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Cointegrated multiple time series share at least one common trend. Two tests are developed for the number of common 
stochastic trends (i.e., for the order of cointegration) in a multiple time series with and without drift. Both tests involve the 
roots of the ordinary least squares coefficient matrix obtained by regressing the series onto its first lag. Critical values for the 
tests are tabulated, and their power is examined in a Monte Carlo study. Economic time series are often modeled as having a 
unit root in their autoregressive representation, or (equivalently) as containing a stochastic trend. But both casual observation 
and economic theory suggest that many series might contain the same stochastic trends so that they are cointegrated. If each 
of n series is integrated of order 1 but can be jointly characterized by k < n stochastic trends, then the vector representation 
of these series has k unit roots and n - k distinct stationary linear combinations. Our proposed tests can be viewed alternatively 
as tests of the number of common trends, linearly independent cointegrating vectors, or autoregressive unit roots of the vector 
process. Both of the proposed tests are asymptotically similar. The first test (qf) is developed under the assumption that certain 
components of the process have a finite-order vector autoregressive (VAR) representation, and the nuisance parameters are 
handled by estimating this VAR. The second test (q,) entails computing the eigenvalues of a corrected sample first-order 
autocorrelation matrix, where the correction is essentially a sum of the autocovariance matrices. Previous researchers have 
found that U.S. postwar interest rates, taken individually, appear to be integrated of order 1. In addition, the theory of the 
term structure implies that yields on similar assets of different maturities will be cointegrated. Applying these tests to postwar 
U.S. data on the federal funds rate and the three- and twelve-month treasury bill rates provides support for this prediction: 
The three interest rates appear to be cointegrated. 
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1. INTRODUCTION 

There is considerable empirical evidence that many 
macroeconomic time series are well described by univari- 
ate autoregressive integrated moving average (ARIMA) 
models, so differencing the data produces a series that 
appears to be covariance stationary. It has been less clear 
what transformation should be applied to data used in 
multivariate models, since (loosely speaking) the number 
of unit roots in a multiple time series may be less than the 
sum of the number of unit roots in the constituent univari- 
ate series. Equivalently, although each univariate series 
might contain a stochastic trend, in a vector process these 
stochastic trends might be common to several of the vari- 
ables. Empirical evidence concerning the number of these 
common trends is of interest for several reasons. First, an 
economic or physical theory might predict that the vari- 
ables contain common trends, and a test for these common 
trends would be a test of this implication of the theory. 
Second, one might wish to impose explicitly the number 
of common trends when making forecasts. Third, it might 
be desirable to specify a time series model in which all of 
the variables are stationary, but in which the data are not 
"overdifferenced." Such overdifferencing would occur 
were the model specified in terms of the first differences 
of the variables, because this would ignore the reduced 
dimensionality of the common trends. 

We develop tests of the null hypothesis that an n x 1 
time series variable X, has k c n common stochastic trends, 
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against the alternative that it has m < k common trends. 
It is assumed that each component of X, is integrated of 
order 1, but that there are n - k linear combinations of 
X, that are integrated of order 0. Engle and Granger (1987) 
defined such a process to be cointegrated of order (1, 1). 
If the stationary linear combinations are a'X,, then the 
columns of a are termed the cointegrating vectors of X,. 
Engle and Granger showed that if X, is cointegrated, then 
it has a representation in terms of an error-correction 
model, as developed by Sargan (1964), Davidson, Hendry, 
Srba, and Yeo (1978), and others. 

The concept of cointegration formalizes an older notion 
that some linear combinations of time series variables ap- 
pear nonstationary, whereas others appear to be almost 
white noise. Frisch (1934) referred to those linear com- 
binations of time series data with very small variances as 
being generated by "true regressions"; one of his primary 
concerns was with the "multiple colinearity" that arose 
when there was more than one true regression (cointe- 
grating vector) among the vector of variates. Box and Tiao 
(1977) associated the least predictable linear combinations 
(i.e., those with the weakest serial dependence) of X, with 
"stable contemporaneous relationships;" they described 
the most predictable relationships as characterizing dy- ma 
namic growth common to all of the series. 

Cointegrated models can be represented formally in 
terms of a reduced number of common stochastic trends, 
plus transitory, or stationary, components. For univariate 
models, Beveridge and Nelson (1981) showed that any 
singly integrated ARIMA process has an exactly identified 
trend plus transitory representation, in which the trend is 
a random walk and the transitory component is covariance 
stationary. Fountis and Dickey (1986) extended this de- 
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composition to vector autoregressive (VAR) models with 
k = 1. In Section 2, we provide a general representation 
for k c n. Because of the equivalence between these models, 
our proposed tests for k versus m common trends can be 
thought of as tests for the existence of n - k versus n - 
m linearly independent cointegrating vectors. 

Several special cases of this testing problem have been 
considered elsewhere. The case that has received the most 
attention has been testing for 1 versus 0 unit roots in a 
univariate time series (e.g., see Dickey and Fuller 1979; 
Fuller 1976; Phillips 1987; Solo 1984). In a multivariate 
setting, a test of k = 1 versus m = 0 was developed by 
Fountis and Dickey (1986) for processes with a VAR rep- 
resentation with iid normal errors. Engle and Granger 
(1987) proposed and compared a variety of tests when n 
= k = 2 and the hypothesis of interest is k = 2 versus m 
= 1. Like the other tests in this literature, our test is based 
on the roots of the estimated autoregressive representation 
of the time series. 

Section 2 presents the cointegrated and common-trends 
representations of X, and summarizes our testing strategy. 
In Sections 3 and 4, two tests of k versus m common 
stochastic trends are proposed for the special case that XO 
= 0 and the process has no drift. These tests are extended 
in Section 5 to handle an estimated intercept and drift in 
the relevant regressions. The asymptotic critical values are 
tabulated in Section 6, and a small Monte Carlo experi- 
ment investigating the size and power of these tests is 
reported in Section 7. The tests are applied to data on 
postwar U.S. interest rates in Section 8, and our conclu- 
sions are summarized in Section 9. 

2. THE MODEL AND TESTING STRATEGY 
Let X, denote an n x 1 time series variable that is 

cointegrated of order (1, 1). That is, each element of X, 
is integrated, but there are r linear combinations of X, that 
are stationary. We work with an extension of Engle and 
Granger's (1987) definition of cointegration that allows 
for possible drift in X,. The change in X, is assumed to 
have the cointegrated vector moving average representa- 
tion 

AX= j + C(L)et, E jjCj <00, (2.1) 
j=1 

where C(z) = X,=o Cizi with C(0) = In (the n x n identity 
matrix), et is iid with mean 0 and covariance matrix G, L 
is the lag operator, and A 1 - L. C(1) is assumed to 
have rank k < n, so X, is cointegrated; that is, there is an 
n x r matrix a (where r = n - k) such that a'C(1) = 0 
and a'p = 0. As Engle and Granger pointed out, this 
implies that the spectral density matrix of AX, at frequency 
0, (2r)-1C(1)GC(1)', is singular. The columns of a are 
the cointegrating vectors of X,. 

