and (7.2) it follows that for b

= 5.75 we have an approximately 0.05 level test with power 0.9 at ý = 6.49. If we use a

Gaussian kernel, the signal to noise ratio at to is maximized at approximately ai = a0/2.8.

An approximately 0.05 level test is obtained by taking b = 4.99. It may be shown that (5.15)

with 77 = 0 provides an approximation for the po.-,er of the test, so power of about 0.9 is

attained at ý = 6.84. This corresponds to a relative efficiency of about 90%.

7.3 Adaptation on Additional Parameters

The principal points of this paper are that in using a spherical Gaussian kernel, one can

determine appropriate rejection thresholds when the scale parameter o" is chosen adaptively;

and if the signal is itself spherical Gaussian, adaptive choice of a seems a reasonable strategy

with regard to power. It seems relatively straightforward to generalize most of our results to

allow for different values of a in different coordinate directions, i.e., to allow for an elliptical

Gaussian kernel oriented in an arbitrary but data independent direction. However, we do

not know how much power is gained or lost by this extra degree of freedom.

A more challenging problem is to allow the Gaussian kernel also to have arbitrary covari-

ances, so the data determine the spatial orientation of the elliptically contoured Gaussian

hill.
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7.4 Numerical Considerations and Unsolved Mathematical Prob-

lems

As suggested in (4.4), we conjecture that there exists a precise mathematical theorem, which

says that the quantitities we have calculated in Sections 3 and 4 give the correct tail behavior

of the maxima of these Gaussian fields as b -- oo to the number of terms given. Previous

attempts in this direction seem either to deal with very general processes, but only first

order asymptotic behavior (e.g., Adler, 1981, section 6.9. pp. 159-167), or as in Sun (1993) a

special Gaussian field and second order asymptotic behavior. An interesting point of Sun's

research was the numerical observation that much better agreement between theory and

simulations was obtained when the second order terms are included, but in her work the

formulas were too complicated to comprehend the size of these second order effects except

through the numerical values they produced. In equations (3.6) and (3.7) it is clear that one

often must include the top three orders of magnitude before the remaining terms become

insignificant numerically.

Giving a precise mathematical relation between the quantities calculated in Section 3

and the tail probability of the maximum of the Gaussian field seems an interesting and

challenging mathematical problem.

It would be interesting to derive a general lower bound on the constant 1, so that one

could see generally whether the terms involving 1/# in (3.6) and (3.7) might dominate the

higher order terms in these expressions, but we have been unable to do so.
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SUMMARY

We suppose that our observations can be decomposed into a fixed signal plus random

noise, where the noise is modelled as a particular stationary Gaussian random field in N-

dimensional Euclidean space. The signal has the form of a known function centered at an

unknown location and multiplied by an unknown amplitude, and we are primarily interested

in a test to detect such a signal. There are many examples where the signal scale or width

is assumed known, and the test is based on maximising a Gaussian random field over all

locations in a subset of N-dimensional Euclidean space. The novel feature of this work is

that the width of the signal is also unknown and the test is based on maximising a Gaussian

random field in N + 1-dimensions. N dimensions for the location plus one dimension for the

width. Two convergent approaches are used to approximate the null distribution: one based

on the method of Knowles and Siegmund (1989), which uses a version of Weyl's (1939) tube

formula for manifolds with boundaries, and the other based on some recent work by Worsley

(1993b). which uses the Hadwiger characteristic of excursion sets as introduced by Adler

(1981). Finally we compare the power of our method with one based on a fixed but perhaps

incorrect signal width.


