
Testing for Concise Representations

Ilias Diakonikolas∗

Columbia University
ilias@cs.columbia.edu

Homin K. Lee†

Columbia University
homin@cs.columbia.edu

Kevin Matulef‡

MIT
matulef@mit.edu

Krzysztof Onak§

MIT
konak@mit.edu

Ronitt Rubinfeld¶

MIT
ronitt@theory.csail.mit.edu

Rocco A. Servedio‖

Columbia University
rocco@cs.columbia.edu

Andrew Wan∗∗

Columbia University
atw12@columbia.edu

Abstract

We describe a general method for testing whether a function on n input variables has a concise repre-
sentation. The approach combines ideas from the junta test of Fischer et al. [6] with ideas from learning
theory, and yields property testers that make poly(s/ε) queries (independent ofn) for Boolean function
classes such ass-term DNF formulas (answering a question posed by Parnas et al. [12]), size-s decision
trees, size-s Boolean formulas, and size-s Boolean circuits.

The method can be applied to non-Boolean valued function classes as well. This is achieved via a gener-
alization of the notion ofvariationfrom Fischer et al. to non-Boolean functions. Using this generalization we
extend the original junta test of Fischer et al. to work for non-Boolean functions, and give poly(s/ε)-query
testing algorithms for non-Boolean valued function classes such as size-s algebraic circuits ands-sparse
polynomials over finite fields.

We also prove añΩ(
√

s) query lower bound for nonadaptively testings-sparse polynomials over finite
fields of constant size. This shows that in some instances, our general method yields a property tester with
query complexity that is optimal (for nonadaptive algorithms) up to a polynomial factor.

1. Introduction

Suppose you are given black-box access to a program computing an unknown function. You would like
to gain some understanding of the program by querying it as few times as possible. A natural first question
is whether the program has some sort of concise representation: is it representable by a small decision tree?
a small DNF formula, Boolean circuit, or algebraic circuit?a sparse polynomial?

In this paper we study the problem of testing whether a function has a concise representation for various
different types of representations, including those mentioned above. We work in the standard model of
property testing. Namely, we assume that we have black-box query access to an unknown functionf :

∗Supported in part by NSF grant CCF-04-30946 and an AlexanderS. Onassis Foundation Fellowship.
†Supported in part by NSF award CCF-0347282 and by NSF award CCF-0523664.
‡Supported in part by an NSF graduate fellowship.
§Supported in part by NSF grant 0514771.
¶Supported in part by NSF grant 0514771.
‖Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and by a Sloan Foundation Fellowship.

∗∗Supported in part by NSF award CCF-0347282 and by NSF award CCF-0523664.

1

Electronic Colloquium on Computational Complexity, Report No. 77 (2007)

ISSN 1433-8092

Ωn → X, and we are interested in algorithms that accept any function which has a concise representation
of the desired type and reject any function which isε-far from having such a representation (i.e. for every
function f ′ which has such a representation,f andf ′ disagree on at least anε fraction of inputs). As is
standard in property testing, we assume that queries to the function are the limiting resource (rather than
computation time), and we would like to obtain algorithms whose query complexity is independent ofn, the
number of inputs to the function.

Previous work on testing function classes.There has been considerable research on testing functions
for various types of representations. Our work is most directly motivated by the paper of Parnaset al. [12],
who gave algorithms for testing whether Boolean functionsf : {0, 1}n→{0, 1} have certain very simple
representations as Boolean formulae. They gave anO(1/ε)-query algorithm for testing whetherf is a single
Boolean literal or a Boolean conjunction, and anÕ(s2/ε)-query algorithm for testing whetherf is ans-term
monotone DNF. Parnaset al.posed as an open question whether a similar testing result can be obtained for
the broader class of general (non-monotone)s-term DNF formulas.

Other closely related results include the following: AnO(1/ε)-query algorithm for testing whether a
function can be represented as a linear form over a finite fieldis given in Blumet al. [2]. This algorithm was
subsequently generalized in several works to test whetherf can be represented as a low-degree polynomial.
In particular, [1, 8, 9] consider the case whenf is defined over a small finite field. Fischeret al. [6] gave an
algorithm to test whether a Boolean functionf : Ωn → {0, 1} is aJ-junta (i.e. depends only on at mostJ
of its n arguments) with query complexity polynomial inJ and1/ε.

Other research in the area includes the work of Kearns and Ron[10], who gave testing algorithms for the
classes of interval functions over the continuous interval[0, 1] and for neural networks and decision trees
over the continuous cube[0, 1]n. Their results are not comparable to ours because they differ from the
“standard” property testing results in several ways; for one thing, they view the dimensionn as a constant
and their algorithms have query complexity that depends (exponentially) onn.

Our Results. Our main result is a general algorithm that can be used to testwhether an unknown
functionf : Ωn → X belongs to one of many different representation classes, aslong as the representation
class satisfies certain conditions. We show that this algorithm yields property testers for many classes
that were not previously known to be testable. These includedecision lists, size-s decision trees, size-s
branching programs,s-term DNF (resolving the aforementioned open question of Parnaset al.), size-s
Boolean formulas, size-s Boolean circuits, ands-sparse polynomials overF2.1 For each of these classes the
testing algorithm uses poly(s, 1/ε) many queries, independent of the numbern of inputs to the function (the
running time is exponential ins, though linear inn). These testing results are summarized in the top part of
Table 1. We note that our general algorithm can also be easilyshown to yield property testers for all of the
classes tested in [12]; the query complexities would be slightly larger than in [12], but would not require a
specialized algorithm for each problem.