A representation for the stationary linear combinations 
a'Xt is readily obtained from (2.1). Let vt = G-112et and 

Xf= zslVs adopt the conventional assumption (e.g., 
Dickey and Fuller 1979) that es = 0 (s < 0), and allow Xt 
to have a nonrandom initial value XO. Then recursive sub- 

stitution of (2.1) yields 

Xt = XO + ,ut + C(l)G'112t + C*(L)Gl/2vt, (2.2) 
where C*(L) = (1 - L)-1(C(L) - C(1)) so that Cj* = 
-E'=j,I Ci. Because a'C(l) = 0 and a'u = 0, it follows 
that 

Zt a'Xt = a'Xo + a'C*(L)GlI2vt. (2.3) 

With the additional assumption in (2.1) that C(L) is 1- 
summable (Brillinger 1981), C*(L) is absolutely summable 
and Zt has bounded variance. 

The cointegrated process Xt has an alternative repre- 
sentation in terms of a reduced number of common ran- 
dom walks plus a stationary component. This "common 
trends" representation is readily derived from (2.2). Be- 
cause C(1) has rank k < n, there is an n x r matrix H1 
with rank r such that C(1)H1 = 0. Furthermore, if H2 is 
an n x k matrix with rank k and columns orthogonal to 
the columns of H1, then A C(1)H2 has rank k. The n 
x n matrix H = (H1 H2) is nonsingular and C(1)H = (O 
A) = ASk, where Sk is the k x n selection matrix [Okx(n-k) 

Ik], where Okx(n-k) is a k x (n - k) matrix of zeros. In 
addition, because a'C(l) = 0 and a' = 0, ,u lies in the 
column space of C(1) and can be written # = C(l),u, where 
,u is an n x 1 vector. Thus (2.2) yields the common-trends 
representation for Xt: 

Xt = XO + C(l)[fit + G 112Xt + C*(L)Gl/2vt 

= Xo + C(1)H[H-1it + H-IG 12Xt] + at 

= Xo + A Tt + at, Tt = 7r + Tt- 1 + Vt, (2.4) 

where at = C*(L)Gl/2vt, cTt = SkH lft + SkHG 1/2Xt, ir 
= SkH-l'/, and vt = SkH-1G"12v,. [For a different deri- 
vation of the common-trends representation (2.4) and fur- 
ther discussion, see King, Plosser, Stock, and Watson 
(1987).] The common-trends representation expresses Xt 
as a linear combination of k random walks with drift n, 
plus some transitory components, at,, that are integrated 
of order 0. 

The common-trends representation provides a conve- 
nient framework in which to motivate our proposed tests. 
Putting aside for the moment the complications that arise 
from a nonzero intercept and time trend in (2.2), a natural 
approach to testing k versus m common stochastic trends 
would be to examine the first-order serial correlation ma- 
trix of Xt. Because Xt is composed of both integrated and 
nonintegrated components, however, its estimated first- 
order serial correlation matrix has a nonstandard limiting 
distribution that generally depends on nuisance param- 
eters in complicated ways. To mitigate this difficulty we 
examine functions of regression statistics of a linear trans- 
formation of Xt, denoted by Yt, chosen so that under the 
null hypothesis the first n - k elements of Yt are not 
integrated, whereas the final k elements of Yt can be ex- 
pressed in terms of the k separate trends. More precisely, 
let Y, = DX,, where D = [a at]', where at is an n x k 
matrix of constants chosen so that at'a = 0 and at? at - 

'k. The first n - k elements of Y, are Z, in (2.3). Let W, 
denote the final k integrated elements of Y,. It follows 
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from (2.1) that 

AW, = att' + U, (2.5) 

where u, = C(L)vt, with C(L) = at'C(L)G112. Combining 
(2.3) and (2.5), 

AkYt = ( + F(L)vt, (2.6) 

where 

Ak [Ik AIk] [ a- 
L 

] 

FL=[aPC*(L)G 1/21 F(L) = [C C-o 

Recursive substitution of (2.6) shows that Yt can be rep- 
resented as 

= a + LO( - k)x1 t 

+[OC(n1)x] +[a C*(L)G ] V 

= a + /32t + latt + /h(L)vt, (2.7) 

where C*(L) = (1 - L) - 1(C(L) - C(1)). 
In terms of Wt, a test of k versus m common trends 

becomes a test of whether C(1) has rank k against the 
alternative, tha it has rank m. To motivate the proposed 
tests, suppose that XO = ,uh= 0, and consider the result 
of regressing Wt onto Wt 1. Under the null hypothesis, 
Wt is a linear combination of k integrated processes, so s, 
the probability limit of 

t = [t WW' = ][>3 Wac1Wonide-1, (2.8) 
has k real unit roots. Under the alternative Wt includes m 
integrated variables and k - m nonintegrated variables, 
or equivalently Wt has k - m linearly independent cointe- 
grating vectors. Thus under the alternative PD has only m 
unit eigenvalues corresponding to the m integrated vari- 
ables, and k - m eigenvalues with modulus (and therefore 
with real parts) less than 1. Letting lm,+ 1 denote the ei- 
genvalue of P with the (m + 1)th-largest real part, our 
null and alternative hypotheses are Ho: real(Am + 1) = 1 
versus H1: real(i{m+) < 1. 

Much is known about the properties of 'P when 'P has 
some unit roots. When n = 1 and ut is serially uncorre- 
lated, 1 has the distribution studied by White (1958), Fuller 
(1976), Dickey and Fuller (1979), and others. Phillips (1987) 
examined the distribution of T(Q - 1) under less restric- 
tive conditions on the errors; this analysis was generalized 
to the multivariate case by Phillips and Durlauf (1986). 
Unfortunately, when ut is serially correlated the distri- 
bution of 'P and its eigenvalues i. depends on the autoco- 
variances of ut. This dependence makes it impossible to 
tabulate the asymptotic critical values of a statistic based 
on A in a practical way. Strategies for circumventing this 
problem and developing asymptotically similar tests are 
presented in Sections 3 and 4 for the case (/h = 0, /12 = 

0) and are extended to the cases (IA #& 0, /12 = 0) and (/h 
# 0, /2 # 0) in Section 5. 

