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Additive models are one means of assuaging the curse of dimensional-
ity when nonparametric smoothing methods are used to estimate multi-
variable regression functions. It is important to have methods for testing
the fit of such models, especially in high dimensions where visual assess-
ment of fit becomes difficult. New tests of additivity are proposed in this
paper that derive from Fourier series estimators with data-driven smooth-
ing parameters. Other tests related to the classical Tukey test for additiv-
ity are also considered. While the new tests are consistent against essen-
tially any ‘‘smooth’’ alternative to additivity, the Tukey-type tests are
found to be inconsistent in certain situations. Asymptotic power of both
varieties of tests is studied under local alternatives that tend toward
additivity at a parametric rate, and small-sample power comparisons are
carried out by means of a simulation study.

1. Introduction. Nonparametric smoothers have become an increas-
ingly popular means of estimating regression functions, especially in prob-
lems where the predictor is one-dimensional. In settings with higher-
dimensional predictors, smoothing methods that impose no structure on the
regression function become less attractive, owing to the sparseness of data in
the predictor space. This is the so-called curse of dimensionality. In recent
years a number of methods have been proposed that seek to circumvent this
problem while retaining a nonparametric flavor. These methods include those
based on additive models of the form

k

1.1 Y s f t q « ,Ž . Ž .Ý i i
is1

where Y is the response variable, t , . . . , t are the predictor variables and «1 k
is an unobserved error term. The functions f , . . . , f are unknown and1 k
assumed merely to be ‘‘smooth.’’
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Ž .When model 1.1 holds, much can be gained in terms of estimation
efficiency over the structureless model

1.2 Y s f t , . . . , t q « .Ž . Ž .1 k

Ž .It is well known that the efficiency of linear smoothers under model 1.2
tends to deteriorate rapidly with increasing dimension k. By contrast, under

Ž .appropriate conditions, the regression function in 1.1 can be estimated so
that the estimation error tends to 0 at the same rate as in the case of a single

w Ž .xpredictor, that is, k s 1 Stone 1985 . Hence, nonparametric methods can
Ž .effectively defeat the curse of dimensionality when the structure in 1.1 is

justified.
The problem of testing for additivity has been addressed by Hastie and

Ž . Ž . Ž .Tibshirani 1990 , Barry 1993 and Spiegelman and Wang 1994 . Since one
will often use an additive model only as an approximation, diagnostic tests
give the data analyst information concerning the extent of departures from
additivity. The utility of formal tests increases with higher dimensions since
departures from additivity become more difficult to assess by graphical
means when the number of independent variables is large.

The purpose of this paper is to analyze a Tukey-type test of additivity
Ž .proposed by Hastie and Tibshirani 1990 and to introduce new tests of a

more omnibus nature. The basic ideas behind our testing methodology are
easiest to demonstrate for models with two predictors. Thus, we will focus on
k s 2 in the sequel and then sketch extensions to higher dimensions.

With two predictors a Tukey-type test for additivity arises from consider-
Ž .ing an alternative to 1.1 in which the departure from additivity has the form

g f f for some unknown constant g . Since additivity in this case is equiva-1 2
Ž .lent to g s 0, the Tukey 1949 testing paradigm proceeds by estimating g

and then using the estimate to test if g differs from 0.
In the next section we investigate the large-sample power properties of two

tests of Tukey type. One of the two is exactly the test proposed by Tukey
Ž .1949 for the classical analysis of variance setting, while the other uses
nonparametric smoothers to estimate f and f . The former test differs from1 2
the latter in that it neglects to take advantage of smoothness of f and f . We1 2
show that both of these tests can detect certain alternatives that approach
additivity at parametric rates. However, Tukey tests are inconsistent against
some reasonable departures from additivity. In fact, they cannot detect any
alternative that is orthogonal to the product f f . We thus propose a second1 2
set of tests that are consistent against essentially any departure from additiv-
ity. These tests utilize Fourier series ideas and are analogous to the ‘‘order

Ž .selection’’ test proposed by Eubank and Hart 1992 . Besides being consistent,
they can also detect alternatives converging to additivity at parametric rates.

The rest of the paper proceeds as follows. Distribution theory for the
Tukey-type and order-selection tests is considered in Sections 2 and 3,
respectively. A simulation study addressing power of the tests is summarized
in Section 4, and proofs of theoretical results are given in Section 5.
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2. Tukey-type tests. Consider the case where a response variable Y is
observed over a grid of design points corresponding to two independent

Ž .variables t and t . We assume that n s n n data vectors t , t , y ,1 2 1 2 1r 2 k rk
r s 1, . . . , n , k s 1, . . . , n , are observed with1 2

y s m q f t q f t q f t , t q « ,Ž . Ž . Ž .rk 1 1r 2 2 k 12 1r 2 k rk

r s 1, . . . , n , k s 1, . . . , n ,1 2

2.1Ž .

where m is an unknown constant, t , r s 1, . . . , n , and t , k s 1, . . . , n ,1r 1 2 k 2
are design points and the « ’s are iid random variables with E« s 0 andrk 11

Ž . 2Var « s s - `. The functions f , f and f are unknown but satisfy11 1 2 12
some identifiability and smoothness conditions to be discussed subsequently.
Borrowing terminology from analysis of variance, f and f will be referred1 2
to as main effect functions and f will be called the interaction function.12

Ž .The goal here is to test the hypothesis that f is identical to 0 in 2.1 .12
wŽ . xHastie and Tibshirani 1990 , page 264 have suggested adapting the Tukey

Ž .1949 paradigm from classical analysis of variance for this purpose. The
basic idea is to fit the following regression function to the data:

2.2 m q f t q f t q g f t f t .Ž . Ž . Ž . Ž . Ž .1 1 2 2 1 1 2 2

In this context, testing additivity is tantamount to testing g s 0. Thus, the
Ž .problem becomes one of estimating the parameter g in 2.2 and then using

the estimator to construct a test statistic.
ˆ ˆGiven estimators f and f of the main effect functions that satisfy1 2

n i ˆŽ .Ý f t s 0, i s 1, 2, a least squares estimator of g isjs1 i i j

n1 n2 ˆ ˆ ˆ ˆÝ Ý f t f t y y f t y f tŽ . Ž . Ž . Ž .Ž .rs1 ks1 1 1r 2 2 k rk 1 1r 2 2 k
2.3 g s .Ž . ˆ n 2 n 21 2ˆ ˆÝ f t Ý f tŽ . Ž .rs1 1 1r ks1 2 2 k

In particular, if we set

n21
y s y , r s 1, . . . , n ,Ýr ? r j 1n2 js1

n11
y s y , k s 1, . . . , n ,Ý? k jk 2n1 js1

n n1 21
y s yÝ Ý?? rkn rs1 ks1

and take

ˆ2.4a f t s y y y , r s 1, . . . , n ,Ž . Ž .1 1r r ? ?? 1

ˆ2.4b f t s y y y , k s 1, . . . , n ,Ž . Ž .2 2 k ? k ?? 2
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Ž .then 2.3 becomes
n n1 2Ý Ý y y y y y y y y y y y q yŽ . Ž . Ž .rs1 ks1 r ? ?? ? k ?? r k r ? ? k ??

2.5 g s .Ž . ˆT 2 2n n1 2Ý y y y Ý y y yŽ . Ž .rs1 r ? ?? ks1 ? k ??