Our second contribution is a generalization of the notion ofvariation given in [6] to functions with
non-Boolean ranges. This generalization, and the properties we establish for the generalized variation, lets
us extend the junta test of [6] to functions with non-Booleanranges. It also allows us to use our general
algorithm to achieve testers for non-Boolean valued function classes such as size-s algebraic circuits, size-s
algebraic computation trees, ands-sparse polynomials over finite fields (see the bottom of Table 1).

Our third main contribution is a lower bound; we show that anynon-adaptive algorithm to tests-sparse
polynomials over finite fields of constant size must makeΩ̃(

√
s) queries. Since this is within a polynomial

factor of our upper bound, this result shows that in at least one instance our general algorithm yields a tester
that is nearly optimal. (For testing other representation classes, there is a larger gap between our upper

1We remind the reader that ifC is a subclass ofC′, the existence of a testing algorithm forC
′ doesnot imply the existence of a

testing algorithm forC; thus, for example, our testing result for Boolean circuitsdoes not imply the results for weaker representations
such as Boolean formulas or DNF formulas.

2

Class of functions Number of Queries Reference

Boolean functionsf : {0, 1}n → {0, 1}
Boolean literals (dictators), conjunctions O(1/ε) [12]

s-term monotone DNFs Õ(s2/ε) [12]
J-juntas Õ(J2/ε), Ω(J) (adaptive) [6], [3]

decision lists Õ(1/ε2) this paper
size-s decision trees, size-s branching programs, Õ(s4/ε2),

this paper
s-term DNFs, size-s Boolean formulas Ω(log s/ log log s) (adaptive)

s-sparse polynomials overF2 Õ(s4/ε2), Ω̃(
√

s) this paper
size-s Boolean circuits Õ(s6/ε2) this paper

functions with Fourier degree≤ d Õ(26d/ε2), Ω̃(
√

d) this paper

General functionsf : Ωn → X

J-juntas Õ(J2/ε) this paper

s-sparse polynomials over field of size|F| Õ((s|F|)4/ε2),
this paper

Ω̃(
√

s) for |F| = O(1)

size-s algebraic circuits,
Õ(s4 log3 |F|/ε2) this paper

size-s algebraic computation trees overF

Table 1. Selected previous results on testing function classes. Our upper bounds are for adap-
tive algorithms, though in all cases very similar bounds for non-adaptive algorithms can be
achieved (see Appendix C). The lower bounds are for non-adaptive algorithms unless other-
wise indicated by (adaptive).

and lower bounds. We give some simple but fairly weak lower bounds for other representation classes in
Appendix E.)

Our techniques. Our approach combines ideas from the junta test of Fischeret al. [6] with ideas from
learning theory. The basic idea of using a learning algorithm to do property testing goes back to Goldreichet
al. [7]. They observed that any proper learning algorithm for a classC can immediately be used as a testing
algorithm forC. (If f belongs toC, then a proper learning algorithm can be used to find a function f ′ ∈ C
thatf is ε/2-close to, while iff is ε-far from C then clearly the proper learning algorithm cannot find any
function f ′ ∈ C thatf is evenε-close to.) However, it is well known that proper learning algorithms for
virtually every interesting class ofn-variable functions (such as all the classes listed in Table1, including
such simple classes as Boolean literals) must make at leastΩ(log n) queries. Thus this testing-by-learning
approach did not previously yield any strong results for testing interesting function classes.

We get around this impediment by making the key observation that many interesting classesC of func-
tions are “well-approximated” by juntas in the following sense: every function inC is close to some function
in CJ , whereCJ ⊆ C and every function inCJ is aJ-junta. For example, everys-term DNF over{0, 1}n is
τ -close to ans-term DNF that depends on onlys log s/τ variables, since each term with more thanlog s/τ
variables can be removed from the DNF at the cost of at mostτ/s error. Roughly speaking, our algorithm
for testing whetherf belongs toC works by attempting to learn the “structure” of the junta inCJ that f
is close towithout actually identifying the relevant variables on which the junta depends. If the algorithm
finds such a junta function, it accepts, and if it does not, it rejects. Our approach can be characterized as
testing by implicit learning(as opposed to the explicit proper learning in the approach of Goldreichet al.
[7]), since we are “learning” the structure of the junta to which f is close without explicitly identifying

3

its relevant variables. Indeed, avoiding identifying the relevant variables is what makes it possible to have
query complexity independent ofn.

We find the structure of the juntaf ′ in CJ that f is close to by using the techniques of [6]. As in [6],
we begin by randomly partitioning the variables off into subsets and identifying which subsets contain
an influential variable (the random partitioning ensures that with high probability, each subset contains
at most one such variable iff is indeed inC). Next, we create a sample of random labeled examples
(x1, y1), (x2, y2), ..., (xm, ym), where eachxi is a string of lengthJ (not lengthn; this is crucial to the
query complexity of the algorithm) whose bits correspond tothe influential variables off , and whereyi

corresponds with high probability to the value of juntaf ′ onxi. Finally, we exhaustively check whether any
function inCJ – overJ input variables – is consistent with this labeled sample. This step takes at least|CJ |
time steps, which is exponential ins for the classes in Table 1; but since|CJ | is independent ofn we are
able to get away with an overall query complexity that is independent ofn. (The overall time complexity is
linear as a function ofn; note that such a runtime dependence onn is inevitable since it takesn time steps
simply to prepare a length-n query string to the black-box function.) We explain our testing algorithm in
more detail in Section 3.