3. A TEST BASED ON FILTERING THE DATA 

This section presents a test statistic in which the nuisance 
parameters of the process are eliminated by assuming a 
parametric representation for the process generating Wt. 
The development of this test parallels Dickey and Fuller's 
(1979) approach to testing for a unit root in a univariate 
time series. Specifically, suppose that AW, has a finite- 
order VAR representation so that (2.5) can be rewritten 
as 

H (L)AW, = Y + ?7, (3.1) 

where H(L) is a matrix lag polynomial of known order p 
with all roots outside the unit circle, qa is iid with mean 0, 
and H(O) is normalized so that Eq,q' = Ik. In this section 
it is assumed that WO = y = 0. 

First, suppose that D and H(L) are known and let t = 
IH(L)Wt. Under (3.1), H(L)AWt = A[H(L)Wt] = t7, so 
under the null hypothesis the elements of HI(L)Wt are ran- 
dom walks. In contrast, under the alternative of m < k 
common trends, only m components of HI(L)Wt are ran- 
dom walks, whereas the remaining elements are integrated 
of order 0. This suggests testing for k versus m common 
trends by examining the roots of the first sample auto- 
correlation matrix formed using St, 

Rewriting (Pf, we have 

T[1f - Ik] = TkT(FkT), (3.2) 

where PkT = T-1 I (t-ji7a and FkT = T2 E(t_1- 
The limiting behavior of TkT and FkT has been treated 

in the univariate case by (for example) White (1958), Solo 
(1984), and Phillips (1987), and in the multivariate case 
by Phillips and Durlauf (1986) and Chan and Wei (1988). 
These random matrices converge weakly to functionals of 
the k-dimensional Wiener process Bk(t): FkT > =k 

fo Bk(t)Bk(t)' dt and tkT > Akk fo Bk(t) dBk (t)', where 
=> denotes weak convergence on the space of continuous 
functions on [0, 1]k in the sense of Billingsley (1968). Thus 
from (3.2), T[1f - IkI a> PkF -1; that is, T[.:f - 1k] 
converges weakly to a random variable that has the same 
distribution as Tkk-1. It follows that T(Af - i) 4> A., 
where A. denotes the vector of ordered eigenvalues of 
Tk'kL , Af denotes the vector of ordered eigenvalues of 
(Df, and i= (11 1)'. 

If D and H(L) were known a test statistic could be 
constructed using if. In applications, however, D and H(L) 
are typically unknown. This deficiency can be remedied 
by using estimators D and 1(L) of D and H(L), respec- 
tively. For the moment, assume that D and rI(L) exist and 
that (a) D -P> RD under both Ho and H1, where R = 

diag(R1, R2), where R1 and R2 are, respectively, nonsin- 
gular (n - k) x (n - k) and k x k matrices under the 
null and (n - m) x (n - i) and k x k matrices under 
thel alternativ,nd (b) H(L) and R2H(L)R ic under Ho. 
Let Wt = SkDXt and St = Hl(L)1. Then one could con- 
sider the ordinary least squares (OLS) estimator 
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This modified version of (F, computed using the filtered 
series (t, has a limiting representation in which the nui- 
sance parameters in (3.1) do not appear. Letting Af denote 
the vector of ordered eigenvalues of (Df, we have Theorem 
3.1. 

Theorem 3.1. Suppose that D P RD, W, is generated 
by (3.1) with W0 =y = 0, H(L) - * R2HI(L)R- 1, and maxi 
E(i) C /4 < oo. Then, (a) T(( - Ik) > R2*'TkF1R2j1, 
(b) T(Af - i) a> A., and (c) T(IAfI - i) 4> real(A.). 

Proof. At the suggestion of the editor the proofs of 
all lemmas and theorems are omitted but provided in Stock 
and Watson (1988). 

Theorem 3.1 suggests testing for k versus m common 
trends-or equivalently for k versus m real unit roots in 
(D-using the statistic 

q f (k, m) = T[real(Af m+1) - 11, 
where Af,m+1 is the (m + 1)th element of Af. Under the 
null hypothesis, from Theorem 3.1(b) qf(k, m) asymp- 
totically has the same distribution as real(.*m+,). 

The construction of qf requires the estimation of RD 
and the autoregressive matrix polynomial HI(L) in (3.1). 
The n x n matrix RD can be estimated in a variety of 
ways. The first n - k rows of D (and thus of RD) are a 
basis for the space spanned by the cointegrating vectors 
of X, under the null. Because the cointegrating vectors 
form linear combinations of X, that have bounded variance 
from the otherwise integrated elements of Xt, they (like 
the autoregressive coefficient in the univariate unit-root 
problem or its multivariate analog, discussed in the pre- 
ceding sections) can be estimated consistently without 
specifying a particular parametric process for the addi- 
tional stationary components. As demonstrated in Stock 
(1987, theorem 2), if X, has the representation (2.1) with 
n - k cointegrating vectors and maxi E(84) < - K ??, 

then the cointegrating vectors consisting of the columns 
of a can be estimated by contemporaneous OLS regres- 
sions of one element of Xt on the others, after an arbitrary 
normalization to ensure that the estimates are linearly in- 
dependent. 

We adopt a modification of this approach, in which the 
cointegrating vectors are constructed to be orthonormal 
with the first cointegrating vector forming the linear com- 
bination of Xt having the smallest variance, the second 
cointegrating vector having the next smallest variance, and 
so on. Implementing this procedure simply entails esti- 
mating the principal components of Xt; a is estimated by 
those linear combinations corresponding to the smallest n 
- k principal components, and a' is estimated by the 
linear combinations corresponding to the largest k prin- 
cipal components. Since a consistently estimates the coin- 
tegrating vectors up to an arbitrary linear transfor- 
mation, D 4 RD = [aRl a'R']' for some R1 and R2. 

Since ( _4 Ik under the null [where ( = 
z Wt &'1( Wt_1W)t-j-11, the parameters of R2lH(L)R1-l 
can be estimated consistently by a VAR(p) regression us- 
ing either AIVWt or it, where ui, are the residuals from a 
regression of Wt onto Wt 1. In either case, normalizing the 
VAR coefficient matrices so that the VAR residuals have 

an identity-contemporaneous covariance matrix ensures 
that 1(L) R2Hi(L)R-1. 

This test is consistent against the alternative that there 
are m rather than k common trends using either estimator 
of rl(L), even if the process is not autoregressive of order 
p but satisfies (2.1) with n - m cointegrating vectors. 
Under the alternative, DA (constructed using principal com- 
ponents) converges in probability to some matrix Da, the 
first n - m rows of which contain the cointegrating vectors 
of X, and the final m rows of which are orthogonal to the 
cointegrating vectors. In addition, under the alternative 
Jt(L) converges to some (finite-order) matrix lag poly- 
nomial 11a(L) even if AW, does not have a VAR(p) rep- 
resentation. From (2.1) and the definition of A, At - 

l(L)SkIC(L)eW , where I(L) A Ha(L) and D5A Da. Since 
rIa(L) has finite order and C(L) is absolutely summable 
under both the null and the alternative, HIa(L)SkDaC(L) 
is absolutely summable. Furthermore, under the alterna- 
tive, rank(HIa(1)SkDaC(1)) m' < rank(C(1)) = m < k. 
Using a construction like (2.6), it can be shown that as 
the sample size tends to infinity, St [and, by the conver- 
gence of H(L) and D, (t] has m' unit roots in its sample 
first-order autoregressive matrix and k - m' roots less 
than 1 in modulus and therefore with real parts that are 
less than 1. In particular, real(f,m+') - 1 converges in 
probability to a negative number, so the test is consistent. 
Note that a consistent test obtains whether the filter is 
estimated using either AWt or uAt, assuming that the order 
of the filter is fixed. 

