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ABSTRACT

A unifying framework to test for causal effects in non-linear models is proposed. We consider a

generalized linear-index regression model with endogenous regressors and no parametric assump-

tions on the error disturbances. To test the significance of the effect of an endogenous regressor,

we propose a statistic that is a kernel-weighted version of the rank correlation statistic (tau) of

Kendall (1938). The semiparametric model encompasses previous cases considered in the literature

(continuous endogenous regressors (Blundell and Powell (2003)) and a single binary endogenous

regressor (Vytlacil and Yildiz (2007)), but the testing approach is the first to allow for (i) multiple

discrete endogenous regressors, (ii) endogenous regressors that are neither discrete nor continuous

(e.g., a censored variable), and (iii) an arbitrary “mix” of endogenous regressors (e.g., one binary

regressor and one continuous regressor).
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1 Introduction

Endogenous regressors are frequently encountered in econometric models, and failure to correct

for endogeneity can result in incorrect inference. With the availability of appropriate instruments,

two-stage least squares (2SLS) yields consistent estimates in linear models without the need for

making parametric assumptions on the error disturbances. Unfortunately, it is not theoretically

appropriate to apply 2SLS to non-linear models, as the consistency of 2SLS depends critically upon

the orthogonality conditions that arise in the linear-regression context.

Until recently, the standard approach for handling endogeneity in non-linear models has re-

quired parametric specification of the error disturbances (see, e.g., Heckman (1978), Smith and

Blundell (1986), and Rivers and Vuong (1988)). A more recent literature in econometrics has de-

veloped methods that do not require parametric distributional assumptions, which is more in line

with the 2SLS approach in linear models. In the context of the model considered in this paper,

existing approaches depend critically upon the form of the endogenous regressor(s).1

For continuous endogenous regressors, a “control-function approach” has been proposed by

Blundell and Powell (2003, 2004) for many nonlinear models (see also Aradillas-Lopez, Honoré, and

Powell (2007) and, without linear-index and separability restrictions, Imbens and Newey (forthcom-

ing)). In Blundell and Powell (2003, 2004), a reduced-form model specifies a relationship between

the continuous endogenous regressors and the full set of exogenous covariates (including the in-

struments). The first-stage estimation yields estimates of the residuals from this model, which are

then plugged into a second-stage estimation procedure to appropriately “control” for the endoge-

nous regressors.2 The control-function approach of Blundell and Powell (2003, 2004), however,

requires the endogenous regressors to be continuously distributed. For the endogenous regressors,

this restriction is necessary to identify the average structural function and its derivatives (i.e., the

structural effects).3

For a single binary endogenous regressor, Vytlacil and Yildiz (2007) establish conditions under

which it is possible to identify the average treatment effect in non-linear models. Identification

requires variation in exogenous regressors (including the instruments for the binary endogenous

regressor) that has the same effect upon the outcome variable as a change in the binary endogenous

regressor. Yildiz (2006) implements this identification strategy in the context of a linear-index

binary-choice model, where the outcome equation is y1 = 1(z′1β0 + α0y2 + ε > 0) for exogenous

1Several papers have considered estimation in the presence of endogeneity under additional assumptions. These

include Lewbel (2000), Hong and Tamer (2003), and Kan and Kao (2005).
2See also, for example in linear models, Telser (1964) and Dhrymes (1970).
3On the other hand, following their analysis, in certain cases one could recover the sign of the structural effect(s)

without the support condition. However, there are relevant cases, such as a binary endogenous variable, for which

their method is unable to recover even the sign of the effect.
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regressors z1, a binary endogenous regressor y2, and i.i.d. error disturbance ε. The reduced-form

equation for y2 is y2 = 1(z′δ0 + η > 0) for exogenous regressors z (which now includes instruments

for y2) and i.i.d. error disturbance η. Identification requires an extra support condition,4 specifically

that for some z′δ0 values (i.e., a positive-probability region), the conditional distribution z′1β0 has

support wider than the parameter value α0.5

In this paper, we consider the problem of testing the statistical significance of causal (or treat-

ment) effects in a general non-linear setting. That is, rather than attempting to estimate the

magnitude of causal effects, we seek to estimate the direction (or sign) of these effects. The fo-

cus upon the sign(s) of causal effects rather than the magnitude(s) turns out to have important

implications for the generality of our proposed testing procedure. First, the testing procedure can

handle endogenous regressors of arbitrary form, including continuous regressors as in Blundell and

Powell (2003, 2004), a binary regressor as in Vytlacil and Yildiz (2007), or other types of regressors

(e.g., a censored variable). Second, the approach extends easily to the case of multiple endogenous

regressors; importantly, the set of endogenous regressors can include a “mix” of discrete and con-

tinuous variables. Third, the procedure can test the statistical significance of a causal effect even in

cases in which the magnitude of the causal effect is not identified. For example, the extra support

condition in Vytlacil and Yildiz (2007) and Yildiz (2006) is not required to identify the sign of the

treatment effect and, therefore, is not needed for our testing procedure.