In order to extend our testing results and the junta testing results in [6] to functions with non-Boolean
ranges, we extend the technical definition ofvariation given in [6] to more general functions (intuitively,
the variation is a measure of the ability of a set of variablesto sway a function’s output). We show that this
extended definition has the necessary properties to carry the analysis of the junta tests and our test over to
this more general setting. We present and analyze our extended definition of variation in Section 3.3.

Finally, we prove our lower bound for testings-sparse polynomials over finite fields in two stages. We
first show that any non-adaptive algorithm that can successfully distinguish a linear formxi1 + · · · + xis

(over s randomly selected variables fromx1, . . . , xn) from a linear formxi1 + · · · + xis+p
(over s + p

randomly selected variables, wherep is the characteristic of the finite field) must makeΩ̃(
√

s) queries. This
is a technical generalization of a similar result forF2 in [6]; the heart of our proof is an extension of a
convergence type result about random walks overZ

q
2 with arbitrary step distribution to random walks over

Z
q
p. (As an interesting side product, the latter also partiallyanswers a question posed in [6] as to what groups

possess a similar convergence type property.) We then provethat everys-sparse polynomialg over finite
field F is “far” from every affine function with at leasts + 1 non-zero coefficients. This result does not
have an analogue in [6] (that paper establishes a lower boundon distinguishing size-s parities from size-
(s + 2) parities, and it is trivially true that every size-s parity is far from every size-(s + 2) parity) and its
proof requires several ideas; our argument uses random restrictions chosen according to a distribution that
depends on the structure of the polynomialg. We present these results in Section 4.

2. Preliminaries

For i ∈ N, we denote[i]
def
= {1, 2, . . . , i}. Throughout the paper,Ω denotes an arbitrary finite set and

X denotes an arbitrary finite range set. We will be interested in functionsf that map fromΩn to X. In
keeping with the notation of Fischeret al. [6] we sometimes writeP([n]) to denote the domainΩn, and we
write x = (x1, . . . , xn) to denote an element of the domainP([n]). An important special case for many of
the applications of our main result, discussed in Appendix D.1, is whenf is a Boolean function over the
Boolean hypercube, i.e.Ω = {0, 1}n andX = {−1, 1}.

We view the domainP([n]) as endowed with the uniform probability measure. Two functionsf1, f2 :
P([n]) → X are said to beε-closeif Pr[f1(x) 6= f2(x)] ≤ ε, and areε-far if Pr[f1(x) 6= f2(x)] > ε. We
write E to denote expectation andV to denote variance.

Let f : P([n])→ X be a function and letI ⊆ [n] be a subset of the input coordinates. We defineP(I)
to be the set of all partial assignments to the input coordinatesxi for i ∈ I. ThusP([n]) = Ωn is the entire

4

domain of all input vectors of lengthn. For w ∈ P([n] \ I) andz ∈ P(I), we writew t z to denote the
assignment whosei-th coordinate iswi if i ∈ [n] \ I and iszi if i ∈ I.

A function f : P([n]) → X is said to be aJ-junta if there exists a setJ ⊆ [n] of size at mostJ such
thatf(x) = f(y) for every two assignmentsx, y ∈ P([n]) that agree onJ .

Let S be a finite set andP, Q be probability measures on it. Thestatistical distancebetweenP andQ is

defined by‖P−Q‖ def
= maxA⊆S |P(A)−Q(A)|.

3. The test and an overview of its analysis

In this section we present our testing algorithm and give an intuitive explanation of how it works. We
close this section with a detailed statement of our main theorem, Theorem 4, describing the correctness and
query complexity of the algorithm.

3.1. Subclass approximators.

Let C denote a class of functions fromP([n]) to X. We will be interested in classes of functions that
can be closely approximated by juntas in the class. We have the following:

Definition 1. For τ > 0, we say that a subclassC(τ) ⊆ C is a (τ, J(τ))-approximatorfor C if

• C(τ) is closed under permutation of variables, i.e. iff(x1, . . . , xn) ∈ C(τ) thenf(xσ1 , . . . , xσn) is
also inC(τ) for every permutationσ of [n]; and

• for every functionf ∈ C, there is a functionf ′ ∈ C(τ) such thatf ′ is τ -close tof and f ′ is a
J(τ)-junta.

Typically for usC will be a class of functions with size bounds in some particular representation, and
J(τ) will depend ons and τ. (A good running example to keep in mind isΩ = {0, 1}, X = {−1, 1},
andC is the class of all functions that haves-term DNF representations. In this case we may takeC(τ) to
be the class of alls-term log(s/τ)-DNFs, and we haveJ(τ) = s log(s/τ).) Our techniques will work on
function classesC for which J(τ) is a slowly growing function of1/τ such aslog(1/τ). In Section 3.7 we
will consider many different specific instantiations ofC and corresponding choices ofC(τ).

We writeC(τ)k to denote the subclass ofC(τ) consisting of those functions that depend only on variables
in {x1, . . . , xk}. We may (and will) view functions inC(τ)k as takingk arguments fromΩ rather thann.