4. A TEST BASED ON CORRECTING THE OLS 
AUTOREGRESSIVE MATRIX 

Our second proposed statistic tests for k versus k - 1 
common trends using a corrected version of P, the sample 
first-order autocorrelation matrix for Wt in (2.8), under 
the assumption that fl, = fl2 = 0 in (2.7). In this case, 
(P has the asymptotic representation given in Lemma 4.1. 

Lemma 4.1. If maxi E(v4t) - /U4 < ?o and /l = fl2 = 0 
in (2.7), then 

T(&P - Ik) [C(1)PnTC(Q)1 + M'I[C(1)rnTC(Q)111 

A 0, 

where 'nT = T-1 't_lVt', Via = I E and M = 

[,7o (C, - C,)q + (l)C(1)'] = 1 Eutjut'. 
This lemma indicates that T(Q - Ik) asymptoti- 

cally consists of two parts. The first, [C(1)$nTC(1)']' 
[C(1)FnTC(1)'iI1, is T times the error in the estimate of 
(P obtained by regressing the random walk C(l)4t onto its 
lagged value. The second, M'[C(1)rnTC(1)'I1, is analo- 
gous to the O(T-1) bias in contemporaneous regressions 
of cointegrated variables. This bias arises from the cor- 
relation between the regressor Wt-1 and ut in (2.5). This 
term is related to the bias in OLS regression estimates 
when there are stationary lagged dependent variables and 
serially correlated errors. In the present context, since u, 
is not integrated (but is serially correlated) and W, is inte- 
grated, this correlation produces not inconsistency but a 
component of P that is Op(T-1). 
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The bias term M is problematic, since its presence means 
that the distribution of (F (and its eigenvalues) depends 
on M and thus on C(L). Nevertheless, the limiting rep- 
resentation in Lemma 4.1 suggests a solution to this prob- 
lem: Modify the OLS estimator (F using an estimator of 
M so that the asymptotic distribution of the eigenvalues 
of the modified OLS estimator depends only on r, and 
tn. This approach generalizes to the multivariate-setting 
Phillips (1987, theorem 5.1) test for a single unit root in 
a univariate process. Specifically, were W, observed and 
M known, a corrected estimator (C could be computed by 
subtracting off the troublesome term: 

, = [T-2 E WtW>_2- T-1M'][T-2 E Wt-W>] 1. 

Letting )c denote the vector of the k ordered eigenvalues 
of (Fc, we have Lemma 4.2. 

Lemma 4.2. Let fl by a k x k matrix such that flQQ' 
C(1)C(1)'. Then, under the conditions of Lemma 4.1, 

(a) T(Q:c - Ik) 4 frr- lFj- I and (b) T(ic - i) c A* 

According to Lemma 4.2, the distribution of the stan- 
dardized eigenvalues of (Dc do not depend on any nuisance 
parameters and thus can be tabulated. But (bc cannot itself 
form the basis for a test because it involves Wt, which is 
not directly observed, and M, which depends on unknown 
parameters. As we discuss later, however, M can be es- 
timated; suppose that the estimator of M, M, is such that 
M AP R2MR2. Let Y1 = DXI, and use W, = SkYt and M 
to form the analog of (bc, 

D = [T2 >E W - T-'M'I[T2 I 

The consistency of D and M ensure that the eigenvalues 
AA 

of (DC, AC, are asymptotically equivalent to the eigenvalues 
of $C. 

Theorem 4.1. Suppose that D P RD and M p 
R2MR'. Then, under the assumptions of Lemma 4.1, (a) 
T((Dc - Ik) 4 R2fIPrk-1f'-1R-1 and (b) T(Q, - I) 4 
A*.* 

Part (a) of this theorem presents a limiting represen- 
tation for the ordered eigenvalues of (Dc. We therefore 
define the test statistic 

qj(k, k - 1) = T[real(Ac,k) - 1], 

where Ac,k is the kth element of Ac. Under the null hy- 
pothesis, qj(k, k - 1) converges to the real part of the 
smallest eigenvalue of the random matrix T'rL-1 

The construction of the qc statistic requires estimators 
D and M. Construction of D was discussed in Section 3. 
The second expression for M in Lemma 4.1 suggests an 
estimator of M based on the sample covariances of the k 
x 1 vector of residuals ut = Wt - (Wt 1 from the regres- 
sion of W, onto W_1&. The estimation of M is clearly related 
to the problem of estimating the spectral density matrix 
of ut at frequency 0, (2ir)-1 ,__ Vj = (2rr)'(Vo + M 
+ M') (where Vj = Eu,utt ), so techniques developed for 
its estimation can be applied here. Let V. = T'1 StT= 

ut ut';. Then M can be estimated by 
I 

M K( )Vill (4.1) 
j=1 

where K(j) is a (time domain) kernel. For a proof of the 
consistency of M in the univariate case for K(j) = 1 and 
J = o(T1'4), see Phillips (1987). 

The test based on q,(k, k - 1) is consistent if M A 
Y271 Eu,1j u under the alternative, where ut = Wt - Wt- 
To demonstrate this consistency, write ': = QAQ1 under 
the alternative, where A is a diagonal matrix with the roots 
of 1 on the diagonal so that the first k - 1 diagonal 
elements are 1 and the final element is less than 1 in 
modulus, and where Q is the k x k matrix of eigenvectors 
of (D. Under the alternative, the last element of the trans- 
formed variate QWt [say (QWt)kI is a stationary process. 
Let pj and f(QwI)k (w) denote the jth autocorrelation and 
the (scalar) spectral density of (QWt)k, respectively. A 
calculation using the techniques in Stock and Watson (1988) 
shows that under the fixed alternative, Ack A 1 - (1 - 

Plt)(l + E pP) Alck. Because f(Qw,)k(O) = c(1 + 2 E 
pj) > 0 under the alternative (where c is a positive con- 
stant), El pj : - I, SO 2ck C 1 - 2(1 - pl)2 < 1 for Ipl( 
<1. Thus T(iCk - 1) tends to -oX under the fixed alter- 
native, demonstrating that the test is consistent. 

