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SUMMARY

This paper proposes new tests for detecting the presence of a unit root in quite general
time series models. Our approach is nonparametric with respect to nuisance parameters
and thereby allows for a very wide class of weakly dependent and possibly heterogeneously
distributed data. The tests accommodate models with a fitted drift and a time trend so
that they may be used to discriminate between unit root nonstationarity and stationarity
about a deterministic trend. The limiting distributions of the statistics are obtained under
both the unit root null and a sequence of local alternatives. The latter noncentral
distribution theory yields local asymptotic power functions for the tests and facilitates
comparisons with alternative procedures due to Dickey & Fuller. Simulations are reported
on the performance of the new tests in finite samples.
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1. INTRODUCTION

Methods for detecting the presence of a unit root in parametric time series models
have lately attracted a good deal of interest in both statistical theory and application.
Fuller (1984) and Dickey, Bell & Miller (1986) review much of the literature. The latter
article provides a helpful practical guide to the use of some of the formal tests.

One major field of application where the hypothesis of a unit root has important
implications is economics. This is because a unit root is often a theoretical implication
of models which postulate the rational use of information that is available to economic
agents. Examples include various financial market variables such as futures contracts
(Samuelson, 1965), stock prices (Samuelson, 1973), dividends (Kleidon, 1986), spot and
forward exchange rates (Meese & Singleton, 1983), and even aggregate variables like
real consumption (Hall, 1978). Formal statistical tests of the unit root hypothesis are of
additional interest to economists because' they can help to evaluate the nature of the
nonstationarity that most macroeconomic data exhibit. In particular, they help in deter-
mining whether the trend is stochastic, through the presence of a unit root, or deterministic,
through the presence of a polynomial time trend. A recent examination of historical
economic time series by Nelson & Plosser (1982), for example, found strong evidence
in favour of unit root nonstationarity using the testing procedure of Dickey & Fuller (1979).
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Recently, Said & Dickey (1984) have shown that the Dickey-Fuller procedure, which
was originally developed for autoregressive representations of known order, remains
valid asymptotically for a general ARI M A (p, \,q) process in which p and q are of unknown
orders, that is for an autoregressive integrated moving average process of the indicated
order. More specifically, Said & Dickey (1984) show that the Dickey-Fuller regression
/ test for a unit root may still be used in an ARIMA (p, 1, q) model provided the lag length
in the autoregression increases with the sample size, T, at a controlled rate less than 71/3.

An alternative procedure for testing the presence of a unit root in a general time series
setting has recently been proposed by Phillips (1987a). This approach is nonparametric
with respect to nuisance parameters and thereby allows for a very wide class of time
series models in which there is a unit root. This includes ARIMA models with
heterogeneously as well as identically distributed innovations. The method seems to have
significant advantages when there are moving average components in the time series and,
at least in this respect, offers a promising alternative to the Dickey-Fuller and Said-Dickey
procedures.

The present paper extends the study of Phillips (1987a) to the cases where (a) a drift,
and (b) a drift and a linear trend are included in the specification. These extensions are
important for practical applications, where the presence of a nonzero drift is very common.
Moreover, in many cases and, particularly, with economic time series, the main competing
alternative to the presence of a unit root is a deterministic linear time trend. It is therefore
important that regression tests for unit roots allow for this possibility.

The methods of the paper are asymptotic and rely on the theory of functional weak
convergence. The limit distributions of the new test statistics developed here are expressed
as functional of standard Brownian motion and are the same as those tabulated by
Fuller (1976). This means that our tests may be used with existing tabulations even though
they allow for much more general time series specifications. The asymptotic local power
properties of our tests are studied using the theory of near-integrated processes (Phillips,
1987b). Some simulation evidence on the finite sample performance of the new tests is
also provided.