The work proposed here is also related to a recent literature on bounding causal effects in

models with a binary endogenous variable. See, for example, Bhattacharya, Shaikh, and Vyt-

lacil (2005), Shaikh and Vytlacil (2005), and Chiburis (2008). These studies focus upon partial

identification of causal-effect parameters (such as the average treatment effect). Chesher (2005)

concludes that point identification of these parameters is generally not possible without additional

assumptions. Therefore, it is natural to focus directly upon the sign (rather than the magnitude)

of the causal effect. In addition, while the aforementioned studies imply identification of the sign

in specific settings, this paper will focus upon such identification in a more general model that

allows for additional covariates, potential non-linearities, and non-discrete endogenous regressors.

The generality of our model is also in contrast to related studies in the biostatistics literature,

where tests for the significance of a treatment effect with time-to-event data have been proposed

(e.g., Mantel (1966), Peto and Peto (1972), Prentice (1978), Yang and Zhao (2007), and Yang and

Prentice (2005)).
4This support condition pertains only to index and parameter values and not the unobserved error terms. Thus,

this result is distinct from previous “identification at infinity” results.
5Alternatively, one can view this as a parameter restriction rather than a support condition. This restriction is

substantive in the sense that identification of β0 does not require unbounded support of z′1β0. Our assumption RD

later on will impose an unbounded support condition, but this is only for convenience. See Khan (2001) on how to

relax this condition in the context of rank estimation, and note that such a condition is not required when alternative

estimators are used for binary choice models (e.g. Ahn, Ichimura and Powell (2004)).
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The outline of the paper is as follows. Section 2 introduces the generalized regression model,

a model similar to Han (1987) but with the inclusion of an endogenous regressor. To complete

the specification of the (triangular) model, a reduced-form model is utilized for the endogenous

regressor. Focusing upon the case of a binary endogenous regressor, Section 3 introduces a three-

step procedure for testing significance of the causal (or treatment) effect of the endogenous regressor.

The third stage of this procedure computes the statistic of interest, which turns out to be a kernel-

weighted version of the tau statistic of Kendall (1938). Since the (scalar) statistic is
√
n-consistent

and asymptotically normal, the proposed test for statistical significance of the causal effect is simply

a z-test. Section 4 describes the causal-effect testing approach for the general version of the model,

which allows for multiple endogenous regressors (with an arbitrary mix of discrete, continuous, and

possible censored endogenous regressors). Section 5 provides a brief empirical illustration of the

methodology, based upon Angrist and Evans (1998), in which we test for a causal effect of fertility

(specifically, having a third child) upon mothers’ labor supply. In the interest of space, Monte

Carlo simulations, additional details on the empirical application, and also some of the asymptotic

proofs have been provided as on-line “Supplements” to this note.

2 The model

Let y1 denote the dependent variable of interest, which is assumed to depend upon a vector of

covariates z1 and a single endogenous variable y2. (The general treatment of multiple endogenous

regressors with a mix of continuous/discrete covariates is considered in Section 4.) We consider the

following (latent-variable) generalized regression model for y1:

y∗1 = F (z′1β0, y2, ε), y1 = D(y∗1) (2.1)

The model for the latent dependent variable y∗1 has a general linear-index form, where ε is the error

disturbance and F is a possibly unknown function that is assumed to be strictly monotonic (without

loss of generality, strictly increasing) in its first and third arguments and weakly monotonic in its

second argument. For example, strict monotonicity for the first argument is

v′ > v′′ =⇒ F (v′, y, e) > F (v′′, y, e) for all y,e

and similarly for the third argument. The direction of the monotonicity with respect to the second

argument is assumed to be invariant to the values of the first and third arguments. That is, either

y′2 > y′′2 =⇒ F (v, y′2, e) ≥ F (v, y′′2 , e) for all v,e

or

y′2 > y′′2 =⇒ F (v, y′2, e) ≤ F (v, y′′2 , e) for all v,e.
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The observed dependent variable is y1, where the functionD is weakly increasing and non-degenerate

(i.e., strictly increasing on some region of its argument). The model in (2.1) is similar to the gener-

alized regression model of Han (1987), except for the inclusion of the endogenous variable y2.6 This

model encompasses many non-linear microeconometric models of interest, including binary-choice

models, ordered-choice models, censored-regression models, transformation (e.g., Box-Cox) models,

and proportional hazards duration models.

Note that the endogenous variable y2 enters separably in the model for y∗1. This formulation

includes the traditional additively separable case (i.e., z′1β0 + α0y2) considered in Blundell and

Powell (2004) and Yildiz (2006) but allows for other forms of separability.7 In addition to consis-

tently estimating β in the presence of y2, researchers are also interested in determining whether the

endogenous variable y2 has an effect upon y1 and, if so, the direction of this effect. More formally,

in the context of the generalized regression model, the null hypothesis of no effect of y2 upon y1 is

H0 : F (v, y′2, ε) = F (v, y′′2 , ε) for all y′2, y′′2 , v, ε. (2.2)