3.2. The independence test.

An important sub-test that will be used throughout the main test is the independence test from [6].

Independence test:Given a functionf , and a set of variablesI, choosew ∈R P([n]\I) andz1, z2 ∈R P(I).
Accept iff(w t z1) = f(w t z2) and reject iff(w t z1) 6= f(w t z2).

If f is independent of the coordinates inI, the independence test always accepts. On the other hand,
intuitively if I contains highly relevant variables that are likely to sway the output off , the independence
test is likely to reject.

3.3. Extended variation and testing juntas with non-Boolean ranges.

Fischeret al. [6] defined the notion of thevariation of a function on a subset of input variables. The
variation is a measure of the extent to which the function is sensitive to the values of the variables in the set.
Let us recall their definition of variation.

5

Definition 2. Let f be a function fromP([n]) to {−1, 1}, and letI ⊆ [n] be a subset of coordinates. We
define thevariationof f on I as

Vrf (I)
def
= Ew∈P([n]\I)

[
Vz∈P(I) [f(w t z)]

]
. (1)

Fischeret al.showed that the variation is monotone and sub-additive; that for a subsetI of the variables,
the probability that the independence test rejects is exactly 1

2Vrf (I); and that ifVrf (I) ≤ 2ε thenf is
ε-close to a function which does not depend on the variables inI. The analysis of their junta tests depends
crucially on these properties of variation.

Unfortunately, the variation properties stated above do not always hold for functions with non-Boolean
range, and the original analysis of the junta test does not carry over to the non-Boolean setting. Intuitively,
however, the fact that a function may take on more than two values should not make the junta test incorrect.
The independence test, which is the main component of the junta test, only checks if values of the function
are equal or different. Can one modify the definition of variation and the analysis of the junta test so that the
non-Boolean case is captured too?

An approach that we manage to successfully apply is mapping the function range to the Boolean range.
The general idea is to pick a mapping from the function rangeX to the set{−1, 1} that preserves as much
of the sensitivity of the function as possible. If we look at Equation 1 defining variation, we could choose
the best mapping to{−1, 1} either before or after the expectation operator. It turns out that depending on
the context, one or the other is more suitable, so we define anduse both. Denote byF(X) the set of all
functions fromX to {−1, 1}.

Definition 3. Let f be a function fromP([n]) to X, and letI ⊆ [n] be a subset of coordinates. We define
thebinary variationof f on I as

BinVrf (I)
def
= max

g∈F(X)
Vrg◦f (I) = max

g∈F(X)
Ew∈P([n]\I)

[
Vz∈P(I) [g(f(w t z))]

]
,

and theextreme variationof f on I as

ExtVrf (I)
def
= Ew∈P([n]\I)

[
max

g∈F(X)
Vz∈P(I) [g(f(w t z))]

]
.

To be able to use both new notions of variation, we need to showthat they are related. Probabilistic
analysis shows that these two quantities are always within afactor of 4 of each other:

1

4
ExtVrf (I) ≤ BinVrf (I) ≤ ExtVrf (I).

In Appendix A, we prove that thebinary variationhas almost identical properties to the original varia-
tion. Namely, we show that the binary variation is also monotone and sub-additive; that the independence
test rejects with probability at least12BinVrf (I); and that ifBinVrf (I) ≤ ε/4 for some subsetI of the
variables off thenf is ε-close to a function that does not depend onI. Furthermore, in Appendix A.6
we explain how these properties imply that the three junta tests given by Fischeret al. essentially work for
functions with non-Boolean ranges as well (with minor modifications). Indeed, the first step of our general
testing algorithmA is essentially the junta test of Fischeret al. modified to apply to non-Boolean valued
functions. We carefully analyze this first step in Appendix B.1; the results there are easily seen to imply that
this first step gives añO(J2/ε)-query junta test for non-Boolean functions as claimed in Table 1.

6

Identify-Critical-Subsets (input is black-box access tof : Ωn → X andε > 0)

1. Partition the variablesx1, . . . , xn into r random subsets by assigning each ofx1, . . . , xn equiprob-
ably to one ofI1, . . . , Ir.

2. Chooses random subsetsΛ1, . . . ,Λs ⊆ [r] of sizeJ(τ?) by uniformly choosing without repeti-

tionsJ(τ?) members of[r]. Each setΛi determines a blockBi
def
=

⋃
j∈Λi

Ij. (Note that we do
not guarantee that the blocks are disjoint.)

3. Apply h iterations of theindependence test(see Section 3.2) to each blockBi. If all of the
independence test iterations applied to blockBi accept, thenBi is declared to bevariation-free,
and all the subsetsIj with j ∈ Λi are declared to be variation-free on its behalf.

4. If:

(a) at least half of the blocksB1, . . . ,Bs are variation-free; and

(b) except for at mostJ(τ?) subsets, every subset in the partitionI1, . . . ,Ir is declared variation-
free on behalf of some block,

then output the listIi1 , . . . , Iij of those subsets that arenot declared to be variation-free. (We call
these thecritical subsets.) Otherwise, halt and output “Not inC.”

Figure 1. The subroutine Identify-Critical-Subsets.