2. PRELIMINARIES

The models we consider are driven by a sequence of innovations denoted by {«,}.
Throughout we assume that {u,} satisfies the following general conditions:

(i) £(u,) = 0forall t;
(ii) sup, E\u,f+' < oo for some /3 > 2 and e > 0;
(iii) as T->oo, <j2 = lim E^T^S^) exists and <T2>0, where 5, = u, + .. . + u,;
(iv) {u,} is strong mixing with mixing coefficients am that satisfy 1 ax~vp <oo, where

the sum is over m = 1 , . . . , oo.
The conditions allow many weakly dependent and heterogeneously distributed time

series. They include a wide variety of possible data generating mechanisms such as finite
order ARMA models under very general conditions on the underlying errors (Withers,
1981). Condition (ii) controls the allowable heterogeneity of the process, whereas (iv)
controls the extent of permissable temporal dependence in relation to the probability of
outlier occurrences; see Phillips (1987a) for more discussion of these conditions, and
Hall & Heyde (1980, p. 132) for the definition of strong mixing and the mixing coefficients.
If {u,} is weakly stationary with spectral density/U(A) then condition (iii) is a consequence



Testing for unit root in time series regression 337

of (ii) and (iv). In this case we have

k-2

From the sequence of partial sums {S,} we construct the random element

for (j - 1 ) / 7=£ r <j/ T (j = l,...,T), where [ Tr] denotes the integral part of Tr. Then
XT(r) lies in D = D[0,1], the space of real valued functions on the interval [0,1] that
are right continuous and have finite left limits. Under very general conditions the random
element XT(r) obeys a central limit theory on the function space D. In particular, under
(i)-(iv) above we have (Herrndorf, 1984) that, as T-*oo,

XT(r)=>W(r). (1)

The symbol '=£' signifies weak convergence of the associated probability measures. In
this case, the probability measure of XT(r) converges weakly to the probability measure
of the standard Brownian motion W(r); see Billingsley (1968, § 16) and Pollard (1984,
Ch. 5) for further discussion.

Using (1) it is simple to deduce the asymptotic behaviour of the sample moments of
the process {5,} and the innovations {u,}. For a full development, see Phillips (1987a).
We state below those results which are most useful subsequently. Unless otherwise
indicated sums are over t = 1 , . . . , T. The limit distributions are expressed as functions
of standard Brownian motion W(r). To simplify formulae all integrals are understood
to be taken over the interval [0,1], integrals such as \ W, J W2, J rW are understood to
be taken with respect to Lebesgue measure and we write Wx = W(l). Then, as T-*oo,

rW, Tx X u^.-j =» o-2 I WdW + A=±(<T2W2-<r2
u),

where

J

Joint weak convergence for the sample moments given above to their respective limits
is also easily established and will be used below.

3. THE MODELS AND ESTIMATORS

Let {y,} be a time series generated by

yt = ay,-x + u, (f = 1,2,...), (2)

a = h (3)

Initial conditions for (2) are set at t = 0 and y0 may be any random variable, including
a constant, whose distribution is fixed and independent of the sample size T. The
innovation sequence {u,} satisfies conditions (i)-(iv).
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We consider the two least-squares regression equations

y, = /l + ayl_l + ul, • (4)

j \ _ , + u,, (5)

where (/2, a) and (/I, /3, a) are the conventional least-squares regression coefficients. We
use X to denote the T x 3 matrix of explanatory variables in (5). We define also the
following regression t statistics:

where s and s are the standard errors of regressions (4) and (5), c, is the ith diagonal
element of the matrix {X'X)~\ and >>_, = T~x 1 >>,_,.

Following Dickey & Fuller (1979), we shall be concerned with the limiting distributions
of the regression coefficients in (4) and (5) and their t statistics under the hypothesis
that the data are generated by (2) and (3). Thus the null values of the coefficients in the
above tests become a = 1, /x =/3 =0. However, the coefficient a and its t statistic in (5)
are invariant with respect to the introduction of a nonzero drift /A =|= 0 in the generating
process. Thus we may replace (2) with the generating mechanism

y, = H +ay,.^ u, (f = l ,2 , . . . ) , (2')

and the distributions and asymptotic distributions of the above-mentioned statistics are
unchanged. Thus there is no loss in generality by assuming /u, = 0.