In contrast, a positive effect of y2 upon y1 is equivalent to

F (v, y′2, ε) ≥ F (v, y′′2 , ε) for all y′2 > y′′2 , v, ε, (2.3)

with strict inequality on some region of the support of y2. Similarly, a negative effect of y2 upon

y1 is equivalent to

F (v, y′2, ε) ≤ F (v, y′′2 , ε) for all y′2 > y′′2 , v, ε (2.4)

with strict inequality on some region of the support of y2. As is common in econometric practice,

the three alternatives (2.2)–(2.4) rule out the case that y2 may have a positive effect for some

z′1β0 values and a negative effect for other z′1β0 values.8 For instance, in the traditional linear-

index approach where z1 and y2 enter through the linear combination z′1β0 + α0y2, the value of α0

determines which of the above three cases is relevant (α0 = 0: no effect; α0 > 0: positive effect;

and, α0 < 0: negative effect). In the presence of possibly non-monotonic effects of y2 on y1, it is
6Hence, we impose the same monotonicity conditions as Han (1987), noting that strict monotonicity of the third

argument ensures that the support of y1 does not depend on β0. Under further restrictions on the support of exogenous

regressors (e.g., a component with positive density on the real line), the strict monotonicity condition on F (·, ·, ·) with

respect to its first argument may be relaxed to weak monotonicity as long as non-degeneracy of D(·) is preserved.

An alternative specification to (2.1), which explicitly separates the strictly and weakly monotonic relationships, is

y∗1 = F (z′1β0, ε), y1 = D(y∗1 , y2), where F (·, ·) is strictly monotonic in each of its arguments for all values of the other

and D(·, ·) is weakly monotonic (but non-degenerate) in each of its arguments for all values of the other.
7Vytlacil and Yildiz (2007) also consider a weakly separable model with the added generality that z1 enters

non-parametrically (rather than through a linear index).
8There is also a tradition in the biostatistics literature to focus upon testing the null of no treatment effect; see,

for example, Rosenbaum (2002) and the references cited in the Introduction.
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straightforward to apply the testing component of this paper (i.e., testing H0 above) to different

regions of the covariate space.

Turning to the model for the endogenous regressor, we first focus on the case of a single binary

endogenous regressor in order to simplify exposition. The binary endogenous variable y2 is assumed

to be determined by the following reduced-form model:

y2 = 1[z′δ0 + η > 0], (2.5)

where z ≡ (z1, z2) is the vector of “instruments” and η is an error disturbance. The z2 subcomponent

of z provides the exclusion restrictions in the model. z2 will only required to be nondegenerate

conditional on z′1β0, which is a particularly weak condition. We assume that (ε, η) is independent

of z. Endogeneity of y2 in (2.1) arises when ε and η are not independent of each other. Estimation

of the model in (2.5) is standard. When dealing with a binary endogenous regressor, we will use

the common terminology “treatment effect” rather then referring to the “causal effect of y2 on y1.”

Thus, for example, a positive treatment effect would correspond to the case of equation (2.3) where

y2 can take on only two values: F (v, 1, ε) > F (v, 0, ε) for all v, ε.

The binary-choice model with a binary endogenous regressor is a special case of the model in

(2.1). The linear-index form of this model, with an additively separable endogenous variable, is

given by

y1 = 1[z′1β0 + α0y2 + ε > 0]. (2.6)

Parametric assumptions on the error disturbances (e.g., bivariate normality of (ε, η)) naturally

lead to maximum likelihood estimation of (β0, α0, δ0) (Heckman (1978)).9 The semiparametric

version of this model (i.e., the distribution of (ε, η) being left unspecified) has been considered by

Yildiz (2006), whose estimation approach requires that all components of z be continuous.

3 Estimation and testing for a treatment effect

The testing approach consists of three stages. In the first stage, the reduced-form parameters δ0
are estimated. In the second stage, the coefficients of the exogenous variables (β0) in the structural

model are estimated. Then, in the third stage, the treatment-effect statistic is calculated. Each of

the three stages is described in turn below.

Stage 1: Estimation of δ0
9Another common estimation approach is to simply ignore the non-linearity in (2.6) and apply 2SLS to the system

given by (2.6) and (2.5).
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When no distribution is assumed for η, several semiparametric binary-choice estimators exist for
√
n-consistent estimation of δ0 up-to-scale (see Powell (1994) for a comprehensive review).10 Since

the second stage of our estimation procedure utilizes rank-based procedures, we also focus our the-

oretical treatment of the first-stage estimator upon the use of a rank-based estimator (specifically,

the maximum rank correlation (MRC) estimator of Han (1987)). We note, however, that any other
√
n-consistent estimator (parametric or semiparametric) of δ0 could be used in the first stage.

Stage 2: Estimation of β0

The estimator of β0 is based upon pairwise comparisons of the y1 values. If (ε, η) is independent of

z, note that the conditional distribution ε|y2, z is given by

Pr(ε ≤ e | y2, z) =

{
Pr(ε ≤ e | η ≤ −z′δ0) if y2 = 0

Pr(ε ≤ e | η > −z′δ0) if y2 = 1
(3.1)

If two observations (indexed i and j) have y2i = y2j and z′iδ0 = z′jδ0, equation (3.1) implies that

the conditional distributions εi|yi2, zi and εj |yj2, zj are identical. For such a pair of observations,

the strict monotonicity of F with respect to its first and third arguments implies that

z′1iβ0 ≥ z′1jβ0 ⇐⇒ (3.2)

Pr(y1i > y1j | z1i, z1j , y2i = y2j , z
′
iδ0 = z′jδ0) ≥ Pr(y1i < y1j | z1i, z1j , y2i = y2j , z

′
iδ0 = z′jδ0).