Not all candidate estimators of the correction term M 
result in a consistent test. In particular, suppose that AWt 
rather than Ua iS used to construct an estimator M so that 
MA P- I E[A Wt_jAW'W] under both the null and the fixed 
alternative. Under the null, the tests formed using M and 
M are asymptotically equivalent. Under the alternative, 
however, if corrected using M, Dc A Ik, so in particular 
real(Ac{k) p 1 and a one-sided test based on this root is 
not consistent. 

5. MODIFICATIONS FOR ESTIMATED INTERCEPTS 
AND DRIFTS 

In practice it is desirable to allow for nonzero XO, and 
in many applications a more appropriate model might be 
one in which X, has a nonzero drift as well as a cointegrated 
stochastic structure. This section addresses the problem of 
testing the null hypothesis that the rank of C(1) is k, against 
the alternative that it is m < k when the intercept and 
drift may be nonzero. In terms of (2.7), this entails testing 
that the rank of C(1) is k versus m when either (a) fi2 = 
O but fi, might be nonzero (but is nonrandom) or (b) fi, 
and fi2 are nonrandom but might both be nonzero. In case 
(b) under the null Xt has k linear combinations that are 
random walks with nonzero drifts, whereas under the al- 
ternative Xt has m such linear combinations. In a univari- 
ate setting macroeconomic data are often modeled as sta- 
tionary in first differences around a constant nonzero mean; 
as Beveridge and Nelson (1981) showed, this implies that 
the process can be written as the sum of a random walk 
with nonzero drift and a mean-O stationary component. 
Letting fit and fi2 be nonzero both generalizes this univari- 
ate specification to the multivariate case and permits test- 
ing for common trends against an alternative, in which up 
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to n - m components are stationary around a linear time 
trend. For a discussion of the macroeconomic implications 
of stochastic versus deterministic trends in economic time 
series, see Nelson and Plosser (1982); for an alternative 
approach in which the drift in the stochastic trend is itself 
modeled as a random walk (so that the series is stationary 
only after taking second differences), see Harvey (1985). 

We follow Fuller's (1976) and Dickey and Fuller's (1979) 
univariate treatment of intercepts and time trends and 
modify the previous test statistics so that an intercept or 
an intercept and a drift are estimated. Accordingly, let 
Ytl = Yt - T Yt and Yr =Yt - fi1 - fl2t, where /,h 
and fl2 are the OLS estimates of Il and fl2 obtained by 
regressing Yt on a constant and t, and let Wt = Sk Yt and 
Wt = Sk YT. The modification to the filtering test entails 
estimating the autoregressive polynomial H(L) using Wt 
or WtT rather than Wt (as in Sec. 3). Let R = H(L) Wt and 
t = H(L)WtT, and define 

4)y - t [E Ct8-l ct-1ct8 1]1 

and 

Or (MItt ( 24tr l (T]- 11 

Let TI - fo Bi(t) dBi(t), rF - f0 Bk (t)B (t)' dt, 
= fo Bk(t) dBk (t), and T f f1 Br(t)Br(t)' dt, where 

B8(t) = Bk(t) - fo Bk(s) ds and BT(t) = Bk(t) - 

f a(s)B(s) ds - t f a2(s)Bk(s) ds, where al(s) = 4 - 
6s and a2(s) = -6 + 12s. Also, let Ay, Ai, A)*, and A*, 
respectively, denote the ordered eigenvalues of I l, 4?, 
tIP'(Fl)-t, and PT'(F)-T) We now have Theorem 5.1. 

Theorem 5.1. Suppose that D -P RD, Wt is generated 
by (3.1), I(L) 4 R21(L)R2r, and max < E(1) 1 j4 < ?? 

(a) If r = 0 and W0 is an arbitrary constant, then (i) 
T((Dj - Ik) a R2APk'(FO)-1R-1, (ii) T(Iy - i) a A;*, and 
(iii) T(I Ay - i) > real(/*)). (b) If y and W0 are arbitrary 
constants, then (i) T(4D r - Ik) > R2'' (Frk) - 1Rr- 1, (ii) 
T(- i) > Ar, and (iii) T(I)4 -r ) > real(AT). 

The counterparts of qf(k, m) when there might be a 
nonzero intercept or a nonzero intercept and drift are 

qy(k, m) = T[real(Iym+i) - 11 

and 

qT(k, m) = T[real()4m+A) - 11, 
which (respectively) have the same limiting distribution 
under the null as real(i.A/m+t) and real(iAm+t), where 
AY,m+t is the (m + 1)th-largest eigenvalue of FDy, and so 
on. 

The modification to the q, statistic for a nonzero inter- 
cept or drift proceeds similarly. Suppose that D were 
known, let YH = Yt - T-1 I Yt and Yr = Yt - fit - fl2t, 
where fit and fi2 are the coefficients from regressing Y onto 
(1, t). Let Wa = SkYe and Wth = SkYc. By analogy to 
A, define 

?#= [T-2 E W#tt]T2 8l8l 

and 

dIr = [T-2 E WTWT' -2 E Wt 

The treatment of 41P and bT parallels the treatment of 
1 in Section 4. It is first shown that the asymptotic dis- 
tributions of P, ?P, and Vr depend on the same nuisance 
parameters, although the random components in the 
asymptotic representations differ. This makes it possible 
to construct corrected matrices I)P and )r, the eigenvalues 
of which have a distribution that is independent of the 
nuisance parameters. 

Lemma 5.1. Suppose that maxi E(vit) c u4 < ??. (a) If 
fl2 = 0 in (2.7), and f?l is an arbitrary constant, then 

T( - I) - [C(1)nTQC(1)Y + M'I[C(1)rfTC(1) I1 -4 0. 

(b) If /, and /12 in (2.7) are arbitrary constants, then 

(- i) [C(1)Pt'TC(1)' + M'I[c(1)r,TC(T)QI1 40, 
where APT T T1 2 'P- 15A , FnT 

= T-2 2 ,p,8 'rnT 
= T-1 2 (T 5T and F"T = T T~T', where = 

- T1/20OT and T = - T1/2E1T - T-1/202Tt, where 
0iT =T32 T St=1 (i = 0, 1, 2), with aot = 1, alt = 4 
- 6(tlT), and a2t = - 6 + 12(tlT). 

These limiting representations depend on M, given in 
Lemma 4.1. This dependence can be eliminated by cor- 

- - ~~~~~~~~~~~~~A 
recting (b and 4YT using an estimator of M, M, as suggested 
in Section 4. In addition, since D and therefore Wt are 

A A 

unknown, replace Wt with Wt = SkDXt. Accordingly, let 

(DP = [T- V W8Wv 1- T-1M'][T-2 Ml_ 1 Wr 1] 

and 

(DC = [T-2 E WtVWvl - T-1_][T-2 E 

and let Al and AT respectively, denote the vector of ordered 
eigenvalues of eIY and eIT. We now have Theorem 5.2. 