Under (2) and (3), y, = S, + y0 and the asymptotic behaviour of sample moments of y,
and u, follows directly from that of 5, and u, given earlier. Thus, as 7*-»oo,

J W, T-2Zy2=>a2 J W

[ rW, r-'XK-iU, ̂ *2[ WdW+k.

Again joint weak convergence to the stated limits applies.

4. LIMITING DISTRIBUTIONS OF THE STATISTICS

In this section we characterize the limiting distributions of the standardized coefficient
estimators T(a-l), T(a-l) and the t statistics ts and ts (a = 1), tfi and fA (fi=0)
and tp (/3 = 0) under the maintained hypothesis that the time series {y,} is generated by
(2) and (3).

THEOREM 1. For the regression model (4), as T-^oo,
(a) na-l)^>(lWl)-l(IW,dW + \'),
(b) ts=*{<r/<ru)(l W

2)"i(J W* dW+V),
(c) tfi=*(<r/*u)d WJI W\)~\{WX J W2-{\ WdW+\')jW}.

For the regression model (5), as T-»oo,
(d) T ( o - l ) J
(e) td=^{a/u){\ {)/K
(0 ti=*(*f<ru){A2-{\ WdW+X') J W0/DU3,
( g ) ' 4 = > W < J \ \ ]
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where

D=\ W2-n(\ r\v\ +12 j W I rW-Ji w\ ,

=wM W2-\2\\rw\ + 18 J W \rW-(>i\ w\ J

A 4= J
' = A/<r2.

Note that W+(r) in the above formulae can be called a Brownian motion. The stated
results follow in a direct way from the asymptotic behaviour of the sample moments
given earlier. In some cases the calculations are lengthy and full details will be supplied
on request.

When the innovation sequence {u,} is independent and identically distributed, we have
cr2 = a2 and A = A' = 0. In this case, the limiting distributions of the statistics given in
Theorem 1 are independent of nuisance parameters, as is readily seen by inspection; and
percentage points of the asymptotic distributions have been calculated by Monte Carlo
methods by Dickey & Fuller. Specifically, critical values of T(a -1), T(a -1), t& and ta

are tabulated by Fuller (1976, Tables 8.5.1, 8.5.2); and tabulated critical values of fA, fA
and tp are also given by Dickey & Fuller (1981, Tables I-III).

Theorem 1 extends the results of Dickey & Fuller to the general case of weakly
dependent and heterogeneously distributed data. Interestingly, our result shows that the
limiting distributions of these statistics have the same general form for a very wide class
of innovation processes {u,}. This feature enables us to derive transformations of the
statistics that opens the way to hypothesis testing in the general case. This is the approach
that we pursue in § 5.

We remark that independent and identically distributed innovations {u,} are not
necessary for the equivalence o-2 = cr2

u. The equivalence also holds for innovations that
are martingale differences under mild additional moment conditions. Thus, unmodified
versions of the Dickey-Fuller tests are valid asymptotically in the presence of some
heterogeneity in the innovation sequence provided the innovations are martingale differen-
ces and (1) holds. However, when the innovations are nonorthogonal and o^ + cr2,, the
Dickey-Fuller tests do not have the correct asymptotic size.

5. STATISTICAL INFERENCE IN THE PRESENCE OF A UNIT ROOT

The limiting distributions of the regression coefficients and associated f statistics given
in § 4 all depend upon the nuisance parameters cr2 and o-2. This presents an obstacle to
conventional procedures of inference in the general case where a2 # cr2. However, since
a2 and cr2 may be consistently estimated there exist simple transformations of the test
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statistics which eliminate the nuisance parameters asymptotically. This idea was first
developed by Phillips (1987a) in the context of tests for a unit root. Here we show how
the procedure may be extended to apply quite generally to statistical tests in regressions
with a fitted drift and time trend.