Ž . Ž .This is exactly the Tukey 1949 estimator of g in 2.2 . Its use can be
Ž .justified in this setting by viewing model 2.1 as a two-way layout with

possible interaction and one observation per cell.
Ž .The Tukey choice 2.4 for main effect estimators is inefficient in model

Ž .2.1 since it does not exploit the smoothness of the main effect functions.
Ž .Thus, we shall also consider how g in 2.3 behaves when nonparametricˆ

smoothers are used to estimate f and f .1 2

2.1. Large-sample properties. To assess asymptotic power properties of
Ž .tests deriving from 2.3 , we study the case where data follow the model

1
y s m q f t q f t q g t , t q « ,Ž . Ž . Ž .rk 1 1r 2 2 k 1r 2 k rk'n2.6aŽ .

r s 1, . . . , n , k s 1, . . . , n .1 2

Ž .The design points in 2.6a are generated by positive, continuous densities h1
and h via the relationships2

2 j y 1Ž .ti j2.6b h u du s , j s 1, . . . , n , i s 1, 2.Ž . Ž .H i i2n0 i

1w x 1Žw x w x. � 2 Ž .We also assume that f , f g C 0, 1 , g g C 0, 1 = 0, 1 s p:  p u, v r1 2
4 u  v is continuous in u and v ,

1
2.6c f u h u du s 1, i s 1, 2,Ž . Ž . Ž .H i i

0

and
1 1

2.6d g u , ? h u du ' g ?, u h u du ' 0.Ž . Ž . Ž . Ž . Ž .H H1 2
0 0

Ž . Ž .Conditions 2.6c ] 2.6d represent one set of identifiability restrictions which
Ž .insure that the functions in 2.6a are uniquely defined.

Ž .Model 2.6 provides an alternative to additivity in which the mean func-
tion converges to an additive model at the rate ny1r2. This formulation allows
us to obtain more precise information about our tests than would be possible
under a fixed alternative. In the latter instance one can typically establish
only consistency. In contrast, by studying the behavior of our tests under the

Ž .local alternative 2.6 , we can derive explicit, large-sample power formulae
which also imply consistency against certain fixed alternatives. The special

Ž .case of g ' 0 in 2.6 gives us the limiting null distribution for a test.
Our first result describes the large-sample behavior of the standard Tukey

Ž .statistic 2.5 . Throughout this section we use the notation
12 25 5f s f u h u du, i s 1, 2,Ž . Ž .Hi i i

0
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and
1 1² :g , f f s g u , v f u f v h u h v du dv.Ž . Ž . Ž . Ž . Ž .H H1 2 1 2 1 2

0 0

Ž . Ž . 6 jTHEOREM 2.1. In model 2.6 assume that i E« - `, E« s 0, j s11 11
Ž . 5 5 Ž . Ž .1, 3, 5, ii f ) 0, i s 1, 2, and iii n rn ª u g 0, 1 as n ª `. Theni 1 2

² : 2g , f f s1 2'2.7 n g ª N ,Ž . ˆT DD 2 2ž /5 5 5 5 5 5 5 5f f f fŽ . Ž .1 2 1 2

as n ª `.

Ž .From Theorem 2.1 and the fact that in this case see Section 5
y1 n i 2̂ 2Ž . 5 5n Ý f t ª f , i s 1, 2, we see thati js1 i i j P i

n n1 2Ý Ý y y y y y y y y y y y q yŽ . Ž . Ž .rs1 ks1 r ? ?? ? k ?? r k r ? ? k ??
T s1n 1r22 22 n n1 2s Ý y y y Ý y y yŽ . Ž .rs1 r ? ?? ks1 ? k ??

2.8Ž .
1r2n n1 2ĝT 2 2s y y y y y yŽ . Ž .Ý Ýr ? ?? ? k ??s rs1 ks1

Ž² : Ž 5 5 5 5. .has a limiting N g, f f r s f f , 1 distribution. In particular, T1 2 1 2 1n
will be asymptotically standard normal under an additive model. This means

< < Ž .we can reject additivity at level a if T ) Z , for Z the 100 1 y p th1n a r2 p
percentile of the standard normal distribution.

The asymptotic power of T is1n

² :g , f f1 2
< <lim P T ) Z s F yZ yŽ .1n a r2 a r2ž /5 5 5 5s f fnª` 1 2

2.9Ž .
² :g , f f1 2q F yZ q ,ar2ž /5 5 5 5s f f1 2

where F is the standard normal distribution function. The power is monotone
<² : < 5 5 5 5increasing in g, f f r f f and monotone decreasing in s . Thus,1 2 1 2

power is maximized for fixed s when g A f f . The worst case occurs when1 2
² :g H f f in the sense that g, f f s 0. In that event the asymptotic power1 2 1 2

of T is equal to the level a .1n
Theorem 2.1 also has the implication that a test based on T will be1n

Ž . 1Žw x w x.consistent against a fixed alternative as in 2.1 with f g C 0, 1 = 0, 112
² : ² :and f , f f / 0. If, however, f , f f s 0, then T will have a stan-12 1 2 12 1 2 1n

dard normal limiting distribution and the test is inconsistent.
It is also of interest to study what transpires when estimators other than

Ž . Ž . Ž .the treatment means 2.4 are used in 2.3 . As previously noted, 2.4 is a
Ž .poor choice for main effect estimators under model 2.6 since the convergence

rates are only of probability order ny1r2, i s 1, 2. We will give examples ofi
estimators shortly which use the smoothness of the functions being estimated
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Ž y2r5. Ž y4r5.to attain rates O n s O n , i s 1, 2. In addition, one will generallyp p i
want to construct additivity tests using the nonparametric smoothers em-
ployed in fitting the data instead of the raw treatment means. Thus, our next
result describes the properties of g for the case where f and f areˆ 1 2
estimated using a generic set of smoothers.

Ž . Ž . 2 Ž . 5 5THEOREM 2.2. Assume that i E« s 0, ii Var « s s - `, iii f )11 11 i
ˆ ˆŽ . Ž . Ž .0, i s 1, 2, and iv n rn ª u g 0, 1 as n ª `. Let f and f in 2.3 be1 2 1 2

estimators of f and f that satisfy the following:1 2

n i ˆŽ . Ž . Ž .a Ý f t s o 1 , i s 1, 2;js1 i i j p
Ž .b f , i s 1, 2, is continuously differentiable withi

Ž j. Ž j.ˆsup f u y f u s o 1 , j s 0, 1, i s 1, 2.Ž . Ž . Ž .i i p
u

Then

² : 2g , f f s1 2'2.10 n g ª N , .Ž . ˆ DD 2 2ž /5 5 5 5 5 5 5 5f f f fŽ . Ž .1 2 1 2

Theorem 2.2 implies that tests for additivity can also be based on

n1 n2 ˆ ˆ ˆ ˆÝ Ý f t f t y y f t y f tŽ . Ž . Ž . Ž .Ž .rs1 ks1 1 1r 2 2 k r k 1 1r 2 2 k
2.11 T s .Ž . 2 n 1r22 n 2 n 21 2ˆ ˆs Ý f t Ý f tŽ . Ž .Ž .rs1 1 1r ks1 2 2 k

Ž .This statistic will have the same large-sample properties as T in 2.8 .1n
< <Thus, rejection of additivity at level a will be indicated if T ) Z , and2 n a r2

Ž .the asymptotic power for this test is the same as in 2.9 .
To explore some of the practical implications of Theorem 2.2, assume now

that the estimators of f and f are linear smoothers. It suffices to deal with1 2
estimation of either one of the main effects since the other can be analyzed
similarly. Thus, consider estimation of f using1

n1

ˆ2.12 f ? s w ? y y y ,Ž . Ž . Ž . Ž .Ý1 i i ? ??
is1

� Ž .4n1where w ? is a set of weights that depend on the design and satisfy thei is1
following:

Ž .w u is a continuously differentiable function of u for eachi2.13aŽ . i and each n ;1

n1 122.13b sup w u s O ;Ž . Ž .Ý i ž /n bu 1is1

n1 12X2.13c sup w u s O ;Ž . Ž .Ý i 3ž /n bu 1is1
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n1

w x2.13d w u s 1 for all u g 0, 1 ;Ž . Ž .Ý i
is1

n1
X2.13e sup w u s o 1 ,Ž . Ž . Ž .Ý i

u is1

n1

sup w u f t y f uŽ . Ž . Ž .Ý i 1 1 i 1
u is1

2.13fŽ . n1
X Xs o 1 s sup w u f t y f u ,Ž . Ž . Ž . Ž .Ý i 1 1 i 1

u is1
n1 C1

< < < <2.13g w u y w u F u y u for all u , uŽ . Ž . Ž .Ý i 1 i 2 1 2 1 2bis1

and
n1 C2 dX X< < < <2.13h w u y w u F u y u for all u , u .Ž . Ž . Ž .Ý i 1 i 2 1 2 1 21qdbis1

Ž .In relations 2.13 , b represents a nonnegative bandwidth-type parameter
with b ª 0 as n s n n ª `, C and C are finite, nonnegative constants1 2 1 2

Ž xand d g 0, 1 is a Lipschitz constant.
It is possible to establish the following proposition.