Theorem 5.2. Suppose that D P RD, M 4 R2MR2, 
and the assumptions of Lemma 5.1 hold. (a) If f2 = 0 in 
(2.7) and f1 is an arbitrary constant, then (i) T(PDY - I) 
# R2 '(Fk)lfl - R - 1, (ii) T(A4 - i) a ll, and (iii) 
T(I)A1 - i) a real()A). (b) If f,l and fl2 in (2.7) are arbitrary 
constants, then (i) T(4T - I) a R2Q1k'(Fk) 2 
(ii) T( AT - i) a Ar , and (iii) T(IACI - i) i real(AT). 

This theorem makes it possible to construct test statistics 
analogous to qc(k, k - 1) accounting for either an esti- 
mated intercept or an estimated intercept and drift. The 
only modification is that the tests are, respectively, com- 
puted using deviations of Wt around its average or the 
residuals from a regression of Wt onto a constant and a 
linear time trend. Therefore, let 

qP(k, k - 1) = T[real(A',k) - 11 

and 

qc(k, k - 1) = T[real(/Ick) - 11] 
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Table 1. Quantiles of real(1*) 

Eigenvalue number 
Dimension Significance 

of A. level 1 2 3 4 5 6 

1% -13.8 
2.5% -10.6 
5% -8.0 

10% -5.6 
15% -4.36 
50% -.87 
90% .94 
95% 1.30 

2 1% -6.7 -24.4 
2.5% -5.1 -20.4 
5% -3.78 -17.5 

10% -2.71 -14.3 
15% -2.10 -12.3 
50% -.21 -5.8 
90% 1.15 -1.30 
95% 1.50 -.62 

3 1% -4.24 -15.0 -34.6 
2.5% -3.23 -12.9 -29.7 
5% -2.53 -11.1 -26.0 

10% -1.82 -9.2 -22.2 
15% -1.4 -8.1 -19.9 
50% .02 -3.97 -11.6 
90% 1.24 - .56 -4.97 
95% 1.58 -.08 -3.83 

4 1% -3.19 -11.5 -22.6 -43.3 
2.5% -2.5 -9.9 -20.1 -38.3 
5% -1.95 -8.5 -18.0 -34.4 

10% -1.4 -7.2 -15.6 -30.0 
15% -1.07 -6.4 -14.1 -27.2 
50% .14 -3.13 -8.4 -17.5 
90% 1.29 - .21 -3.57 -9.4 
95% 1.62 .20 -2.74 -7.8 

5 1% -2.67 -9.6 -18.3 -30.1 -51.6 
2.5% -2.04 -8.3 -16.1 -27.1 -46.2 
5% -1.64 -7.2 -14.5 -24.7 -41.9 

10% -1.17 -6.1 -12.6 -22.0 -37.4 
15% -.88 -5.5 -11.4 -20.2 -34.5 
50% .22 -2.66 -6.9 -13.4 -23.6 
90% 1.32 -.02 -2.93 -7.3 -14.1 
95% 1.66 .36 -2.25 -6.1 -12.3 

6 1% -2.25 -8.3 -15.5 -24.5 -38.1 -60.2 
2.5% -1.75 -7.3 -13.8 -22.3 -34.3 -54.6 
5% -1.40 -6.4 -12.4 -20.4 -31.5 -49.8 

10% -1.00 -5.4 -10.9 -18.2 -28.3 -44.8 
15% -.74 -4.84 -9.9 -16.8 -26.3 -41.7 
50% .28 -2.28 -6.0 -11.3 -18.6 -29.7 
90% 1.36 .13 -2.5 -6.2 -11.4 -19.1 
95% 1.69 .49 -1.89 -5.3 -9.9 -16.8 

A A A 

where l,4k (or Ac,k) is the kth-largest eigenvalue of IP (or 
eF"). Theorems 5.1 and 5.2 imply that under the null hy- 
pothesis qy(k, m) > real(Iu,m+), q"(k, m) > real(iI*m+), 
q1(k, k - 1) > real(A/*k), and qc(k, k - 1) > real(IAVk). 

6. CRITICAL VALUES 

Although the preceding asymptotic representations do 
not provide explicit distributions of the proposed test sta- 
tistics, they do suggest a simple procedure for computing 
the asymptotic distributions using Monte Carlo tech- 
niques. For example, from Theorem 3.1 (b) and Theorem 
4.1 (b), the asymptotic distributions of qf(k, k - 1) and 
qc(k, k - 1) are the same as the asymptotic distribution 

of the real part of the smallest root of kTFkkT1, which in 
turn has the same asymptotic distribution as real(A*,J, the 
real part of the smallest root of T'VF- 1. Theorems 5.1 and 
5.2 imply that similar remarks apply for the q/, q", q', 
and q" test statistics. Accordingly, the distributions of the 
real parts of the ordered roots of Pk'TkT 1, Pkt(FTkT) and 
AyT(F 'IT)- were computed using 30,000 Monte Carlo rep- 
lications with T = 1,000. (As a check of whether T = 
1,000 is sufficiently large, the k = 3 entries in the tables 
were recomputed using 10,000 replications with T = 2,000. 
The discrepancies between the two distributions were neg- 
ligible.) 

Selected quantiles of the distribution of real(X*1) are 
tabulated in Table 1 for k = 1, . . ., 6 and j = 1,..., 
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Table 2. Quantiles of real(Al J 

Eigenvalue number 
Dimension Significance 

of A; level 1 2 3 4 5 6 

1 1% -20.6 
2.5% -16.8 
5% -14.1 

10% -11.2 
15% -9.5 
50% -4.36 
90% -.82 
95% -.1 1 

2 1% -12.3 -30.9 
2.5% -10.3 -26.4 
5% -8.8 -23.0 

10% -7.2 -19.5 
15% -6.2 -17.2 
50% -3.03 -9.7 
90% -.29 -4.05 
95% .33 -3.10 

3 1% -9.1 -20.1 -40.2 
2.5% -7.9 -17.7 -35.4 
5% -6.8 -15.7 -31.5 

10% -5.7 -13.5 -27.3 
15% -4.99 -12.1 -24.8 
50% -2.53 -7.1 -15.6 
90% -.07 -2.91 -8.1 
95% .53 -2.19 -6.8 

4 1% -7.6 -15.9 -27.7 -49.2 
2.5% -6.6 -14.1 -24.8 -43.6 
5% -5.8 -12.6 -22.5 -39.3 

10% -4.91 -10.9 -19.8 -35.0 
15% -4.33 -9.9 -18.2 -32.1 
50% -2.33 -5.8 -11.9 -21.6 
90% .04 -2.35 -6.3 -12.7 
95% .64 -1.73 -5.3 -11.0 