Consistent estimates of cr2 are provided by s2, s2 and s2= T~l1(y, -y,-i)2 for data
generated by (2) and (3). When there is a nonzero drift in the model, as in (2'), both s2

and s2 are consistent. Since we often wish to allow for a nonzero drift in regressions
such as (5) we use s2 as our preferred estimator of cr2 in this regression.

Consistent estimation of cr2 is discussed by Phillips (1987a). When {u,} is weakly
stationary with spectral density/U(A) we have cr2 = 27r/u(0). In this case, estimation of
cr2 is equivalent to estimating the spectral density of {u,} at the origin. Many consistent
estimates are available. Consider, for example, the simple estimate based on truncated
sample autocovariances, namely

*77=r"1 £ u2 + 2T'1 £ £ utut-,, (6)
»-l 5-1 r- i+l

where u, = y,-y,_l. Conditions for the consistency of s2-n are explored by Phillips (1987a).
It is shown there that s^-xr2 in probability as T^oo provided the moment condition

(ii') sup,£|u,|2"<oo for some p>2
holds in place of (ii) of § 2, and provided

(v) /->oo as 7->oo and 14/T-+O.
According to this, if we allow the number of estimated autocovariances in (6) to increase
as 7-»oo but control the rate of increase so that 14/T-*O, then S2T, yields a consistent
estimator of a2. Of course, faster rates of increase in / are allowable if we make stronger
assumptions on {u,} as, for example, in the case of spectral estimation for weakly stationary
processes. In what follows we shall assume that conditions (ii') and (v) hold, in addition
to (i), (iii) and (iv) given earlier.

Rather than using first differences u, = y, -y,-x in the construction of s2^ we could use
the residuals from the regression equations (4) and (5). Since the coefficients in these
regressions are consistent, it is easy to show that these modifications to s2-n, which we
denote by s2n and sPp respectively, are also consistent estimates of a2 under the same
conditions. Once again s2^ will be the preferred estimator when we wish to allow for a
nonzero drift as in (2').

Note that (6) is not constrained to be nonnegative as it is presently defined; it can be
negative when there are large negative sample serial covariances. Simple modifications
to (6) overcome this difficulty. For example, the weighted variance estimators

r i T

( - 1 I - l l-S+l

I H-5, I ",«,-„ (8)
r=l J - 1 f-5+1

where

(9)
are nonnegative and, for stationary {u,}, are simply 2TT times the corresponding Bartlett
estimates of /u(0). Other choices of lag window besides the triangular window (9) are
possible. We use the Parzen window in the simulations reported in § 7. The estimator
(7) was recently suggested in the context of variance estimates by Newey & West (1987).
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We now define some simple transformations of conventional test statistics from the
regressions (4) and (5) which eliminate the nuisance parameter dependencies asymptoti-
cally. Specifically, we define

Z(a) = T(a - D-k/fhyy, Z(fe) = (s/a-n^-k'a-n/m^,

ZOfi) = (s/&-n)til + k'*11my/mlym\y, Z(a) = T(a - 1) -1/M,

Z(ta) = (*/«?„)/« -X'dV M*. Z(tfi) = (s/Z^ti-

where

s2), ~k'=~k/t2-n.

These Z statistics extend those of Phillips (1987a) for the case of an autoregression
with no fitted constant or time trend. The idea behind their construction is to correct the
conventional regression statistics so that they allow for the effects of serially correlated
and heterogeneously distributed innovations. Thus, the standard errors of regression s
and 5 which measure scale effects in the conventional t ratios are now replaced by the
general standard error estimates &n and a-n which allow for serial convariation as well
as variance. Each Z statistic also involves an additive correction term whose magnitude
depends on the difference between the corresponding variance estimates a\,-s2 or
a^-n - s2. Once again these differences capture the effects of serial correlation and the
transformations are designed to remove these effects asymptotically. The limiting distribu-
tions of the Z statistics are given in our next main result, which follows simply from
Theorem 1.