Ž .PROPOSITION 2.1. Assume that the « in 2.6 are iid with zero mean andi j
Ž . Ž .finite fourth moment, and let conditions 2.13a ] 2.13h hold. Then, for any

u ) 0,

1 1ˆ< <2.14a sup f u y f u s O q q o 1Ž . Ž . Ž . Ž .1 1 p pu 1yu r2ž /n b n bu

and

1 1
X Xˆ< <2.14b sup f u y f u s O q q o 1 .Ž . Ž . Ž . Ž .1 1 p pdu 1qd 1yu r2 3ž /n b n bu

Ž . Ž .The proof of this result follows from conditions 2.13a ] 2.13h and a
w x 2upartitioning argument where the interval 0, 1 is divided into n subinter-1

Ž .vals, as in the proof of Theorem 11.2 in Muller 1988 . Instead of Muller’s¨ ¨
Ž .exponential inequality we have used Theorem 2 of Whittle 1960 with

fourth-order moments.
Ž .Proposition 2.1 allows us to verify condition b of Theorem 2.2 by checking

conditions on the weight function used for the smoother. For a second-order
smoother with smoothing parameterrbandwidth b, a global optimal level of
smoothing is obtained when b is of order ny1r5. In that case we can take u to

Ž . Ž .be any value in 1r5, 4r5 and therefore need d ) 1r3 in 2.14 for global
ˆ X̂consistency of both f and f . This restriction on d can be weakened by1 1

requiring further moments for the random errors.
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Ž .A specific case where 2.14 can be verified is provided by local linear
w Ž .xsmoothers see, e.g., Fan 1992 . One may check that Proposition 2.1 holds

for such estimators when they are defined in terms of a kernel that has finite
support and two continuous derivatives.

Another apparent implication of Theorem 2.2 is that there is little to be
gained in large samples from using smoothers over the raw treatment means
when constructing Tukey-type tests. However, our simulation results in
Section 4 show that smoothing can be beneficial and that test statistics like
Ž . Ž .2.11 can perform significantly better than 2.8 in finite samples.

To use T or T in practice, one will require a consistent estimator of s1n 2 n
Ž .under model 2.6 . There are a variety of estimators from which to choose.

These include parallels of mean squared error estimators from analysis of
variance and nonparametric difference estimators such as those in Hall, Kay

Ž .and Titterington 1990 . Most of these estimators are consistent under mild
conditions. However, their finite-sample properties are frequently unsatisfac-
tory. We will discuss two consistent estimators we have found to be effective
in Section 4.

The fundamental conclusions about Tukey-type tests that follow from
Theorems 2.1 and 2.2 are quite intuitive given the form of the test statistics.

Ž . Ž .We would expect tests based on either 2.8 or 2.11 to do the following:
Ž .i perform well if the interaction function is well approximated by a constant

Ž .multiple of f f ; ii perform poorly when the interaction is not aligned with a1 2
Ž .product of the main effects; and iii perform worse with noisy data.

To extend the Tukey-type tests to k ) 2 dimensions, one proceeds along
Ž .the lines of the discussion surrounding 2.2 and models the interaction part

kof the mean function as a linear combination of pairwise main effectž /2
kproducts, three-way main effect products and so on. For example, withž /3

k s 3 predictors t , t and t , the interaction is treated as having the form1 2 3

g f t f t q g f t f t f t ,Ž . Ž . Ž . Ž .Ž .Ý i j i i j j 123 1 1 2 2 3 3
1Fi-jF3

Ž .for f , f and f the main effect functions. Assuming a model like 2.3 with1 2 3
responses y on an n = n = n design grid, the g can be estimatedrk l 1 2 3 i j

Ž .analogously to 2.3 and g can be estimated by123

n1 n2 n3 ˆ ˆ ˆ ˆ ˆ ˆÝ Ý Ý f t f t f t y yf t yf t yf tŽ . Ž . Ž . Ž . Ž . Ž .Ž .rs1 ks1 ls1 1 1r 2 2 k 3 3 l rk l 1 1r 2 2 k 3 3 l
g s .ˆ123 n 2 n 2 n 21 2 1ˆ ˆ ˆÝ f t Ý f t Ý f tŽ . Ž . Ž .rs1 1 1r k s1 2 2 k l s1 3 3 l

Theorem 2.2 extends in a straightforward fashion to this case and one finds,
for example, that

² : 2g , f f f s1 2 3
n n n g ª N ,' ˆ1 2 3 123 DD 2 2ž /5 5 5 5 5 5 5 5 5 5 5 5f f f f f fŽ . Ž .1 2 3 1 2 3

Ž . Ž .if conditions i and ii of Theorem 2.2 hold for all three main effect estima-
tors. One can then combine the tests obtained from the four coefficient
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estimators to obtain an overall test using some type of level protection
methodology.

3. Order-selection tests of additivity. In the previous section we saw
that Tukey-type tests had the disadvantage of being inconsistent against
departures from additivity that are orthogonal to the product of the main
effect functions. We shall therefore derive new tests that do not have this
problem and can detect essentially any type of nonadditivity.

Ž .Again consider model 2.1 and suppose that we use Fourier series methods
Ž .to estimate interaction. To this end, define x s i y 0.5 rn , i s 1, . . . , n ,1 i 1 1

Ž .x s j y 0.5 rn , j s 1, . . . , n , and sample Fourier coefficients by2 j 2 2
n n1 22

a s y y y cos p jx cos p kx ,Ž . Ž .Ž .ˆ Ý Ýjk r s ?? 1r 2 sn rs1 ss1

j s 1, . . . , n y 1, k s 1, . . . , n y 1.1 2

The goal here is to develop tests using methods for selecting the order of a
Fourier series estimator constructed from the a .ˆjk

To motivate the form of the tests, first note that the a are defined inˆjk
terms of evenly spaced points regardless of whether or not the t form ar s

Žuniform grid. This is done to take advantage of the orthogonality properties
ni p j r y 0.5 p k r y 0.5Ž . Ž .

cos cos s 0, j / k ,Ý ž / ž /n ni irs1

.for j, k s 0, 1, . . . , n y 1 and i s 1, 2. We can nonetheless use the a forˆi jk
detecting interaction; specifically, define the orthogonal series estimator

Ûf x , x s 2 a cos p jx cos p kx ,Ž . Ž . Ž .ˆÝÝ12 1 2 jk 1 2
Ž .j , k gL3.1Ž .

w x w xx , x g 0, 1 = 0, 1 ,Ž .1 2

Ž . �Ž . 4for L some subset of L n , n s j, k : 1 F j F n y 1, 1 F k F n y 1 . It is1 2 1 2
Ûnot difficult to argue that, by appropriate choice of L, f consistently12

estimates the function
U y1 y1 w x w xf x , x s f H x , H x , x , x g 0, 1 = 0, 1 ,Ž . Ž . Ž . Ž .Ž .12 1 2 12 1 1 2 2 1 2

where H and H are the cumulative distribution functions corresponding to1 2
Ž . Uthe densities h and h in 2.6b . Since h and h are positive, f ' 0 if and1 2 1 2 12

only if f ' 0. Hence, there is evidence of an interaction between t and t12 1 2
Ûwhen f differs significantly from 0.12

We propose that tests of additivity be based upon a data-driven choice for
Û Ûthe set L to be used with f . Since changing L in f amounts to the usual12 12

Ž .practice of varying the smoothing parameter s of a function estimator, one
means of choosing L is to optimize an estimated risk criterion. One such
criterion is

3.2 R L ; C s n a 2 y Cs 2N L , L ; L n , n ,Ž . Ž . Ž . Ž .ˆ ˆÝÝ jk 1 2
Ž .j , k gL
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Ž .where C is a prespecified positive constant, N A denotes the number of
elements in the set A and s 2 is a consistent estimator of s 2. Since L s Bˆ
corresponds to the null model of additivity, a test can be obtained by rejecting

ˆŽ . Ž .additivity whenever the maximizer L C of R L; C over an appropriate
ˆŽ . Ž .collection of subsets of L n , n is such that L C is nonempty. These tests1 2

are referred to as order-selection tests, since L determines the order of the
Û Ž .series estimator f . Maximizing the criterion R L; 2 is equivalent to mini-12

Û U 2Ž .mizing a nearly unbiased estimator of EH f y f ; see Eubank and Hart12 12
Ž .1992 for more details.