Equation (3.2) forms the basis for the proposed estimator of β0. Unfortunately, equation (3.2) can

not be used directly for estimation since (i) δ0 is unknown and (ii) having z′iδ0 = z′jδ0 might be a

zero-probability event. Using the first-stage estimator δ̂ of δ0,11 note that equation (3.2) will be

“approximately true” in large samples for a pair of observations with y2i = y2j and z′iδ̂ ≈ z′j δ̂. This

suggests the following kernel-weighted rank-based estimator of β0:

β̂ ≡ arg max
β∈B

1
n(n− 1)

∑
i 6=j

1[y2i = y2j ]kh(z′iδ̂ − z′j δ̂)1[y1i > y1j ]1[z′1iβ > z′1jβ], (3.3)

where kh(u) ≡ h−1k(u/h) for a kernel function k(·) and a bandwidth h that shrinks to zero as

n→∞. The kernel weighting serves to place more weight on pairs of observations for which z′iδ̂ is

close to z′j δ̂.
12 Under appropriate regularity assumptions, it can be shown that β̂ is a

√
n-consistent

estimator of β0 (see Appendix).

10With a parametric assumption on η, standard binary-choice MLE estimation (e.g., probit) would apply.
11Our method is not subject to the problems of the “forbidden regression” (in which fitted values are plugged in to

a non-linear function prior to mimicking 2SLS). The first-stage plug-in estimator (of the reduced-form index) is used

not as a regressor but rather as a matching mechanism. Matching also upon the value of the endogenous regressor

ensures that there is no relationship between the structural error and the plug-in index.
12For a binary endogenous regressor, the weighting is analogous to propensity-score matching.
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Stage 3: Testing for a treatment effect

To test for a treatment effect, we propose a kernel-weighted version of Kendall’s tau (or rank

correlation) statistic (Kendall (1938)). To motivate this statistic, we first substitute the reduced-

form model (2.5) for the endogenous regressor into the structural model (2.1), which yields

y1 = D(F (z′1β0, 1(z′δ0 + η > 0), ε)). (3.4)

For fixed z′1β0, note that the sign of the rank correlation between y1 and z′δ0 will depend upon

whether there is a positive treatment effect, a negative treatment effect, or no treatment effect.

More precisely, for a pair of observations (indexed i and j) with z′1iβ0 = z′1jβ0, (3.4) implies

z′iδ0 ≥ z′jδ0 ⇐⇒ Pr(y1i > y1j | zi, zj , z′1iβ0 = z′1jβ0) ≥ Pr(y1i < y1j | zi, zj , z′1iβ0 = z′1jβ0) (3.5)

if there is a positive treatment effect (as in (2.3)), and

z′iδ0 ≥ z′jδ0 ⇐⇒ Pr(y1i > y1j | zi, zj , z′1iβ0 = z′1jβ0) ≤ Pr(y1i < y1j | zi, zj , z′1iβ0 = z′1jβ0) (3.6)

if there is a negative treatment effect (as in (2.4)). In the case of no treatment effect (as in (2.2)),

it is trivially the case that

Pr(y1i > y1j | zi, zj , z′1iβ0 = z′1jβ0) = Pr(y1i < y1j | zi, zj , z′1iβ0 = z′1jβ0) (3.7)

since y∗1i and y∗1j are identically distributed if z′1iβ0 = z′1jβ0. The ability to find statistical evidence

against the null of no treatment effect (equation (3.7)) will require that the inequality in (3.5) (or

(3.6)) is strict in some region.

Unlike equation (3.2), these probability statements do not condition on y2. In fact, the proposed

statistic below does not directly use the y2 values. This feature is somewhat analogous to the second

stage of 2SLS, where endogenous regressors are not directly used in the regression but rather their

“fitted values” (projections onto the exogenous regressors) are included. In our context, the y2

values play a role in estimation of δ0 and β0. Unlike 2SLS, however, fitted values of y2 are not used

since linear projections are not appropriate in our general non-linear model.

To operationalize the empirical implications of the probability statements above, it is necessary

to plug in the estimators δ̂ and β̂ of δ0 and β0, respectively, and to place greater weight on pairs of

observations for which z′1iβ̂ ≈ z′1j β̂. This leads to the proposed treatment-effect statistic, which is

a kernel-weighted version of Kendall’s tau:13

τ̂ ≡
∑

i 6=j ω̂ijsgn(y1i − y1j)sgn(z′iδ̂ − z′j δ̂)∑
i 6=j ω̂ij

, (3.8)

13In the context of a binary endogenous regressor, note that the sign of (z′iδ̂−z′j δ̂) is simply the sign of the difference

in propensity scores for the pair of observations.
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where sgn(v) = 1(v > 0)− 1(v < 0) and the (estimated) weights ω̂ij are defined as

ω̂ij ≡ kh(z′1iβ̂ − z′1j β̂). (3.9)

Given asymptotically normal
√
n-consistent estimators δ̂ and β̂, it is shown in the Appendix that

τ̂ is also
√
n-consistent and asymptotically normal. The probability limit of τ̂ is

τ0 ≡ E[sgn(y1i − y1j)sgn(z′iδ0 − z′jδ0)|z′1iβ0 = z′1jβ0]. (3.10)

Based upon (3.5)–(3.7), it is easy to show that τ0 > 0 for a positive treatment effect, τ0 < 0 for

a negative treatment effect, and τ0 = 0 for no treatment effect. Therefore, it is straightforward to

conduct a one-sided or two-sided z-test of H0 : τ0 = 0 based upon τ̂ and its asymptotic standard

error se(τ̂). This test for a treatment effect is consistent against the alternatives of a positive or

negative treatment effect.