THEOREM 2. (a) For the regression model (4) the statistics Z(a), Z(ts) and Z{tp) have
limit distributions given by those of T ( a - l ) , ta and fe, respectively in Theorem 1 with
a-2 = a2

u.
(b) For the regression model (5) the statistics Z(a), Z(ta), Z{tp) and Z(tp) have limit

distributions given by those of T(d-l), ta, tp. and tp, respectively, in Theorem 1 with
o2 = o~2

u. The stated results for Z(a) and Z(ta) remain valid if the generating mechanism
of {yt} is (2') rather than (2).

Theorem 2 shows that the limiting distributions of the Z statistics are invariant within
a wide class of weakly dependent and possibly heterogeneously distributed innovations
{u,}. Furthermore, the limiting distributions of the Z statistics are identical to the limiting
distributions of the original untransformed statistics considered in § 4, when ai = a2.
Thus, the critical values derived in the studies of Dickey & Fuller under the assumption
of independent and identically distributed errors {u,} may be used with the new tests
proposed here, which are valid under much more general conditions.

6. POWER FUNCTIONS FOR UNIT ROOT TESTS

We may develop asymptotic power functions for unit root tests by considering the
sequence of local alternatives to (3) given by

a = ec/T~l + c/T. (10)
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When c = 0, (10) reduces to the null hypothesis (3); c>0 gives local explosive alternatives
to (3); and c<0 corresponds to local stationary alternatives. The idea of developing a
noncentral asymptotic distribution theory using the specification (10) was explored by
Phillips (1987b). Time series generated by models such as (2) or (2') with a coefficient
a of the form (10) were called near-integrated in that paper. The asymptotic theory
developed there showed that the sample moments of a near-integrated time series converge
weakly to corresponding functionals of a diffusion process rather than standard Brownian
motion. Specifically, we have, as r->oo,

T~V11 ty, =» a J rJc, T"1 £ y,_xu, =$cr2^Jc dW+\,

where

Jc(r)
Jo

is the Ornstein-Uhlenbeck process generated in continuous time by the stochastic differen-
tial equation dJc(r) = cJc(r) dr + dW(r), with initial condition /c(0) = 0. As before, joint
weak convergence of these sample moments to their respective limits also applies. Note
that $JcdW is interpreted as a stochastic integral in the above formulae.

Using these results for sample moments we may now develop an asymptotic theory
for the regression coefficients and t statistics in (4) and (5). Moreover, it is a simple
matter to find the noncentral asymptotic distributions of the new unit root test statistics
developed in § 6. The main results of interest are contained in the following theorem
which concentrates on estimates of the autoregressive coefficient a and its associated
t-ratio. The derivations follow those of Phillips (1987b) and will be supplied on request.

THEOREM 3. If {y,} is a near-integrated time series generated by (2) and (10), then as
T->oo:

(a)
(b)
(c)
(d)

where

Dc = j / c - 1 2 ( | r/c) + 12 J rJc J / c -

c-4Wl J / c -12 jrrfW jr/ c + 6 ^rdW^ Jc, /*(r) = 7c(r)- J Jc.rJ

Results (c) and (d) remain valid if the generating mechanism of {y,} is (2') rather than (2).

Theorem 3 gives the noncentral limiting distributions of the Z statistics for testing
a = 1 under the sequence of local alternatives (10) to the unit root hypothesis (3). It
therefore delivers asymptotic local power functions for the new unit root tests.

It is interesting to compare these asymptotic local power functions with those of the
conventional Dickey-Fuller tests. The latter are based on the statistics T.(a-l) and ts

for regression (4) and T(a -1) and r5 for regression (5). When the innovation sequence
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{u,} is independent and identically distributed these statistics have identical limiting
distributions under the local alternative hypothesis (10) as the Z statistics given above.
We deduce that the new tests based on Z(a), Z(ta), Z(a) and Z(ta) have the same
asymptotic local power properties for a wide class of possible time series innovations
{u,} as the regression-based tests (T(a-l), ts) and ( T ( d - l ) , ta) do in the case of
independent and identically distributed errors. Thus, there is no loss in asymptotic power
in the use of the new tests over the Dickey-Fuller procedure in spite of the fact that they
allow for a more general class of error processes.