ˆŽ .We will focus attention on two special cases of the test derived from L C .
Ž .Specifically, we wish to consider maximizing R L; C over a collection of sets

� 4 Ž .of the form B, L , . . . , L with m s min n y 1, n y 1 . For the L we will1 m 1 2 j
use either

3.3 L s r , s : 1 F r F j, 1 F s F j , j s 1, 2, . . . ,� 4Ž . Ž .j

or

3.4 L s r , s : r G 1, s G 1, r q s F j , j s 1, 2, . . . .� 4Ž . Ž .j

These two schemes correspond to risk criteria for series estimators with only
Ž .one smoothing parameter. Choosing the L as in 3.3 produces a seriesj

estimator of f U of the form12

l l
Ûf x , x s 2 a cos p jx cos p kx ,Ž . Ž . Ž .ˆÝ Ý12 1 2 jk 1 2

js1 ks1

Ž .while the choice 3.4 gives
Ûf x , x s 2 a cos p jx cos p kx ,Ž . Ž . Ž .ˆÝÝ12 1 2 jk 1 2

jqkFl

for l some integer between 0 and m.
We shall also consider another statistic that makes use of a data-driven

smoothing parameter. This statistic may be regarded as an F-type ratio with
Ž . Ž . Ž .random degrees of freedom. Define R 0 s 0 and R l s R L ; 2 , l sl

ˆŽ . Ž .1, . . . , min n , n y 2, where L is defined as in 3.3 . Let l be the maximizer1 2 l

Ž . Ž . Ž . m1 m2 2of R l over l s 0, 1, . . . , min n , n y 2, and let S m , m s Ý Ý â1 2 1 2 js1 ks1 jk
for each m , m G 1. The proposed test statistic is FF, where FF s 0 when1 2
l̂ s 0 and

ˆ ˆ ˆ2S l, l rlŽ .
3.5 FF sŽ .

2ˆ ˆ ˆS n y 1, n y 1 y S l, l r n y 1 n y 1 y lŽ . Ž . Ž .Ž . Ž .½ 51 2 1 2

otherwise. Note that FF has the form of a classic F-ratio in which the degrees
of freedom are not fixed a priori.

3.1. Distributional properties under additivity. We first consider the
ˆŽ .order-selection tests based on L C . For the purpose of large-sample develop-

ments it will be easier to study an equivalent form of the test. Let LL be a
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Ž .collection of subsets of L n , n , and note that the test which rejects additiv-1 2
ity if and only if

arg max R L ; C / BŽ .
� 4LgLL j B

is equivalent to the test that rejects additivity if and only if V G C, wheren

1 na 2ˆjk
V s max .ÝÝn 2ž /N L sŽ .LgLL ˆŽ .j , k gL

This form shows more explicitly how the test is sensitive to nonzero Fourier
coefficients and also makes computation of P-values relatively straight-
forward.

For our purposes the role of the constant C is to control the level of the
test. Under our moment assumptions, for any fixed, positive integers m and1

� 2 2 4m , the collection of random variables na rs : 1 F j F m , 1 F k F mˆ ˆ2 jk 1 2

� 2 4converges in distribution to the collection Z : 1 F j F m , 1 F k F m asjk 1 2
n ª `, where the Z ’s are iid standard normal random variables. Since eachjk
na 2 rs 2 is asymptotically distributed as a chi-squared random variable withˆ ˆjk
one degree of freedom, the only reasonable choices for C are those greater

Ž 2 .than 1 s E Z .jk
We now state a theorem that indicates the large-sample distribution of Vn

and hence the limiting level of the order-selection test.

Ž .THEOREM 3.1. Let model 2.1 hold with f ' 0, and assume that the « ’s12 i j
are iid with mean 0 and finite fourth moment. Define

1 na 2ˆjk
V s max ,ÝÝn 2ž /N L s1FiFm Ž . ˆn i Ž .j , k gL i

� 4where m ª ` as n ª ` and L , L , . . . is an increasing sequence of subsetsn 1 2
�Ž . 4of i, j : i G 1, j G 1 such that the following holds:

a
N L G Bi log i q 1Ž . Ž .Ž .i3.6Ž .

for all i G 1 and some constants B ) 0 and a ) 1.

Then the statistic V converges in distribution to the random variable V asn
n , n ª `, where1 2

1
2V s max ZÝÝ jkN LiG1 Ž .i Ž .j , k gL i

and the Z ’s are iid standard normal random variables.jk

2 Ž .Under the conditions of Theorem 3.1, ÝÝ Z rN L tends to 1Ž j, k .g L jk ii
Ž .almost surely as i ª `, implying that V has support 1, ` and thus further

confirming that reasonable choices of C are larger than 1.
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� 4 Ž . Ž .In the special cases where the L are defined as in 3.3 and 3.4 ,i
respectively, we obtain test statistics

l l 21 nâ jk
V s max Ý Ý1n 2 2ž /l s1FlFm ˆis1 js1

and
lyj 2ly1 nâ jky1y1V s max 2l l y 1 ,Ž . Ý Ý2 n 2ž /s2FlFm ˆjs1 ks1

Ž . Ž . Ž . Ž .for m s min n y 1, n y 1 . Each of 3.3 and 3.4 satisfies 3.6 , and hence,1 2
under the other conditions of Theorem 3.1, V and V converge in distribu-1n 2 n
tion to

l l
y2 2V s max l ZÝ Ý1 jk

lG1 js1 ks1

and
lyjly1

y1y1 2V s max 2l l y 1 Z ,Ž . Ý Ý2 jk
lG2 js1 ks1

Ž .where the Z ’s are iid N 0, 1 . We can therefore reject additivity if Vjk in
Ž .exceeds C , the 100 1 y a th percentage point of V , i s 1, 2.ia i

Ultimately we will resort to simulation to approximate the cumulative
distribution functions F and F of V and V . We are unaware of any1 2 1 2
analytic expressions for these distributions. However, there is a relationship
between them and a known distribution which gives some insight into their
properties.

Ž .Let Z , Z , . . . be a sequence of iid N 0, 1 random variables. Using results1 2
Ž .of Spitzer 1956 , one can argue that the random variable S,

r1
2S s max Z ,Ý jrrG1 js1

has the following distribution function:

0, s F 1,¡
2` P x ) js~ Ž .jF s sŽ .S exp y , s ) 1,Ý¢ ž /jjs1

where x 2 has the x 2 distribution with j degrees of freedom. The distributionj
functions F and F can be shown to satisfy1 2

3.7 F t F F t , i s 1, 2, for all t .Ž . Ž . Ž .S i

Percentiles of S are thus larger than the corresponding ones of either V or1
V . Consequently, one obtains a conservative large-sample test by comparing2
V or V with percentiles of S, a few of which are given in Eubank and1n 2 n

wŽ . xHart 1992 , Table 2.1 .
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Ž . Ž .It is also interesting to note that F C and F C are the limiting1 2
Ž .probabilities that risk criteria of the form 3.2 choose the correct model when

the null hypothesis of additivity is true. In the case C s 2, which corresponds
Û U 2Ž . Ž .to estimation of the risk EH f y f , relation 3.7 and Eubank and Hart12 12

wŽ . x Ž .1992 , Table 2.1 imply that F 2 G 0.71, i s 1, 2. Simulation studies indi-i
Ž .cate that F 2 f 0.78.1

Ž .Using arguments like those in Eubank and Hart 1992 , we can also obtain
Ž .the large-sample distribution of FF in 3.5 .