3.4. Explanation of our testing algorithm.

Our algorithm for testing whether a functionf : P([n])→X belongs toC or is ε-far from C is given in
Figures 1 through 3. Givenε > 0 and black-box access tof , the algorithm performs three main steps:

1. Identify critical subsets. In Step 1, we first randomly partition the variablesx1, . . . , xn into r disjoint
subsetsI1, . . . , Ir. We then attempt to identify a set ofj ≤ J(τ?) of theser subsets, which we refer
to ascritical subsets because they each contain a “highly relevant” variable. (For now the valueτ?

should be thought of as a small quantity; we discuss how this value is selected below.) This step is
essentially the same as the 2-sided test forJ-juntas from Section 4.2 of Fischeret al. [6]. We will
show that iff is close to aJ(τ?)-junta then this step will succeed w.h.p., and iff is far from every
J(τ?)-junta then this step will fail w.h.p.

2. Construct a sample.Let Ii1 , . . . , Iij be the critical subsets identified in the previous step. In Step 2
we construct a setS of m labeled examples{(x1, y1), . . . , (xm, ym)}, where eachxi is independent
and uniformly distributed overΩJ(τ?). We will show that iff belongs toC, then with high probability
there is a fixedf ′′ ∈ C(τ?)J(τ?) such that eachyi is equal tof ′′(xi). On the other hand, iff is far
from C, then we will show that w.h.p. no suchf ′′ ∈ C(τ?)J(τ?) exists.

To construct each labeled example, we again borrow a technique outlined in [6]. We start with a uni-
formly randomz ∈ Ωn. We then attempt to determine how thej highly relevant coordinates ofz
are set. Although we don’t know which of the coordinates ofz are highly relevant, we do know that,
assuming the previous step was successful, there should be one highly relevant coordinate in each of
the critical subsets. We use the independence test repeatedly to determine the setting of the highly
relevant coordinate in each critical subset.

For example, suppose thatΩ = {0, 1} andI1 is a critical subset. To determine the setting of the highly
relevant coordinate ofz in critical subsetI1, we subdivideI1 into two sets: the subsetΩ0 ⊆ I1 of

7

Construct-Sample (input is the listIi1 , . . . , Iij output by Identify-Critical-Subsets and black-box
access tof)

1. Repeat the followingm times to construct a setS of m labeled examples(x, y) ∈ ΩJ(τ?) × X,
whereΩ = {ω0, ω1, . . . , ω|Ω|−1}:

(a) Drawz uniformly fromΩn. Let Xq
def
= {i : zi = ωq}, for each0 ≤ q ≤ |Ω| − 1.

(b) For` = 1, . . . , j

i. w
def
= 0

ii. For k = 1, . . . , dlg |Ω|e
A. Ω0

def
= union of(Xq ∩ Ii`) taken over all0 ≤ q ≤ |Ω| − 1 such that thek-th bit of

q is zero

B. Ω1
def
= union of(Xq ∩ Ii`) taken over all0 ≤ q ≤ |Ω| − 1 such that thek-th bit of

q is one

C. Apply g iterations of theindependence testto Ω0. If any of theg iterations reject,
markΩ0. Similarly, applyg iterations of theindependence testto Ω1; if any of the
g iterations reject, markΩ1.

D. If exactly one ofΩ0, Ω1 (sayΩb) is marked, set thek-th bit of w to b.

E. If neither ofΩ0, Ω1 is marked, set thek-th bit of w to unspecified.

F. If bothΩ0, Ω1 are marked, halt and output “no”.

iii. If any bit of w is unspecified, choosew at random from{0, 1, . . . , |Ω| − 1}.
iv. If w /∈ [0, |Ω| − 1], halt and output “no.”

v. Setx` = ωw.

(c) Evaluatef onz, assign the remainingJ(τ?)− j coordinates ofx randomly, and add the pair
(x, f(z)) to the sample of labeled examples being constructed.

Figure 2. The subroutine Construct-Sample.

Check-Consistency(input is the sampleS output byIdentify-Critical-Subsets)

1. Check every function inC(τ?)J(τ?) to see if any of them are consistent with sampleS. If so
output “yes” and otherwise output “no.”

Figure 3. The subroutine Check-Consistency.

indices wherez is set to0, and the subsetΩ1 = I1\Ω0 of indices wherez is set to1. We can then use
the independence test on bothΩ0 andΩ1 to find out which one contains the highly relevant variable.
This tells us whether the highly relevant coordinate ofz in subsetI1 is set to0 or 1. We repeat this
process for each critical subset in order to find the settingsof the j highly relevant coordinates ofz;
these form the stringx. (The otherJ(τ?) − j coordinates ofx are set to random values; intuitively,
this is okay since they are essentially irrelevant.) We thenoutput(x, f(z)) as the labeled example.

3. Check consistency.Finally, in Step 3 we search throughC(τ?)J(τ?) looking for a functionf ′′ over
ΩJ(τ?) that is consistent with allm examples inS. (Note that this step takesΩ(|C(τ?)J(τ?)|) time but
uses no queries.) If we find such a function then we acceptf , otherwise we reject.

8

3.5. Sketch of the analysis.

We now give an intuitive explanation of the analysis of the test.

Completeness.Supposef is in C. Then there is somef ′ ∈ C(τ?) that isτ?-close tof . Intuitively, τ?-close
is so close that for the entire execution of the testing algorithm, the black-box functionf might as well
actually bef ′ (the algorithm only performs� 1/τ? many queries in total, each on a uniform random string,
so w.h.p. the view of the algorithm will be the same whether the target isf or f ′). Thus, for the rest of this
intuitive explanation of completeness, we pretend that theblack-box function isf ′.