7. EXPERIMENTAL EVIDENCE

Simulations were run to assess the adequacy of the new tests and to evaluate their
performance in comparison with the procedure suggested by Said & Dickey (1984). As
explained earlier, Said & Dickey recommend the use of the Dickey-Fuller regression t
test for a unit root in the autoregression

Ay, = fl + aty^1+jd$Ay,-i + vl. (11)

We denote this test statistic *(<**)• Said & Dickey show that when the lag length l-*oo
in (11) as T->oo then t(at) has the same limit distribution as the conventional Dickey-
Fuller t test. This corresponds with our statistic Z(ts) given above. Note that Said &
Dickey do not suggest a statistic based on the coefficient a* in (11), since the limit
distribution of Tat depends on nuisance parameters. Thus, there is no analogue of our
Z(a) test in the paper by Said & Dickey (1984).

Data were generated by the model (2) with moving average errors

u, = e, + 0e,_, (12)

and the e, independent and identically distributed N(0,1). We set y0 = 0, and used various
lag lengths / in (11) and lag truncations / in (7) to evaluate the effects of these choices
on test performance. A Parzen window and fitted residuals u, from (4) were used in the
construction of the variance estimate a2^. The simulations reported in Table 1 are based
on 2000 replications and give results for one-sided tests under the null hypothesis a = 1
and for the alternative a =0-85.

The results show size and power computations for six different values of 0 in (12).
When 0 = 0 there is no need to employ the transformations leading to Z(a) and Z(f5)
or the long autoregression (11). However, we gather from Table 1 that there is little loss
in accuracy with respect to the size of the Z{a) and Z(ta) tests. In fact, the Z(a) test
is conservative and at the same time has greater power than either Z(ta) or f(<**) for all
choices of I The Z(ts) and t(at) tests are both liberal in terms of size at T= 100 and
the size distortions of f(<**) increase appreciably with the length of the autoregression.
At the same time, the power of the f(<**) tests decreases as / increases. Thus, the cost of
using f(a#) when 0 = 0 is appreciably greater than that of using Z(r5) and Z(a) is the
preferred test.

When 0>O similar results apply. Since 7=100 moderate choices of / around / = 8
seem appropriate. We observe that the Z(a) test is again very conservative and has higher
power than the Z(f,j) and f(a#) tests for all choices of /sM. The Z(ts) test is also
conservative and has similar power to f(a*) for 1 = 4,6, 8. The t(at) test is liberal for
/ s» 4 and the size distortions increase with the length of the autoregression. These results
again suggest that Z(a) is the preferred test.



344 PETER C. B. PHILLIPS AND PIERRE PERRON

Table 1. Simulations based on 2000 replications; T= 100, nominal size 5%

(a) Said-Dickey f(a+) test

e
0 0
0-5
0-8
0-2
0-5
0-8

e
0 0
0-5
0-8
0-2
0-5
0-8

e
0 0
0-5
0-8
0-2
0-5
0-8

1 = 2

0068
0052
0037
0063
0116
0-677

/ = 2

0044
0010
0003
0134
0-537
0-997

1 = 2

0063
0028
0026
0135
0-534
0-995

/ = 4

0-064
0064
0051
0065
0-076
0-343

1 = 4

0049
0021
0-020
0105
0-417
0-988

1 = 4

0-062
0036
0034
0115
0-438
0-988

Size
/ = 6

0078
0071
0072
0084
0073
0-201

Size
/ = 6

0-049
0022
0024
0110
0-428
0-988

Size
1 = 6

0066
0038
0035
0119
0-445
0-990

/ = 8

0086
0-085
0-082
0-092
0086
0142

(b)

/ = 8

0049
0021
0-022
0115
0-451
0-991

(c)