THEOREM 3.2. Let the conditions of Theorem 3.1 hold, and define Z ,jk
˜ l l 2Ž . Ž .j, k s 1, 2, . . . , as in that theorem. Set R l s Ý Ý Z y 2 for eachjs1 ks1 jk

U ˜Ž .l G 1, and define the random variable FF to be 0 if R l - 0 for each l G 1
ˆ ˆ2 l l 2ˆ ˆ ˜Ž . Ž .and to be 1rl Ý Ý Z otherwise, where l is the maximizer of R ljs1 ks1 jk

with respect to l. Then FF converges in distribution to FF U as n , n ª `.1 2

3.2. Power of order-selection tests. We consider both fixed and local alter-
Ž .natives to the additive model. For f as in 2.1 define the Fourier coefficients12

a byjk

1 1 y1 y1a s 2 f H u , H v cos p ju cos p kv du dv,Ž . Ž . Ž . Ž .Ž .H Hjk 12 1 2
0 0

j s 1, 2, . . . , k s 1, 2, . . . .
Concerning fixed alternatives, we then have the following result, whose proof

Ž .follows along the lines of that for Theorem 4.1 in Eubank and Hart 1992 .

Ž . w xTHEOREM 3.3. Suppose model 2.1 holds with f continuous over 0, 1 =12
w x y1 y1 w x0, 1 , H and H continuous on 0, 1 , and a / 0 for some j G 1 and1 2 jk

Ž .k G 1. Then the power at any positive nominal level of the test correspond-
ing to either V or V tends to 1 as n and n tend to `.1n 2 n 1 2

Now consider local alternatives to additivity and define Fourier coefficients
Ž .for g in 2.6 by

1 1 y1 y1h s 2 g H u , H v cos p ju cos p kv du dv,Ž . Ž . Ž . Ž .Ž .H Hjk 1 2
0 0

j s 1, 2, . . . , k s 1, 2, . . . .
Ž .Arguing as for Theorem 4.2 of Eubank and Hart 1992 , we can establish the

following result.

Ž .THEOREM 3.4. Suppose model 2.6 holds with g uniformly continuous
w x w x w xover 0, 1 = 0, 1 , h and h bounded on 0, 1 and the « ’s iid with finite1 2 r s

Žfourth moments. Then the statistic V converges in distribution as n , n ª1n 1 2
.` to the random variable

l l 21 hjkUV s max Z q ,Ý Ý1 jk2 ž /sllG1 js1 ks1

where the Z ’s are iid standard normal random variables.jk
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It is clear that if at least one h is nonzero, then the random variable V U
jk 1

is stochastically larger than V . This implies that V can indeed detect1 1n'alternatives converging to the null hypothesis at rate 1r n . A similar result
can also be established for V .2 n

3.3. Extension to higher dimensions. Order-selection-type tests can also
be developed for cases of more than two predictors. For example, if there are
k s 3 independent variables t , t and t , the interaction part of the mean1 2 3
function can be expressed as a sum of three bivariate Fourier series expan-
sions and a trivariate Fourier series

` ` `
3r22 a cos p jt cos p kt cos p lt .Ž . Ž . Ž .Ý Ý Ý jk l 1 2 3

js1 ks1 ls1

One can estimate each of the four terms in this expansion using Fourier
Ž .series estimators as in 3.1 with orders selected using statistics analogous to

Ž .3.3 . This will lead to parallels of the test statistic V in Theorem 3.1. Then
three bivariate cases follow as before. For the trivariate case, one uses the
test statistic

1 na 2ˆjk l
V s max ,ÝÝÝn 2ž /N L sŽ .LgLL ˆŽ .j , k , l gL

with LL a collection of subsets of

L n , n , n s j, k , l : 1 F j F n y 1, 1 F k F n y 1, l F 1 F n y 1� 4Ž . Ž .1 2 3 1 2 3

and
n n n3r2 1 2 32

a s y y y cos p jx cos p kx cos p kx .Ž . Ž . Ž .Ž .ˆ Ý Ý Ýjk l r su ??? 1r 2 s 3un rs1 ss1 us1

The same arguments used to produce Theorem 3.1 show that under the same
conditions V converges in distribution to the random variablen

1
2V s max Z ,ÝÝÝ jk lN LiG1 Ž .i Ž .j , k , l gL i

� 4where the Z ’s are iid standard normal random variables and L , L , . . . isjk l 1 2
�Ž . 4an increasing sequence of subsets of i, j, k : i G 1, j G 1, k G 1 .

4. Simulation study. In this section we present the results of a Monte
Carlo power study. The experiment was designed to be comparable to the one

Ž .in Barry 1993 . Accordingly, a uniform design grid was used with t s1r
Ž . Ž .r y 0.5 rn , r s 1, . . . , n , t s k y 0.5 rn , k s 1, . . . , n , and the errors1 1 2 k 2 2
were chosen to be Gaussian. We also used the same regression functions,
sample sizes and values of s as in Barry’s paper.

Our experience in preliminary simulations revealed that the type of vari-
ance estimator used to rescale the tests can have a nontrivial effect on the



EUBANK, HART, SIMPSON AND STEFANSKI1910

power of both Tukey and order-selection tests. Out of several estimators that
were initially considered, we found the best performances were obtained from
a bivariate difference-type estimator

n y1 n y1 1 11 21
2 2s s d r , s ,Ž .ˆ Ý Ý Ý Ýd i j16 n y 2 n y 2Ž . Ž .1 2 is2 js2 rsy1 ssy1

Ž .where d r, s s y y y , and fromi j i j iqr , jqs

ˆ ˆS n y 1, n y 1 y S l, lŽ . Ž .1 22s s ,F̂ 2ˆn y 1 n y 1 y lŽ . Ž .1 2

ˆ Ž . Ž .with l and S ?, ? defined as in 3.5 . These are the two estimators that were
used in our simulation experiment. They can both be shown to be consistent

2 Ž .for s under model 2.1 and minimal smoothness conditions on the regres-
sion function, whether it is of additive form or not.

2 2 n n 21 2w Ž .x Ž .Define R s s T see 2.8 and R s Ý Ý y y y y y q y .1n 0 rs1 ks1 rk r ? ? k ??

The following six test statistics were considered in our simulation:

Ž . Ž .1. Tukey: n y n y n Rr R y R ;1 2 0
2. Tukey : T with s 2 s s 2 and cross-validated cubic smoothing splines forˆF 2 n F

ˆ ˆf and f ;1 2
3. Tukey : T with s 2 s s 2 and cross-validated cubic smoothing splines forˆd 2 n d

ˆ ˆf and f ;1 2
4. V : V with s 2 s s 2,ˆ ˆF 1n F
5. V : V with s 2 s s 2,ˆ ˆd 1n d

w Ž .x6. FF see 3.5 .

We also included V in our study. However, its empirical power properties2 n
were essentially the same as those for V in the cases we considered. Thus,1n
we will report only on the results for V .1n

Critical values for the Tukey statistic were obtained from an F distribu-
Ž . Žtion, since with Gaussian errors and an additive model n y n y n Rr R1 2 0

.y R has the F-distribution with degrees of freedom 1 and n y n y n . The1 2
critical values used for Tukey and Tukey were those suggested by theF d
asymptotic theory in Section 2.1. This turned out to produce tests whose

Ž .empirical levels in 10,000 replications did not exceed the nominal level of
Ž0.05 by more than 0.024. For the other five tests, simulation based on 10,000

.replications was used to obtain approximate critical values for the different
sample size configurations.

Empirical power results are given in Tables 1 and 2. For each combination
of function, sample size configuration and value of s , the power results are

Ž .based on 1000 independent replications. Simulations were done for n , n s1 2
Ž . Ž . Ž . Ž .5, 5 , 5, 20 and 20, 20 , but, to save space, we only show the results for 5, 5

Ž .and 5, 20 since all three configurations followed similar patterns. All tests
were done at level of significance 0.05.