Remark 3.1 The testing approach does not require the index structure of equations (2.1) and (2.5).

A nonparametric version of the model in (2.1) would be of the form y∗1 = F (z1, y2, ε). Then, the

statistic described in this section could match on all components of the z1 vector, which would be

attractive when some (or all) of its components are discrete. Moreover, the linear-index restriction

in (2.5) is unnecessary; a non-parametric specification (e.g., a non-parametric propensity score in

the binary-endogenous variable case) could be used instead.

Remark 3.2 A comparison of our proposed test procedure with the standard 2SLS approach is

warranted. As a referee correctly pointed out, while the 2SLS coefficient on the endogenous vari-

able might not get the right magnitude of any particular parameter of interest, it could be getting

the right sign given the monotonicity conditions of the model. For the case of binary y1 and y2

and no exogenous regressors (empty z1), Shaikh and Vylacil (2005) and Bhattacharya, Shaikh, and

Vytlacil (2005) show that the probability limit of 2SLS identifies the correct sign of the average treat-

ment effect when the outcome is assumed to be weakly monotonic in the treatment.14 Unfortunately,

there are reasons to question the validity of a 2SLS-based test in more general settings. Specifically,

in a non-linear model (say, a probit model) with non-empty z1 and no causal effect of y2 on y1, the

probability limit of the 2SLS endogenous-variable coefficient will generally be non-zero; when this is

the case, simply looking at the sign of the 2SLS coefficient introduces Type-I error whose probability

converges to one.
14Shaikh and Vytlacil (2005) generalize this result to the case with covariates (non-empty z1) by conditioning upon

the covariates. This approach can be interpreted as a conditional version of 2SLS, but is distinct from a standard

2SLS regression in which z1 and y2 are explicitly included as right-hand-side variables. It is an open question whether

or not their results extend to situations with non-binary outcomes, non-binary endogenous regressors, and/or multiple

endogenous regressors.
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Remark 3.3 Interestingly, even in the case when the sign of the treatment effect can vary across in-

dividuals (contrary to our maintained assumptions), τ0 can represent an interesting parameter. For

example, in the case without z1, τ0 is the rank correlation between y1 and the treatment probability

(propensity score).15 This correlation has the usual advantages when compared to other measures,

e.g. linear correlation, such as being more robust to outliers, which is especially important for the

generalization to non-binary variables.

Remark 3.4 If the treatment effect is positive for some z′1β0 and negative for some z′1β0, it would

be necessary to use local versions of τ̂ in order to construct a consistent test. See, for example,

Ghosal, Sen, and van der Vaart (2000) and Abrevaya and Jiang (2005), who develop consistent

tests in similar U-statistic frameworks.

Remark 3.5 No consideration has been given to the efficiency of the various estimators discussed

above. As a referee pointed out, in principle, more efficient estimates of (δ̂0, β̂0, τ̂0) could be obtained

through the use of some joint estimation technique (e.g., a version of joint GMM).

The (scalar) statistic τ̂ is
√
n-consistent and asymptotically normal, which implies that testing

the null hypothesis H0 : τ0 = 0 is a simple z-test. The theoretical assumptions required for

this result are provided in the Appendix, as is the formal statement of the asymptotic properties

(Theorem 1); proofs are provided in the Supplement. Given τ̂ and an estimated asymptotic standard

error v̂τ̂ , one-sided or two-sided versions of this test can be implemented based upon the ratio τ̂ /v̂τ̂ .

In order to compute the standard error v̂τ̂ , we recommend the use of the bootstrap since the form

of the asymptotic variances in Theorem 1 is somewhat complicated.16 Furthermore, estimating the

components of the analytical asymptotic variance matrix would require the choice of additional

smoothing parameters.

4 The general case

This section presents the general version of the model for which the rank-based testing procedure

can be applied. The model allows for multiple endogenous regressors. A given endogenous regressor
15More generally, τ0 has an interpretation as a conditional rank correlation. In the case of a binary (non-binary)

endogenous variable, τ0 is the rank correlation between the outcome y1 and the propensity score (reduced-form index

z′δ0) conditional on having an identical structural index z′1β0.
16Although the bootstrap has not formally been shown to be consistent in the specific context considered, there is

no reason to expect failure of the bootstrap given that each stage of the testing procedure is
√
n-consistent. Recently,

Subbotin (2006) has shown consistency of the bootstrap for the maximum rank correlation estimator (our first-stage

estimator). It is worthy of future research to investigate whether the approach of Subbotin (2006) could be extended

to kernel-weighted rank estimators (like β̂ and τ̂).
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may be discrete, continuous, or even censored in some way. The endogenous regressors are denoted

y21, y22, . . . , y2Q, where Q is the number of endogenous regressors. Let QC ≤ Q denote the number

of non-discrete endogenous regressors. The Q × 1 vector y2 is defined as y2 = (y21, y22, . . . , y2Q)′.