/ = 8

0-069
0-035
0031
0127
0-460
0-993

/ = 12

0106
0102
0109
0-111
0105
0-120

Z(a) test

1 = 12

0055
0014
0015
0133
0-516
0-995

Z{t&) test

1 = 12

0-069
0030
0026
0140
0-518
0-995

1 = 2

0-557
0-378
0-267
0-591
0-868
1-00

1 = 2

0-772
0-301
0-247
0-960
100
100

1 = 2

0-669
0191
0144
0-933
1-00
100

Power
1 = 4

0-472
0-411
0-302
0-490
0-626
0-988

Power
1 = 4

0-776
0-524
0-513
0-940
100
1-00

Power
1 = 4

0-688
0-367
0-353
0-910
1-00
100

(a =0-85)
/ = 6

0-406
0-377
0-313
0-421
0-512
0-900

(a =0-85)
1 = 6

0-784
0-534
0-526
0-946
100
100

(a =0-85)
1 = 6

0-696
0-371
0-357
0-918
1-00
1-00

/ = 8

0-354
0-348
0-308
0-358
0-434
0-772

/ = 8

0-794
0-500
0-474
0-952
100
1-00

/ = 8

0-705
0-333
0-305
0-930
1-00
1-00

/=12

0-303
0-308
0-273
0-304
0-350
0-523

/ = 12

0-805
0-378
0-330
0-967
100
100

/=12

0-705
0-214
0167
0-945
1-00
100

When 0<O the results are very different. Both Z(a) and Z(ts) have significant size
distortions and are too liberal to be useful for 0 = -0-5, -0-8. The t(a^) test also suffers
size distortions but these are attenuated as the lag length in the autoregression (11)
increases. However, as / increases the t(at) test also suffers appreciable loss in power.
None of the tests therefore has accurate size and good power properties when 6 < 0. But,
of the three tests, f (<**) seems preferable in this case.

Asymptotic expansions recently obtained by Phillips (1987c) may be used to shed light
on this simulation evidence. In particular, formula (34) of that paper may be extended
to apply to the regression (4) with fitted intercept giving

where = signifies equivalence in distribution,

and 17 is standard N(0,1) and independent of W(r). The correction term on the asymptotic
depends on fc,. For 0 s= 0, we have 0 < fc, =s 1. When 0 < 0, fci is unbounded and rapidly
becomes large as 8-*—\. These results show clearly how the quality of the asymptotic
approximation given in Theorem 1 (a) depends on the size and the magnitude of 8. When
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8 > 0 we have fc, < 1 and the asymptotic distribution may be expected to deliver at least
as good an approximation to the finite sample distribution of T(a -1) as it does for the
case where 0 = 0 and fc, = 1. When 6 < 0 this is not the case and the asymptotic distribution
may be expected to be poor, particularly as 0-> - 1 . Similar behaviour may be inferred
for the test statistics Z(a) and Z(t^), which are both based on r(5_,,. This helps to
explain the size distortions in these tests that were evident in the simulations when 6 < 0.

8. CONCLUDING COMMENTS

The present approach gives a simple test for a unit root in univariate time series against
stationary and trend alternatives. One needs only to estimate a first-order autoregression
with a constant and possibly a time trend and to calculate the appropriate transformed
Z statistic. The distribution theory underlying this procedure is asymptotic and critical
values already provided by Fuller (1976) may be used.

As we have seen in § 6, there is no loss in asymptotic local power in the use of the
Z(a) tests for a unit root. But the simulations reported in § 7 indicate that test performance
can differ substantially in finite samples among asymptotically equivalent tests. For models
with positive moving average errors the Z(a) test is conservative and has better power
properties than the other tests. For models with independent and identically distributed
errors where the transformations that lead to the Z tests are not strictly needed, Z(a)
again seems to be the preferred test. For models with moving average errors and negative
serial correlation the Z tests suffer appreciable size distortions and are not recommended.
In such cases the Said-Dickey procedure of using a long autoregression seems preferable.
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