Recall that the functionf ′ is aJ(τ?)-junta. Let us refer to the variables,xi, that haveBinVrf (xi) > θ
(recall thatBinVrf (xi) is a measure of the influence of variablexi, andθ is some threshold to be defined
later) as thehighly relevantvariables off ′. Sincef ′ is a junta, in Step 1 we will be able to identify a
collection ofj ≤ J(τ?) “critical subsets” with high probability. Intuitively, these subsets have the property
that:

• each highly relevant variable occurs in one of the critical subsets, and each critical subset contains at
most one highly relevant variable (in fact at most one relevant variable forf ′);

• the variables outside the critical subsets are so “irrelevant” that w.h.p. in all the queries the algorithm
makes, it doesn’t matter how those variables are set (randomly flipping the values of these variables
would not change the value off ′ w.h.p.).

Given critical subsets from Step 1 that satisfy the above properties, in Step 2 we construct a sample of
labeled examplesS = {(x1, y1), . . . , (xm, ym)} where eachxi is independent and uniform overΩJ(τ?). We
show that w.h.p. there is aJ(τ?)-juntaf ′′ ∈ C(τ?)J(τ?) with the following properties:

• there is a permutationσ : [n]→ [n] for whichf ′′(xσ(1), . . . , xσ(J(τ))) is close tof ′(x1, . . . , xn);

• The sampleS is labeled according tof ′′.

Finally, in Step 3 we do a brute-force search over all ofC(τ?)J(τ?) to see if there is a function consistent
with S. Sincef ′′ is such a function, the search will succeed and we output “yes” with high probability
overall.

Soundness.Suppose now thatf is ε-far fromC.
One possibility is thatf is ε-far from everyJ(τ?)-junta; if this is the case then w.h.p. the test will output

“no” in Step 1.
The other possibility is thatf is ε-close to aJ(τ?)-junta f ′ (or is itself such a junta). Suppose that

this is the case and that the testing algorithm reaches Step 2. In Step 2, the algorithm tries to construct a
set of labeled examples that is consistent withf ′. The algorithm may fail to construct a sample at all; if
this happens then it outputs “no.” If the algorithm succeedsin constructing a sampleS, then w.h.p. this
sample is indeed consistent withf ′; but in this case, w.h.p. in Step 3 the algorithm will not find any function
g ∈ C(τ?)J(τ?) that is consistent with all the examples. (If there were sucha functiong, then standard
arguments in learning theory show that w.h.p. any such function g ∈ C(τ?)J(τ?) that is consistent withS
is in fact close tof ′. Sincef ′ is in turn close tof , this would mean thatg is close tof . But g belongs to
C(τ?)J(τ?) and hence toC, so this violates the assumption thatf is ε-far fromC.)

3.6. The main theorem.

We now state our main theorem, which is proved in detail in Appendix B. The algorithmA is adaptive,
but in Appendix C we discuss how to make it non-adaptive with only a slight increase in query complexity.

9

Theorem 4. There is an algorithmA with the following properties:
Let C be a class of functions fromΩn to X. Suppose that for everyτ > 0, C(τ) ⊆ C is a (τ, J(τ))-

approximator forC. Suppose moreover that for everyε > 0, there is aτ satisfying

τ ≤ κε2 · [ln(|Ω|) · J(τ)2 · ln2(J(τ)) · ln2(|C(τ)J(τ)|) · ln ln(J(τ)) · ln(ln(|Ω|)
ε ln |C(τ)J(τ)|)]−1, (2)

whereκ > 0 is a fixed absolute constant. Letτ? be the largest valueτ satisfying (2) above. Then algorithm
Amakes

Õ

(
ln |Ω|

ε2
J(τ?)2 ln2(|C(τ?)J(τ?)|)

)

many black-box queries tof , and satisfies the following:

• If f ∈ C thenA outputs “yes” with probability at least2/3;

• If f is ε-far fromC thenA outputs “no” with probability at least2/3.

Here are some observations to help interpret the bound (2). Note that ifJ(τ) grows too rapidly as a
function of1/τ , e.g.J(τ) = Ω(1/

√
τ), then there will be noτ > 0 satisfying inequality (2). On the other

hand, ifJ(τ) grows slowly as a function of1/τ , e.g.log(1/τ), then it is may be possible to satisfy (2).
In all of our applicationsJ(τ) will grow as O(log(1/τ)), and ln |C(τ)J(τ)| will always be at most

poly(J(τ)), so (2) will always be satisfiable. The most typical case for us will be thatJ(τ) ≤ poly(s) log(1/τ)
(wheres is a size parameter for the class of functions in question) and ln |C(τ)J(τ)| ≤ poly(s)·poly log(1/τ),

which yieldsτ? = Õ(ε2)/poly(s) and an overall query bound ofpoly(s)/Õ(ε2).

3.7. Applications to Boolean and Non-Boolean Functions

Theorem 4 can be used to achieve testing algorithms, in most cases polynomial-query ones, for a wide
range of natural and well-studied classes of Boolean functions over then-dimensional Boolean hypercube
(i.e. Ω = {0, 1} andX = {−1, 1}), such ass-term DNF. We use Theorem 4 to achieve testing algorithms
for several interesting classes of non-Boolean functions as well. These testing results are noted in Table 1;
we give detailed statements and proofs of these results in Appendix D.