From Tables 1 and 2 we see that no one test performed uniformly better
Ž .than any other test. However, with the exception of function g the ‘‘smooth’’
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TABLE 1
Ž . Ž .Percentage of rejections in 1000, 0.05-level tests when n , n s 5, 51 2

s Tukey Tukey Tukey V V FFFFFF d F d

Ž . Ž .a f x , x s x x1 2 1 2
0.1 93.5 96.9 89.3 93.9 86.3 94.1
0.5 7.2 14.1 12.7 12.2 12.5 11.1
1.0 4.4 7.2 6.7 4.9 5.9 6.6

Ž . Ž . Ž Ž .. Ž Ž Ž ...b f x , x s exp 5 x q x r 1 q exp 5 x q x y 11 2 1 2 1 2

0.1 58.1 81.3 76.0 65.9 68.1 59.3
0.5 4.9 10.2 9.9 7.2 7.9 8.2
1.0 5.5 6.8 6.2 5.4 4.8 6.1

Ž . Ž . Ž Ž Ž ...c f x , x s 0.5 1 q sin 2p x q x1 2 1 2
0.1 5.4 46.4 35.0 99.7 96.5 99.7
0.5 5.6 20.3 15.6 14.5 9.9 19.8
1.0 6.4 10.2 9.7 4.4 3.2 9.9

3 3Ž . Ž . Ž . Ž .d f x , x s 64 x x 1 y x x1 2 1 2 1 2
0.1 79.6 99.6 82.7 99.3 26.7 100
0.5 6.9 14.4 11.3 9.1 5.8 8.9
1.0 5.5 9.3 7.3 5.4 4.8 6.0

Ž . Ž .e f x , x is the product of sawtooths1 2
0.1 12.2 12.5 3.3 4.4 1.3 4.8
0.5 5.3 7.8 7.2 4.2 4.5 4.9
1.0 5.2 7.1 6.4 3.4 4.0 4.4

Ž . Ž .f f x , x equals 1 if x ) 0.5, x ) 0.5 and 0 otherwise1 2 1 2
0.1 100 100 100 100 100 100
0.5 18.0 34.8 29.6 31.0 33.0 34.0
1.0 5.3 12.4 12.2 11.0 13.4 10.8

Ž . Ž . Ž . Ž .g f x , x s x q x r2 q 1 outlier1 2 1 2
0.1 99.5 17.5 33.8 17.4 21.7 14.4
0.5 38.8 18.6 21.4 8.0 12.7 6.1
1.0 8.8 10.0 10.3 4.8 6.8 5.5

Ž .Tukey tests Tukey and Tukey were superior to the ordinary Tukey test,F d
Ž .that is, Tukey. The case of function c is particularly noteworthy. Here

5 5 5 5f s f s 0, and we cannot appeal to Theorems 2.1 and 2.2 to obtain the1 2
large-sample distribution of the Tukey test. However, it is clear from Tables 1

Ž .and 2 that Tukey has power approximately equal to its level 0.05 , while
Ž .Tukey and Tukey have substantially larger power. As Barry 1993 notes,F d

Ž .main effects are absent from function c , and hence we expect the power of a
Tukey test to be low. This is all the more reason to be encouraged by the
performance of Tukey and Tukey .F d

Ž . Ž .With the exception of function g which includes an outlier , use of the
variance estimator s 2 tended to yield tests with at least slightly largerF̂
power than using s 2. This is consistent with the fact that s 2 has smallerˆ ˆd F
asymptotic variance than s 2.d̂
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TABLE 2
Ž . Ž .Percentage of rejections in 1000, 0.05-level tests when n , n s 5, 201 2

s Tukey Tukey Tukey V V FFFFFF d F d

Ž . Ž .a f x , x s x x1 2 1 2
0.1 100 100 100 100 100 100
0.5 11.5 30.8 30.1 35.4 34.3 35.2
1.0 4.8 8.9 8.3 11.6 11.9 12.6

Ž . Ž . Ž Ž .. Ž Ž Ž ...b f x , x s exp 5 x q x r 1 q exp 5 x q x y 11 2 1 2 1 2
0.1 99.9 100 100 100 100 99.8
0.5 6.0 15.0 14.4 21.7 20.6 21.7
1.0 5.3 9.0 7.9 8.7 8.1 8.5

Ž . Ž . Ž Ž Ž ...c f x , x s 0.5 1 q sin 2p x q x1 2 1 2
0.1 6.9 70.2 55.9 100 100 100
0.5 5.5 38.9 35.8 98.4 97.5 97.2
1.0 4.8 16.8 15.7 30.1 24.6 33.4

3 3Ž . Ž . Ž . Ž .d f x , x s 64 x x 1 y x x1 2 1 2 1 2
0.1 100 100 100 100 100 100
0.5 27.2 48.3 45.4 61.9 50.7 59.7
1.0 7.3 13.8 13.5 15.1 12.8 11.3

Ž . Ž .e f x , x is the product of sawtooths1 2
0.1 84.2 87.2 77.6 18.7 8.0 19.0
0.5 5.7 7.4 6.6 7.0 6.6 6.2
1.0 4.5 6.0 6.1 6.1 5.3 4.5

Ž . Ž .f f x , x equals 1 if x ) 0.5, x ) 0.5 and 0 otherwise1 2 1 2
0.1 100 100 100 100 100 100
0.5 80.3 94.5 92.4 96.6 94.7 93.9
1.0 13.9 34.4 32.7 46.7 45.7 44.5

Ž . Ž . Ž . Ž .g f x , x s x q x r2 q 1 outlier1 2 1 2
0.1 62.6 8.8 17.0 4.6 23.4 0.4
0.5 16.4 5.9 6.9 5.3 5.7 4.2
1.0 7.7 6.7 6.2 3.9 4.2 4.7

Among the new tests proposed in this paper, the one most analogous to
Ž .Barry’s 1993 W-test is that based on FF. Comparing the results for FF with

Ž .those for W in Barry 1993 , it can be seen that the two tests are roughly
Ž . Ž . Ž .comparable except in the case of functions d and e . For function d the

Ž .FF-test is clearly superior to the W-test, while for function e the W-test has at
least a small advantage over FF. The performance of V was very similar toF
that of FF.

In summary, we have seen evidence that the Tukey tests employing
smooth estimates of main effects are preferable to the ordinary Tukey test.
We have also seen that the order-selection tests based on V and FF areF

Ž .comparable to the W-test of Barry 1993 . We agree with Barry that the W-
and hence V - and FF-tests tend to be more reliable than Tukey tests since W,F
V and FF have reasonable power in cases where the Tukey test has ex-F
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tremely low power, that is, cases where the product of the main effect
functions is orthogonal to the interaction function. Inasmuch as V and FF areF
simpler to compute, practitioners may sometimes prefer these tests to Barry’s
W-test.

5. Proofs. In this section we present proofs for results in Sections 2 and
3. We begin by establishing two lemmas. For this purpose we initially assume
that our n s n n responses follow the model1 2

1
5.1a y s a q f q f q g q « , r s 1, . . . , n , k s 2, . . . , n .Ž . rk 1r 2 k rk rk 1 2'n

Here the « are iid random variables with E« s 0 and E« 2 s s 2 - `.rk 11 11
� 4 � 4 � 4The parameters a, f , f and g are allowed to depend on n, although1r 2 k rk

we will not explicitly indicate this in our notation. They are assumed to
satisfy

5.1b f s f s g s g s 0,Ž . Ý Ý Ý Ý1r 2 k rk rk
r rk k
ni1

2 25.1c f ª C ) 0 as n ª ` for i s 1, 2,Ž . Ý i j i ini js1

and

n n1 21
5.1d f f g ª C as n ª `,Ž . Ý Ý 1r 2 k rk 12n rs1 ks1

for some finite constants C , C and C . We also require that there exists a1 2 12
nonnegative, finite constant C such that

< <5.1e max f F C ; n , i s 1, 2,Ž . i j i
j

and

< <5.1f max g F C ; n , n .Ž . Ž .jl 1 2
j, l

We will now establish some results about Tukey-type tests under model
Ž . Ž .5.1 . Subsequent developments will then focus on showing that model 2.6
falls into this framework. Our first lemma describes the asymptotic distribu-
tion theory for the classical Tukey test.