Each endogenous regressor y2q (for q = 1, . . . , Q) has a reduced-form generalized regression model:

y∗2q = F2q(z′δ0q, ηq), y2q = D2q(y∗2q). (4.1)

The error disturbances (ε, η1, . . . , ηQ) are assumed to be independent of z. The functions F2q

and D2q may differ over q, allowing for an arbitrary mix of discrete and continuous endogenous

regressors. Similar to the model for the generalized regression for y1, we assume that (for q =

1, . . . , Q) F2q is strictly increasing in each of its two arguments and D2q is weakly increasing and

non-degenerate (i.e., strictly increasing on some region of its argument).

To simplify notation, define ∆0 ≡ (δ01, . . . , δ0Q)′ to be the Q × ` matrix containing all of the

reduced-form coefficients (where ` is the dimension of z). Each of the δ0q coefficient vectors can be

estimated
√
n-consistently in a first stage using equation-by-equation semiparametric estimation

(e.g., maximum rank correlation or some other linear-index estimator). The estimate of δ0q (for

q = 1, . . . , Q) is denoted δ̂q, and the Q× ` matrix ∆̂ is defined as ∆̂ ≡ (δ̂1, . . . , δ̂Q)′.

For the second-stage estimator β̂, we generalize the approach from Section 3 and focus upon

observations pairs (i, j) for which y2i is close to y2j and ∆̂zi is close to ∆̂zj . Specifically, the

second-stage estimator β̂ maximizes the objective function

1
n(n− 1)

∑
i 6=j

Kh(y2i − y2j)Kh(∆̂zi − ∆̂zj)1[y1i > y1j ]1[z′1iβ > z′1jβ]. (4.2)

where Kh(·) is a multivariate kernel function defined as Kh(v) ≡
∏dim(v)
q=1 khq(vq) for a vector v.

Kernel-weighting functions khq(·) are used for non-discrete components of y2, whereas exact match-

ing (i.e., khq(v) = 1(v = 0)) is used for discrete components of y2.

To test the effect of y2q upon y1 (for any q = 1, . . . , Q), we want to fix z′1β and z′δ0p for all

p 6= q and examine the significance of the relationship between y1 and zδ0q. Let ∆̂−q denote the

matrix ∆̂ with the q-th row (i.e., δ̂′q) removed, so that ∆̂−q has dimension (Q−1)× `. The statistic

associated with the q-th endogenous regressor is thus given by:

τ̂q ≡
∑

i 6=j ω̂ij,qsgn(y1i − y1j)sgn(z′iδ̂q − z′j δ̂q)∑
i 6=j ω̂ij,q

, (4.3)

where the (estimated) weights ω̂ij,q are defined as

ω̂ij,q ≡ kh(z′1iβ̂ − z′1j β̂)Kh(∆̂−qzi − ∆̂−qzj). (4.4)

The asymptotic theory for the general case is completely analogous to the results developed

previously. The regularity conditions which change for the general case are conditions on the
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bandwidth sequence used in matching variables and the order of smoothness assumed on certain

density and conditional expectation functions.

An example: two binary endogenous regressors

Consider the following model with two binary endogenous regressors y21 and y22:

y∗1 = F (z′1β0, y21, y22, ε), y1 = D(y∗1) (4.5)

y21 = 1[z′δ01 + η1 > 0], y22 = 1[z′δ02 + η2 > 0] (4.6)

Given estimators for δ01, δ02, and β0, one tests the effect of y21 (second argument) upon y1 by fixing

z′1β and z′δ02 and examine the significance of the relationship between y1 and z′δ01. This idea can

be operationalized with the following kernel-weighted rank-based statistic:

τ̂1 ≡
∑

i 6=j ω̂ij,1sgn(y1i − y1j)sgn(z′iδ̂1 − z′j δ̂1)∑
i 6=j ω̂ij,1

, (4.7)

where the (estimated) weights ω̂ij,1 are defined as

ω̂ij,1 ≡ kh(z′1iβ̂ − z′1j β̂)kh(z′iδ̂2 − z′j δ̂2). (4.8)

An analogous statistic (for testing the effect of y22 on y1) can easily be constructed.

5 Empirical illustration

In this section, we apply our testing methodology to an empirical application concerning the effects

of fertility on female labor supply. In particular, we adopt the approach of Angrist and Evans (1998),

who use the gender mix of a woman’s first two children to instrument for the decision to have a

third child. This instrumental-variable strategy allows one to identify the effect of having a third

child upon the woman’s labor-supply decision. The rationale for this strategy is that child gender

is arguably randomly assigned and that, in the United States, families whose first two children are

the same gender are significantly more likely to have a third child.