4. Lower bounds for testing sparse polynomials.

One consequence of Theorem 4 is a poly(s/ε)-query algorithm for testings-sparse polynomials over
finite fields of fixed size (independent ofn). In this section we present a polynomial lower bound for non-
adaptive algorithms for this testing problem. (Detailed proofs for all results in this section are given in
Appendix E.)

Theorem 5. Let F be any fixed finite field, i.e.|F| = O(1) independent ofn. There exists a fixed constant
ε > 0 (depending on|F|) such that anynon-adaptiveε-testing algorithm for the class ofs-sparse polynomials
overFn must makẽΩ(

√
s) queries.

To prove Theorem 5 we use Yao’s principle [16] in (what has become) a standard way for proving
lower bounds in property testing (e.g. see [5]). We present two distributionsDYES andDNO, the former
on inputs satisfying the property (i.e.s-sparse polynomials fromFn to F), the latter on inputs that areε-far
from satisfying it, and show that any deterministic (non-adaptive) algorithm making “few” queries cannot
distinguish between a random draw fromDYES versus a random draw fromDNO. By standard arguments

10

(see for example Lemma 8.1 in [5]), it suffices to argue that for any query setQ ⊂ Fn of cardinality
q = Õ(

√
s) the induced distributions onFq (obtained by restricting the randomly chosen functions to these

q points) have statistical distance less than1/3.
We define bothDYES andDNO to be distributions over linear forms fromFn to F. A random func-

tion from DYES is obtained by independently and uniformly (with repetitions) pickings variables from
x1, . . . , xn and taking their sum.DNO is defined in the same way, but instead we picks + p variables,
wherep is the characteristic of the fieldF. Clearly, every draw fromDYES is ans-sparse polynomial over
F, and forn = ω((s + p)2), the birthday paradox implies that almost all the probability mass ofDNO is on
functions withs+ p distinct nonzero coefficients. We claim that, for any set ofq = Õ(

√
s) points inFn, the

corresponding induced distributions have statistical distance less than1/3.
Let (G,+) be a finite group. A probability measureP on G induces a random walk onG as follows:

Denoting byXn its position at timen, the walk starts at the identity element and at each step selects an
elementξn ∈ G according toP and goes toXn+1 = ξn + Xn. By arguments parallel to those in Section
6 of [6], the aforementioned claim can be reduced to the following theorem about random walks overZ

q
r,

which we prove in Section E.1.2:

Theorem 6. Letr be a prime,q ∈ N∗ andP be a probability measure onZq
r. Consider the random walkX

onZ
q
r with step distributionP. LetPt be the distribution ofX at stept. There exists an absolute constant

C > 0 such that for every0 < δ ≤ 1/2, if t ≥ C log 1/δ
δ · r4 log r · q2 log2(q + 1) then‖Pt − Pt+r‖ ≤ δ.

Theorem 6 is a non-trivial generalization of a similar result proved in [6] for the special caser = 2.
We now give a high-level overview of the overall strategy. Any givenx ∈ (Zq

r)∗ partitions the space intor
non-empty subspacesV x

i = {y ∈ Z
q
r : 〈y, x〉 = i} for i = 0, 1, . . . , r − 1. We say that anx ∈ (Zq

r)∗ is
degenerateif there exists somei whose probability measureP(V x

i) is “large”. We consider two cases: If
all the Fourier coefficients ofP are not “very large”, then we can show by standard arguments that the walk
is close to its stationary (uniform) distribution after thedesired number of steps. If, on the other hand, there
exists a “very large” Fourier coefficient, then we argue thatthere must also exist a degenerate direction and
we use induction onq.

So far we have shown that any algorithm that can successfullydistinguish a random linear formxi1 +
· · · + xis from a random linear formxi1 + · · · + xis+p

must makẽΩ(
√

s) queries. To complete the proof
of Theorem 5, we must show that everys-sparse polynomial overFn is “far” from every linear function of
the formxi1 + · · · + xis+p

. We do this via the following new theorem (stated and proved in more detail as
Theorem 36 in Appendix E), which may be of independent interest:

Theorem 7. There exists a functionε = ε(|F|) such that for anyg : Fn → F that is ans-sparse polynomial
with s ≤ n− 1, g is ε-far from every affine function with at leasts + 1 non-zero coefficients.

The high-level idea of the proof of Theorem 7 is as follows. Let M be a particular monomial ing, and
consider what happens wheng is hit with a restriction that fixes all variables that do not occur in M. M
itself is not affected by the restriction, but it is possiblefor a longer monomial to “collapse” ontoM and
obliterate it (i.e. ifM is x1x

2
2 andg contains another monomialM ′ = −x1x

2
2x

3
3, then a restriction that fixes

x3 ← 1 would causeM ′ to collapse ontoM and in fact obliterateM). We show thatg must have a short
monomialM (which, however, has degree at least 2) with the following property: for a constant fraction
of all possible restrictions of variables not inM , no longer monomial collapses ontoM . This implies that
for a constant fraction of all such restrictionsρ, the induced polynomialgρ is “substantially” different from
any affine function (sincegρ – a polynomial of degree at least two – is not identical to any affine function,
it must be “substantially” different since there are only length(M) surviving variables), and henceg itself
must be “far” from any affine function.