LEMMA 5.1. Let

n n1 2Ý Ý y y y y y y y y y y y q yŽ . Ž . Ž .rs1 ks1 r ? ?? ? k ?? rk r ? ? k ??'T s n .n 2 2n n1 2Ý y y y Ý y y yŽ . Ž .rs1 r ? ?? ks1 ? k ??
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Ž . j 6Assume that model 5.1 holds, E« s 0, j s 1, 3, 5, E« - ` and that11 11
Ž .n rn ª u g 0, 1 as n ª `. Then1 2

C s 2
12

T ª N ,n DD 2 2ž /C C C CŽ . Ž .1 2 1 2

as n ª `.

PROOF. First define

1 1 1
« s « , « s « , « s « ,Ý Ý ÝÝr ? rk ? k r k ?? rkn n n2 1 r rk k

ˆ ˆf s y y y s f q « y « and f s y y y s f q « y « .Ž . Ž .1r r ? ?? 1r r ? ?? 2 k ? k ?? 2 k ? k ??

With this notation

ˆ ˆ'n Ý Ý f f yr k 1r 2 k rk
T s ,n 2 2ˆ ˆÝ f Ý fž /r 1r k 2 k

n i ˆsince Ý f s 0, i s 1, 2.js1 i j
Note, for example, that

y1 2 y1 2 y1 y1 2 2ˆn f s n f q 2n f « y « q n « y « .Ž .Ý Ý Ý Ý1 1r 1 1r 1 1r r ? ?? 1 ? r ??

y1r2 y1 2 y1Ž . Ž .Now « s O n and, from Markov’s inequality, n Ý « s O n s?? p 1 r r ? p 1
Ž y1r2 .O n . Thus, we conclude thatp

ni
y1 2 2ˆn f s C q o 1 , i s 1, 2,Ž .Ýi i j i p

js1

y1r2 ˆ ˆand it suffices to study the limiting properties of n Ý Ý f f y rr k 1r 2 k rk
Ž .2C C .1 2

Let

1 ˆ ˆE s f f y f f yÝÝ ž /n 1r 2 k 1r 2 k rk'n r k

1 1ˆ ˆ ˆ ˆs f f y f f « q f f y f f gÝÝ ÝÝž / ž /1r 2 k 1r 2 k rk 1r 2 k 1r 2 k r k' nn r rk k

s E q E .1n 2 n

Writing

1 1ˆ ˆ ˆE s f y f f g q f y f f g ,Ž . Ž .ÝÝ ÝÝ2 n 1r 1r 2 k rk 2 k 2 k 1r rkn nr rk k

we see, for example, that
1r21 1 2ˆ ˆ ˆ< <f y f f g F max g f y f C q o 1 .Ž .Ž .Ž . Ž .ÝÝ Ý1r 1r 2 k r k rk 1r 1r 2 p½ 5n nr , k 1r rk
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Since
1 12 2 y1f̂ y f s « y « s O n ,Ž . Ž .Ž .Ý Ý1r 1r r ? ?? p 1n n1 1r r

Ž y1r2 y1r2 .we then conclude that E s O n q n .2 n p 1 2
Now let us deal with

1 1ˆ ˆ ˆE s f y f f « q f y f f « .Ž . Ž .ÝÝ ÝÝ1n 1r 1r 2 k r k 2 k 2 k 1r rk' 'n nr rk k

The proof becomes quite tedious at this point, requiring computation of the
means and variances of the two terms in this sum. We therefore point out
only the essential steps for the analysis of

1 1
ˆ ˆf y f f « s « y « f «Ž .Ž .ÝÝ ÝÝ1r 1r 2 k rk r ? ?? 2 k rk' 'n nr rk k

1
q « y « « y « «Ž . Ž .ÝÝ r ? ?? ? k ?? rk'n r k

s A q A .1n 2 n

We can write
1 1

A s f « « y « f « .ÝÝ ÝÝ1n 2 k r ? rk ?? 2 k rk' 'n nr rk k

y1r2 y1r2Ž . Ž .The last term is O n since « s O n , EÝ Ý f « s 0 andp ?? p r k 2 k rk
2 2 Ž .VarÝ Ý f « s s n Ý f s O n . For the first term we find thatr k 2 k rk 1 k 2 k

E f « « s 0ÝÝ 2 k r ? r k
r k

and

4 E« 4 y s 4 q n s 2Ž .11 2
Var f « « s n C q o 1 .Ž .Ž .ÝÝ 2 k r ? r k 1 2ž / n2r k

Ž y1r2 .Therefore, A s O n .1n p 2
Finally,

1 n n2 12 2 3'A s « « « y « « y « « q n « .ÝÝ Ý Ý2 n rk r ? ? k ?? r ? ?? ? k ??' ' 'n n nr rk k

Ž y1 . Ž y1 . Ž y1 .The last three terms in this sum are O n , O n and O n , respec-p 1 p 2 p
tively. For the first term one finds that

E « « « s 0ÝÝ r ? ? k rk
r k

and, using the assumption that E« 6 - `,11

Var « « « s O 1 .Ž .ÝÝ r ? ? k rkž /
r k

Ž y1r2 .Consequently, A s O n .2 n p
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To complete the proof, we apply the Lindeberg]Feller theorem to show
y1r2 Ž 2 2 2 . y1that n Ý Ý f f « ª N 0, s C C . Since n Ý Ý f f g ªr k 1r 2 k rk DD 1 2 r k 1r 2 k rk

C , the lemma follows from an application of Slutsky’s thoerem. I12

The next lemma gives the limiting properties of a variant of the Tukey test
� 4 � 4where the estimators and main effects f and f exhibit certain smooth-1r 2 k

ness properties.

ˆ ˆŽ . � 4 � 4LEMMA 5.2. Assume that model 5.1 holds and that f and f are1r 2 k
estimators of the main effects that satisfy the following:

ˆi f s o 1 , i s 1, 2;Ž . Ž .Ý i j p
j

y1ˆ ˆii max f y f y f y f s o n , i s 1, 2;Ž . Ž .ž /iŽ jq1. iŽ jq1. i j i j p i
j

y1ˆ ˆiii max f y f s O n , i s 1, 2;Ž . Ž .iŽ jq1. i j p i
j

ˆiv max f y f s o 1 ;Ž . Ž .in in pi iis1, 2

2ˆv f y f s o n .Ž . Ž .Ž .Ý i r i r p i
r

Ž .Also assume that n rn ª u g 0, 1 ,1 2

y1max f y f s O n , i s 1, 2,Ž .iŽ jq1. i j i
j

'Ž . Ž .and that a s O n in 5.1 . Then,
n n1 2 ˆ ˆ ˆ ˆ'n Ý Ý f f y y f y fž /rs1 ks1 1r 2 k rk 1r 2 k

T sn n 2 n 21 2ˆ ˆÝ f Ý frs1 1r ks1 2 k

C s 2
12ª N , .DD 2 2ž /C C C CŽ . Ž .1 2 1 2

y1 2̂ 2Ž . Ž .PROOF. Using condition v , we can show that n Ý f s C q o 1 ,i j i j i p
i s 1, 2, and consequently we need only study

1 1ˆ ˆ ˆ ˆ ˆ ˆf f y y f y f s f f y q o 1Ž .ÝÝ ÝÝž /1r 2 k r k 1r 2 k 1r 2 k rk p' 'n nr rk k

'Ž . Ž . Ž .as a result of i , v and the fact that n s O n .i
Now
1 ˆ ˆf f yÝÝ 1r 2 k rk'n r k