The sample for the current study is drawn from the 2000 Census data (5-percent public-use

microdata sample (PUMS)). In the analysis, the outcome of interest (y1) is whether the mother

worked in 1999, the binary endogenous explanatory variable (y2) is the presence of a third child,

and the instrument is whether the mother’s first two children were of the same gender. We consider

specifications in which education, mother’s age at first birth, and age of first child enter as exogenous

covariates (z1). More complete details on the empirical application, including construction of the

sample, descriptive statistics, and first-stage results, are reported in the Supplement to this note.

The primary results of interest relate to the conclusions from the causal-effect significance tests,

which are reported in Table 1. The table compares results obtained from the semiparametric
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τ̂ statistic with those obtained from the z-statistic based upon 2SLS estimates. The bootstrap

was used in order to compute standard errors for τ̂ . In order to examine the effect of additional

covariates, testing results are reported starting from a model with no exogenous covariates and

then adding covariates one-by-one until the full set of three exogenous covariates are included. In

the model with no exogenous covariates, the z-statistics associated with τ̂ and the 2SLS coefficient

are extremely similar. The 2SLS z-statistic for the larger models is basically unchanged from the

no-covariate model, which is not too surprising given that the same-sex instrument is uncorrelated

with the other exogenous covariates in the model. In contrast, the magnitude of the z-statistic

for the semiparametric τ̂ method does decline. The addition of covariates to the model forces the

semiparametric method to make comparisons based upon observation-pairs with similar first-stage

(estimated) index values associated with these exogenous covariates. It is encouraging, however,

that the z-statistic magnitude does not decline by much as the second and third covariates are added

to the model. Table 1 highlights the inherent robustness-power tradeoff between the semiparametric

and parametric methodologies. Although one might have worried that the tradeoff would be so

drastic to render the semiparametric method useless in practice, the results indicate that this is

not the case. Even in the model with three covariates, the τ̂ estimate provides strong statistical

evidence (z = −2.69) that the endogenous third-child indicator variable has a causal effect upon

mothers’ labor supply. Importantly, this finding is not subject to the inherent misspecification of

the linear probability model or any type of parametric assumption on the error disturbances. In

addition, this illustration highlights the feasibility of the semiparametric approach even for a very

large sample (n close to 300,000 here).

6 Concluding remarks

This paper proposes a new method for testing for the causal effects of endogenous variables in a

generalized regression model. The model considered here allows for multiple continuously and/or

discretely distributed endogenous variables, thereby offering a test for cases not previously consid-

ered in the literature. The proposed statistic converges at the parametric rate to a limiting normal

distribution under the null hypothesis of no causal effect. A useful extension would be a localized

version of the proposed procedure that would allow the sign of the causal effect(s) to vary over the

support of the random variables in question. In addition, it would be of interest to improve the

efficiency of the τ̂ estimator.
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Appendix

In this appendix, we outline the asymptotic theory for the three-stage testing procedure. We state the main

asymptotic-normality results and also explicitly state sufficient regularity conditions for these results. The proofs,

which are somewhat standard given previous results in this literature, are provided in the Supplement.

The following linear representation of the first-step estimator is assumed:

δ̂ − δ0 =
1

n

n∑
i=1

ψδi + op(n
−1/2), (A.1)
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where ψδi is an influence-function term with zero mean and finite variance. This representation exists for the available
√
n-consistent semiparametric estimators. We do not specify a particular form for the influence-function term ψδi

since it will depend upon the particular estimator chosen.

The first result concerns the asymptotic distribution for the second-stage estimator of β0. Since β0 is only iden-

tified up to scale, we normalize its last component to 1 and denote its other components by θ0 and the corresponding

estimator by θ̂, where

θ̂ = arg max
θ∈Θ

1

n(n− 1)

∑
i 6=j

1[y2i = y2j ]kh(z′iδ̂ − z′j δ̂)1[y1i > y1j ]1[z′1iβ(θ) > z′1jβ(θ)] (A.2)

We impose the following regularity conditions:

Assumption CPS (Parameter space) θ0 lies in the interior of Θ, a compact subset of Rk−1.

Assumption FS The first stage estimator used to estimate δ0 will be the maximum rank correlation estimator of

Han (1987). Consequently, the same regularity conditions in that paper and Sherman (1993) will be assumed

so we will have a linear representation as discussed above. We normalize one of the coefficients of δ0 to 1 and

assume the corresponding regressor is continuously distributed on its support.

Assumption K (Matching stages kernel function) The kernel function k(·) used in the second stage and the third

stage is assumed to have the following properties:

K.1 k(·) is twice continuously differentiable, has compact support and integrates to 1.

K.2 k(·) is symmetric about 0.

K.3 k(·) is a pth order kernel, where p is an even integer:∫
ulk(u)du = 0 for l = 1, 2, ...p− 1∫
upk(u)du 6= 0

Assumption H (Matching stages bandwidth sequence) The bandwidth sequence hn used in the second stage and

the third stage satisfies
√
nhpn → 0 and

√
nh3

n →∞.

Assumption RD (Last regressor and index properties) z
(k)
1i is continuously distributed with positive density on

the real line conditional on z′iδ0 and all other elements of z1i. Moreover, z′iδ0 is nondegenerate conditional on

z′1iβ0.

Assumption ED (Error distribution) (εi, ηi) is distributed independently of zi and is continuously distributed with

positive density on R2.