5 1% -6.7 -13.5 -22.7 -35.5 -57.1 
2.5% -5.8 -12.1 -20.3 -32.0 -51.5 
5% -5.2 -10.8 -18.4 -29.2 -47.0 

10% -4.45 -9.5 -16.5 -26.4 -42.1 
15% -3.94 -8.6 -15.2 -24.4 -39.1 
50% -2.05 -5.1 -10.0 -17.0 -27.8 
90% .13 -2.02 -5.4 -10.3 -17.6 
95% .75 -1.43 -4.59 -8.9 -15.5 

6 1% -6.1 -12.2 -19.7 -29.1 -42.5 -65.5 
2.5% -5.4 -10.9 -17.8 -26.5 -39.1 -59.7 
5% -4.75 -9.7 -16.2 -24.5 -36.1 -54.9 

10% -4.09 -8.6 -14.4 -22.1 -32.8 -49.7 
15% -3.64 -7.8 -13.3 -20.6 -30.7 -46.3 
50% -1.9 -4.62 -8.9 -14.5 -22.3 -34.0 
90% .2 -1.77 -4.83 -8.9 -14.5 -22.8 
95% .79 -1.26 -4.06 -7.8 -12.8 -20.3 

k; the quantiles for real()Nj) and real(A j) are given in Ta- 
bles 2 and 3, respectively. Referring to Table 1, the blocks 
of rows represent the dimension of A, or equivalently k, 
the dimension of W, used to construct the qf or q, tests. 
The columns of the table denote the jth-largest eigenvalue, 
corresponding to the eigenvalue on which the test is based 
when there are m = j - 1 unit roots under the alternative. 
For example, in a test of k = 4 versus m = 3 unit roots, 
the qf(4, 3) or q,(4, 3) tests would be based on the fourth- 
largest eigenvalue, so the 5% critical value for the test 
(taken from Table 1) is -34.4 and the 1% critical value 
is -43.3. For a test of k = 4 versus m = 1 unit roots, 
the qf(4, 1) test would be based on the second-largest 
eigenvalue, for which the 5% and 1% critical values are 

-8.5 and -11.5, respectively. If the qy or qH tests are 
used, the critical values come from Table 2. If the q or 
qc tests are used, the critical values come from Table 3. 

The asymptotic null distribution of the qj(k, k - 1) and 
ql(k, k - 1) statistics [i.e:, the distribution of the real 
part of the smallest eigenvalue of PS'(FM) 1] is plotted in 
Figure 1 for k = 1, . . . , 6. The figure emphasizes how 
severely the cdf's of the smallest eigenvalues are shifted 
below 0, even when k = 1 or 2. 

7. SIZE AND POWER COMPUTATIONS 
This section reports the results of a small Monte Carlo 

experiment that investigates the size and power of the tests 
in samples of sizes typically encountered in applied work. 
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Table 3. Quantiles of real (*) 

Eigenvalue number 
Dimension Significance 

of AT level 1 2 3 4 5 6 

1% -29.2 
2.5% -24.8 
5% -21.7 

10% -18.2 
15% -16.1 
50% -9.0 
90% -3.8 
95% -2.7 

2 1% -19.1 -39.2 
2.5% -16.8 -34.6 
5% -14.9 -30.8 

10% -12.9 -26.7 
15% -11.6 -24.2 
50% -7.0 -15.1 
90% -2.94 -7.6 
95% -1.97 -6.3 

3 1% -15.2 -27.1 -48.7 
2.5% -13.4 -24.3 -43.5 
5% -12.1 -22.1 -39.0 

10% -10.7 -19.5 -34.6 
15% -9.7 -17.8 -31.8 
50% -6.2 -11.3 -21.4 
90% -2.52 -5.9 -12.5 
95% -1.55 -4.91 -10.7 

4 1% -13.2 -22.0 -35.3 -57.2 
2.5% -11.8 -19.8 -31.6 -51.7 
5% -10.7 -18.0 -28.9 -47.0 

10% -9.5 -16.0 -25.9 -42.0 
15% -8.7 -14.7 -24.0 -38.9 
50% -5.7 -9.5 -16.7 -27.6 
90% -2.23 -5.1 -10.0 -17.4 
95% -1.32 -4.19 -8.7 -15.3 

5 1% -12.2 -19.0 -28.7 -42.4 -64.6 
2.5% -10.9 -17.2 -26.3 -38.8 -59.2 
5% -9.8 -15.7 -24.2 -35.9 -54.5 

10% -8.7 -14.0 -21.9 -32.6 -49.2 
15% -8.0 -12.8 -20.4 -30.4 -46.0 
50% -5.3 -8.4 -14.3 -22.1 -33.7 
90% -2.12 -4.50 -8.8 -14.2 -22.5 
95% -1.20 -3.72 -7.7 -12.6 -20.1 

6 1% -11.2 -17.0 -25.1 -35.3 -49.7 -73.2 
2.5% -10.1 -15.4 -23.1 -32.7 -45.7 -67.1 
5% -9.1 -14.1 -21.3 -30.2 -42.5 -62.4 

10% -8.1 -12.6 -19.3 -27.7 -38.9 -56.8 
15% -7.5 -11.6 -18.0 -26.0 -36.7 -53.2 
50% -4.99 -7.5 -12.9 -19.1 -27.6 -39.9 
90% -2.00 -4.05 -8.0 -12.5 -18.8 -27.8 
95% -1.06 -3.36 -7.0 -11.0 -16.9 -25.2 

The qj(2, 1) and q"(2, 1) tests were studied using two 
different models for Y,. In the first, Y, was generated by 
the VAR(2) 

(1 L) (1 - <>L)Yt = c" (7.1) 

and in the second by the mixed-vector (autoregressive 
moving average) ARMA (1, 1) process 

(1 - .FL) Yt = (1 + OL)et, (7.2) 

where in (7.1) and (7.2) Ecte' = G, and where 

1 0 O 1 .5 - .25 
Bt = a p are G s .5 1 .5 a 

O O .5 - .25 .5 1 

Both and 0 are scalars that are less than 1 in absolute 

value. Under the null hypothesis, p = 1, so there are two 
common trends; under the alternative, II < 1, and there 
is only one common trend. The tests were computed as 
described in the previous sections, using principal com- 

A 

ponents to construct D from the generated Y,. Although 
Y, as generated by (7.1) or (7.2) is not cointegrated (since 
Y3, is not integrated), because D is computed by principal 
components numerically equivalent test statistics would be 
obtained using X, = PYt, where P is any nonsingular 
matrix. In particular, P could be chosen so that X, is coin- 
tegrated. 