1 1 1ˆ ˆ ˆ ˆ ˆ ˆs f f « q f f g q a f f q o 1 .Ž .ÝÝ ÝÝ Ý Ý1r 2 k rk 1r 2 k rk 1r 2 k p' 'nn nr r rk k k
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'Ž . Ž . Ž .The third term in this expression is o 1 from i and a s O n . For thep
second term we have

1 ˆ ˆf f y f f gÝÝ ž /1r 2 k 1r 2 k rkn r k

1r21 2 2ˆ ˆ< <F max g f y f fŽ .Ý Ýr k 1r 1r 2 kž /'n r k

1r2
2 2ˆq f y f fŽ .Ý Ý2 k 2 k 1rž /

rk

s o 1 ,Ž .p

y1 ˆ ˆand hence n Ý Ý f f g ª C .r k 1r 2 k rk P 12
y1r2 ˆ ˆŽ .Finally, we must deal with E s n Ý Ý f f y f f « s E qn r k 1r 2 k 1r 2 k rk 1n

E , where2 n

y1r2 ˆ ˆE s n f y f f «Ž .ÝÝ1n 1r 1r 2 k rk
r k

and
y1r2 ˆE s n f y f f « .Ž .ÝÝ2 n 2 k 2 k 1r rk

r k

Define
r k

5.2 S s «Ž . Ý Ýrk i j
is1 js1

with S s S s S s 0, r s 1, . . . , n , k s 1, . . . , n , and set00 r 0 0 k 1 2

ˆ ˆ ˆ ˆyu s f y f y f y f and v s f y f .Ž .r 1Žrq1. 1Žrq1. 1r 1r k 2 k 2Žkq1.

Then, using summation by parts, we obtain
n y121 ˆ ˆE s f y f f S q v SÝž /1n 1n 1n 2 n n n k n k1 1 2 1 2 1'n ks1

5.3Ž .
n y1 n y1 n y11 1 21 1ˆq f u S q u v S .Ý Ý Ý2 n r r n r k rk2 2' 'n nrs1 rs1 ks1

'< < Ž .By Donsker’s theorem, max S s O n . Using this along with condi-pr , k r k
Ž . Ž . Ž . Ž .tions ii ] iv , we see that each term in 5.3 is o 1 . The same approach canp

Ž .be used to see that E s o 1 .2 n p
The above arguments show that T has the same limiting distribution asn

Ž y1r2 . Ž .2n Ý Ý f f « q C r C C . The lemma then follows from ther k 1r 2 k rk 12 1 2
Lindeberg]Feller theorem. I

PROOF OF THEOREMS 2.1 AND 2.2. We will now use Lemmas 5.1 and 5.2 to
prove, respectively, Theorems 2.1 and 2.2. The results follow once we show

Ž . Ž .that model 2.6 can be formulated as in 5.1 .
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Define

a s m q ny3r2 g t , t ,Ž .ÝÝ 1 i 2 j
i j

f s f t y ny1 f tŽ . Ž .Ý1r 1 1r 1 1 1 j
j

q ny1r2 ny1 g t , t y ny1 g t , t ,Ž . Ž .Ý ÝÝ2 1r 2 j 1 i 2 jž /
j i j

f s f t y ny1 f tŽ . Ž .Ý2 k 2 2 k 2 2 2 j
j

q ny1r2 ny1 g t , t y ny1 g t , tŽ . Ž .Ý ÝÝ1 1 j 2 k 1 i 2 jž /
j i j

and

g s g t , t y ny1 g t , tŽ . Ž .Ýrk 1r 2 k 2 1r 2 j
j

y ny1 g t , t q ny1 g t , t .Ž . Ž .Ý ÝÝ1 1 j 2 k 1 i 2 j
j i j

Ž . Ž . 1w x 1Žw xUsing 2.6a ] 2.6d and the facts that f g C 0, 1 , i s 1, 2, and g g C 0, 1i
w x.= 0, 1 , we can show that

5.4a f s f t q O ny1 , i s 1, 2,Ž . Ž . Ž .i j i i j i

5.4b g s g t , t q O ny1 q ny1 q ny1Ž . Ž . Ž .rk 1r 2 j 1 2

and

5.4c a s m q O ny1r2 .Ž . Ž .
Ž . Ž . 2 5 5 2 ² :Thus, conditions 5.1b ] 5.1f hold with C s f and C s g, f f .i i 12 1 2

Theorem 2.1 can now be obtained directly as an application of Lemma 5.1.
ˆ ˆŽ .Upon setting f s f t in Lemma 5.2 and using arguments like those fori j i i j

Ž .5.4 along with the continuous differentiability of f , f and g , it is1 2 12
Ž . Ž .straightforward to see that conditions i and ii of Theorem 5.2 imply

Ž . Ž . < < Ž y1 .conditions i ] iv of Lemma 5.2. The condition max f y f s O n isj iŽ jq1. i j i
Ž .satisfied as a result of 5.4a and the differentiability of f , i s 1, 2. Ii

PROOF OF THEOREM 3.1. The proof of Theorem 3.1 is analogous to that of
Ž .Theorem 3.1 in Eubank and Hart 1992 for univariate regression. Ironically,

the proof in this two-dimensional setting is simpler, not requiring use of the
Hajek]Renyi]type inequality needed in the one-dimensional case. This is´ ´

Ž .consistent with the findings of Sain, Baggerly and Scott 1994 , which imply
that cross-validation algorithms for smoothing parameter selection tend to
perform better with increasing dimension.

By Slutsky’s theorem, it is enough to prove the theorem with s in Vˆ n
� 4replaced by s , which, w.l.o.g., we take to be 1. Let k be an increasing andn

unbounded sequence of positive integers such that k - m for all n, andn n
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Ž .write V s max U , U , wheren 1n 2 n

1 1
2 2U s max na and U s max na .ˆ ˆÝ Ý1n rs 2 n rsN L N L1FiFk k -iFmŽ . Ž .n n ni iŽ . Ž .r , s gL r , s gLi i

We now consider

P V F x s P U F x , U y 1 F x y 1Ž . Ž .n 1n 2 n

Ž .for x ) 1 and must show that this probability converges to P V F x for V
defined in Theorem 3.1.

Ž .We will first establish that P U y 1 F x y 1 ª 1 as n ª `. To do this,2 n
it is sufficient to establish that

mn 1
25.5 P na y 1 ) x y 1 ª 0.Ž . Ž .ˆŽ .D ÝÝ r s½ 5N LŽ .ž /i Ž .r , s gLisk q1 in

Ž .By Markov’s inequality, the probability in 5.5 is bounded by
m 2n1 1

25.6 E na y 1 .Ž . ˆŽ .Ý ÝÝ r s2 2N LŽ .x y 1Ž . iisk q1 Ž .r , s gLn i

Ž .It is straightforward to show that the expectation in 5.6 is bounded by
Ž . Ž .AN L , uniformly in i, for some positive constant A. Hence 5.6 is boundedi

by
mnA 1

,Ý2 N LŽ .x y 1Ž . iisk q1n

which tends to 0 as n ª ` because k is unbounded andn
a

N L G Bi log i q 1 for B ) 0 and a ) 1.Ž . Ž .Ž .i

To complete the proof, we need to show that U converges in distribution1n
� 4 Ž .to V. Let Z : j G 1, k G 1 be iid N 0, 1 random variables, and define Ujk n

exactly as is U but with na 2 replaced by Z 2 . We must show thatˆ1n rs r s
Ž . Ž . Ž .P U F x y P U F x ª 0. The proof will then be finished since P U F x1n n n

is monotone decreasing in n and hence has a limit, which by definition we
Ž .take to be P V F x .

Ž .Arguing as in Eubank and Hart 1992 , a Berry]Esseen]type result of
Ž .Bhattacharya and Ranga Rao 1976 implies that

E « 4Ž .112< <5.7 P U F x y P U F x F C N L N L ,Ž . Ž . Ž . Ž . Ž .Ž .1n n k kn n 'n

Ž .where C m is a constant that depends only on m. We are free to let k tendn
� 4to infinity as slowly as we want, and hence we can choose k such that then

Ž .right-hand side of 5.7 tends to 0 as n ª `. I
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