Assumption FR (Full rank condition) Conditional on (z′iδ0, y2i), the support of z1i does not lie in a proper linear

subspace of Rk.

The following lemma establishes the asymptotic properties of the second stage estimator of θ0. Some additional

notation is used in the statement of the lemma. The reduced-form linear index is denoted ζδi = z′iδ0 and fζδ() denotes

its density function. FZ1 denotes the distribution function of z1i. Also, ∇θθ denotes the second-derivative operator.

Lemma 1 If Assumptions CPS, FS, K, H, RD, ED, and FR hold, then

√
n(θ̂ − θ0)⇒ N(0, V −1ΩV −1) (A.3)

or, alternatively, θ̂ − θ0 has the linear representation

θ̂ − θ0 =
1

n

n∑
i=1

ψβi + op(n
−1/2) (A.4)
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with V = ∇θθN (θ) |θ=θ0 and Ω = E[δ1iδ
′
1i], and ψβi = V −1δ1i, where

N (θ) =

∫
1[z′1iβ(θ) > z′1jβ(θ)]H(ζj , ζj)F(z′1iβ0, z

′
1jβ0, ζj , ζj)dFZ1,ζ(z1i, ζj)dFZ1,ζ(z1j , ζj) (A.5)

with ζi = z′iδ0, whose density function is denoted by fζ , and where

F(z′1iβ0, z
′
1jβ0, ζi, ζj) = P (y1i > y1j |y2i = y2j , z1i, z1j , ζi, ζj) (A.6)

H(ζi, ζj) = P (y2i = y2j |ζi, ζj) (A.7)

and the mean-zero vector δ1i is given by

δ1i =

(∫
fζ(ζi)µ31(ζi, ζi, β0)dζi

)
ψδi (A.8)

where

µ(t, ζ, β) = H(t, ζ)M(t, ζ, β)fζ(t) (A.9)

with

M(t, ζ, β) = E[F(z′1iβ0, z
′
1jβ0, ζi, ζj)1[z′1iβ > z′1jβ]z′i | ζi = t, ζj = ζ] (A.10)

and µ1(·, ·, ·) denotes the partial derivative of µ(·, ·, ·) with respect to its first argument and µ31(·, ·, ·) denotes the

partial derivative of µ1(·, ·, ·) with respect to its third argument.

Although the particular expressions for V and Ω are quite involved, note that V represents the second derivative of

the limit of the expectation of the maximand and Ω represents the variance of the limit of its projection.

The asymptotic theory for the third-stage statistic is based on the above conditions, now also assuming conditions

K and H are valid for the third stage matching kernel, and the following additional smoothness condition:

Assumption S (Order of smoothness of density and conditional expectation functions)

S.1 Letting ζβi denote z′1iβ0, and let fζβ(·) denote its density function, we assume fζβ(·) is p times continuously

differentiable with derivatives that are bounded on the support of ζβi.

S.2 The functions G11(·) and Gx(·), defined as follows:

G11(·) = E[sgn(y1i − y1j)fZk|Z−k
(∆z′−kijδ

(−k)
0 )∆z′−kij |ζβi = ·, ζβj = ·] (A.11)

Gx(·) = E[(sgn(y1i − y1j)sgn(z′iδ0 − z′jδ0)− τ0)(z1i − z1j)
′|z1i − z1j = ·] (A.12)

where fZk|Z−k
() in (A.11) denotes the density function of the last component of zi − zj , conditional on

its other components, and ∆z−kij denotes the difference for all the components of zi except the last one,

are all assumed to be all p times continuously differentiable with derivatives that are bounded on the

support of ζβi.

The main theorem establishes the asymptotic distribution of the statistic τ̂ :

Theorem 1 If Assumptions CPS, FS, K, H, RD, ED, FR, and S hold, then

√
n(τ̂ − τ0)⇒ N(0, V −2

2 Ω2) (A.13)

with V2 = E[fζβ(ζβi)] and Ω2 = E[δ2
2i]. The mean-zero random variable δ2i is

δ2i = 2fζβ(ζβi)G(y1i, zi, ζβi) + E[G′x(ζβi)fζβ(ζβi)]ψβi + E[G11(ζβi)fζβ(ζβi)]ψδi, (A.14)

where G′x() denotes the derivative of Gx and G(·, ·, ·) is given by

G(y1, z, ζ) = E[sgn(y1i − y1)sgn(z′iδ0 − z′δ0)|ζβi = ζ]. (A.15)
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Table 1: Testing significance of the binary endogenous regressor (having a third child) in

women’s labor-force participation. The z-statistics for the semiparametric and 2SLS estimation

approaches are reported for several different model specifications. The 2SLS standard errors are

heteroskedasticity-robust.

Exogenous covariates Semiparametric 2SLS

in the model τ̂ s.e. z-stat α̂ s.e. z-stat

None -0.00316 0.00085 -3.72 -0.1118 0.0298 -3.75

Education -0.00299 0.00102 -2.94 -0.1103 0.0296 -3.72

Education, -0.00655 0.00229 -2.86 -0.1111 0.0296 -3.75

Mother’s age at first birth

Education, -0.00695 0.00258 -2.69 -0.1124 0.0295 -3.80

Mother’s age at first birth,

Age of 1st child
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