The experiments were performed using 2,000 replica- 
tions with a sample size of T = 200. This sample is typical 
of that found in macroeconomic research; for example, 
the postwar quarterly National Income and Product Ac- 
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Figure 1. Cumulative Distribution Function of real(A,k). 

counts data set from 1947:1 to 1986:4 contains 160 obser- 
vations, and the monthly financial data set e ;amined in 
Section 8 has 236 observations. Initial values of Y0 = co 
= 0 were used, and the tests were computed using the 
generated data Y1, . . . , Y200. Fewer observations were 
used to compute the VAR's and covariance matrices en- 
tering the correction terms as necessary. The q1(2, 1) test 
statistics were computed using a rectangular window of 
order J, so K(j) = 1 for 11i s J and 0 otherwise. When 
the data were generated by (7.1), the q (2, 1) statistic was 
computed by filtering the first differences of the integrated 
(under the null) components using an estimated VAR(1); 
the correction term M in the q1(2, 1) statistic was estimated 
using a window of order J = 3. When the data were 
generated by (7.2), the qJ(2, 1) filter was estimated using 
a VAR(3); the q1(2, 1) correction was estimated using J 
= 1. Thus the order of the filter in the qJ(2, 1) statistic 
was correct under the null when the data were generated 
by (7.1), and the order of the window in the q1(2, 1) 
statistic was correct under the null when the data were 
generated by (7.2). In the other cases, a longer VAR (or 
additional covariance terms) was incorporated to approx- 
imate the covariance structure implied by the vector MA 
(or AR) in first differences under the null. 

Columns A and B of Table 4 contain results for the 
VAR model (7.1) with q = 4, and columns C and D 

Table 4. Monte Carlo Experiment Results: Rejection Probabilities 

Data-generating process 

(7.1), with 0 = .4 (7.2), with 0 = .4 

A, B, C, D, 
p Level qv(2, 1) q,0'(2, 1) q (2, 1) q,(2, 1) 

1.00 5% .03 .03 .03 .07 
10% .07 .06 .06 .13 

.95 5% .11 .10 .08 .22 
10% .21 .18 .19 .35 

.90 5% .40 .34 .30 .60 
10% .59 .50 .51 .74 

.80 5% .92 .82 .86 .99 
10% .97 .90 .95 .99 

NOTE: The results were computed using 2,000 Monte Carlo draws with a sample size of T 
= 200. 

contain results for the vector ARMA model (7.2) with 0 
= .4. The nominal sizes of the ql test (columns A and C) 
are somewhat above their actual level, whereas the nom- 
inal size of the qI test is above its level when the data are 
generated by a VAR (column B) and somewhat below its 
level when the data are generated by a vector MA (column 
D). In addition, the qy(2, 1) test exhibits greater nominal 
power than the approximate q#(2, 1) test with the VAR 
data-generation process, whereas the reverse is true when 
the data are generated by the vector ARMA process. 

8. COMMON TRENDS IN POSTWAR U.S. 
INTEREST RATES 

In this section we test for the number of common trends 
among three U.S. interest rates with different maturities. 
The data are 236 monthly observations from January 1960 
to August 1979 on the federal funds rate (FF) (an overnight 
interbank loan rate), the 90-day treasury bill rate (TB3), 
and the one-year treasury bill rate (TB12). The treasury 
bill rates are secondary market rates, and all rates are on 
an annualized basis. All three rates were obtained from 
the Citibase financial data base. 

The theory of the term structure of interest rates sug- 
gests that there is at most one common stochastic trend 
underlying these three rates: Because the expected return 
on a multiperiod instrument in theory equals the expected 
return obtained from rolling over a sequence of one-period 
instruments, a stochastic trend in the short-term rate is 
inherited by the longer-term rate. 

Table 5 presents various tests for unit roots in these 
interest rates. Although all three rates appear to contain 
a unit root, the differences among them (the spreads) seem 
to be stationary. [Application of the Dickey-Fuller T (4) 
test to the first difference of each interest rate rejects the 
null of a second unit root at the 1% level.] This suggests 
that there is a single common trend. The multivariate re- 
sults confirm this suspicion. Testing for 3 versus 1 common 

Table 5. Integration and Cointegration Tests on Three Monthly 
Interest Rates, 1960:1-1979:8 

Univariate results 

Sample autocorrelations 

Series Lag 1 Lag 2 Lag 3 T(4) 

FF .975 .941 .899 -1.79 
TB3 .971 .936 .899 -1.44 
TB12 .972 .935 .898 -1.34 
FF-TB3 .902 .825 .741 - 3.1 7b 
FF-TB12 .932 .863 .801 - 2.82c 
TB3-TB12 .851 .727 .614 - 4.09a 
Common trend tests 

qy(3, 1);p = 2, -22.6a;p = 4, -21.6a 
qy(2, 1); p = 2, - 23.2b;p = 4, -23.5b 
q#(2, 1); J = 2, -24.7b; J = 4, -296b 

NOTE: i(4) denotes the Dickey-Fuller (1979) t test for a unit root in a univariate series 
including an estimated constant with an AR(4) correction. The q# statistics were computed using 
a flat kemel for K(j) in (4.1) to weight the J estimated autocovariances. FF denotes the federal 
funds rate, TB3 denotes the 90-day treasury bill rate, and TB12 denotes the one-year treasury 
bill rate. 
a Significant at the 1% level. 
b Significant at the 5% level. 
S ignificant at the 10%h level. 
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trend using the qy(3, 1) statistic, from Table 2 the 5% 
critical value is - 15.7 and the 1% critical value is -20.1. 
The reported test statistics are more negative than both 
of these critical values, indicating rejection at the 1% level. 
Tests of the more refined hypothesis of 2 versus 1 also 
reject the null in favor of a model in which these three 
rates contain a single common trend. 

9. CONCLUSIONS 
The procedures proposed in this article provide a way 

to test for a reduced number of common trends in a mul- 
tivariate time series model. Although the tests developed 
apply to real unit roots, they can be applied to certain 
cointegrated seasonal models. In particular, suppose that 
(1 - L) in (2.1) is replaced by a seasonal difference (1 - 
Ld), where d is some integer. Since (1 - Ld) = (1 - L)(1 
+ L + * + Ld -1), the tests and asymptotic theory apply 
directly to the transformed series (1 + L + ... + Ld- )Xt. 
This approach only tests for cointegration at frequency 0; 
however, it is possible that alternative tests could be de- 
veloped for cointegration at seasonal frequencies. 

The derivation of the tests and the Monte Carlo results 
suggest that the qf test might perform better than the qc 
test if under the null the data are generated by a VAR, 
whereas the reverse is true if the data are generated by a 
vector moving average process. Further simulation studies 
are needed to characterize more fully the circumstances 
in which the tests are likely to perform well. 

[Received June 1986. Revised May 1988.] 
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