11

Lower bounds for other function classes.By adapting techniques of Chockler and Gutfreund [3], we
can also obtaiñΩ(log s) lower bounds for many of the other testing problems listed inTable 1. We state and
prove these lower bounds at the end of Appendix E.

5. Conclusion

Our positive results are all achieved via a single generic algorithm that is not geared toward any partic-
ular class of functions. For many classes of interest, the query complexity of this algorithm ispoly(s, 1/ε),
but the running time is exponential ins. It would be interesting to study algorithms that are more specifi-
cally tailored for classes such ass-term DNF, size-s Boolean formulas, etc. with the aim of obtaining poly(s)
runtimes.

One approach to achieving better runtimes is to replace our “implicit learning” step with a more efficient
proper learning algorithm (the current learning algorithmsimply gathers random examples and exhaustively
checks for a consistent hypothesis in the concept classC(τ?)J(τ?)). For some specific concept classes, proper
learning is known to be NP-hard, but for other classes, the complexity of proper learning is unknown. The
existence of a time-efficient proper learning algorithm forsome specific classC(τ?)J(τ?) would likely yield
a time-efficient test in our framework.

Another goal for future work is to strengthen our lower bounds; can poly(s) query lower bounds be
obtained for classes such as size-s decision trees,s-term DNF, etc?

References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing low-degree polynomials over GF(2). In
Proceedings of RANDOM-APPROX, pages 188–199, 2003.

[2] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.J. Comp.
Sys. Sci., 47:549–595, 1993. Earlier version in STOC’90.

[3] H. Chockler and D. Gutfreund. A lower bound for testing juntas.Information Processing Letters, 90(6):301–305,
2004.

[4] P. Diaconis.Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward,
CA, 1988.

[5] E. Fischer. The art of uninformed decisions: A primer to property testing.Computational Complexity Column
of The Bulletin of the European Association for TheoreticalComputer Science, 75:97–126, 2001.

[6] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas.Journal of Computer & System
Sciences, 68:753–787, 2004.

[7] O. Goldreich, S. Goldwaser, and D. Ron. Property testingand its connection to learning and approximation.
Journal of the ACM, 45:653–750, 1998.

[8] C. Jutla, A. Patthak, A. Rudra, and D. Zuckerman. Testinglow-degree polynomials over prime fields. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04), pages
423–432, 2004.

[9] T. Kaufman and D. Ron. Testing polynomials over general fields. InProceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’04), pages 413–422, 2004.

[10] M. Kearns and D. Ron. Testing problems with sub-learning sample complexity.J. Comp. Sys. Sci., 61:428–456,
2000.

[11] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. InProceedings of the
Twenty-Fourth Annual Symposium on Theory of Computing, pages 462–467, 1992.

[12] M. Parnas, D. Ron, and A. Samorodnitsky. Testing basic boolean formulae.SIAM J. Disc. Math., 16:20–46,
2002.

[13] D. Štefankovič. Fourier transform in computer science. Master’s thesis, University of Chicago, 2000.
[14] A. Terras.Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge, UK,

1999.
[15] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. InProceedings of the

Third Annual Workshop on Computational Learning Theory, pages 314–326, 1990.

12

[16] A. Yao. Probabilistic computations: Towards a unified measure of complexity. InProceedings of the Seventeenth
Annual Symposium on Foundations of Computer Science, pages 222–227, 1977.

A. Variation and testing juntas for non-Boolean ranges

For a random variableX, we writeE[X] to denote its expectation andV[X] to denote its variance. We
writeF(X) to denote the set of all functions fromX to {−1, 1}.

A.1. The original variation notion.

In the paper of Fischeret al. [6] on testing juntas, the notion of variation played a central role in the
proof of correctness of their algorithms. Unfortunately, their definition of variation only works for functions
with Boolean range. We will redefine the notion of variation so that it works for non-Boolean ranges, and
we will argue that the tests by Fischeret al. indeed work for non-Boolean ranges, with the only difference
being multiplicative constants.

Let us recall the original definition of variation.

Definition 8. Let f be a function fromP([n]) to {−1, 1}, and letI ⊆ [n] be a subset of coordinates. We
define thevariationof f on I as

Vrf (I)
def
= Ew∈P([n]\I)

[
Vz∈P(I) [f(w t z)]

]
.

Fischeret al.showed the following two facts on the variation, which were the heart of the proofs of the
soundness of their algorithms.

Lemma 9 (probability of detection [6]). Let f be a function fromP([n]) to {−1, 1}, and letI ⊆ [n] be a
subset of coordinates. Ifw ∈ P([n]\I) andz1, z2 ∈ P(I) are chosen independently, then

Pr[f(w t z1) 6= f(w t z2)] =
1

2
Vrf (I).

Lemma 10(monotonicity and sub-additivity [6]).

Vrf (A) ≤ Vrf (A ∪B) ≤ Vrf (A) + Vrf (B).

A.2. The binary and extreme variation.

Now we will define the notion of thebinary variationand theextreme variationwhich work also for
functions of non-Boolean ranges. Even though now we may havemore than 2 different values, we will map
the range to only two different values, which results in not distinguishing some values of a function. We
will try to minimize the negative effects of such a mapping bytaking a mapping that maximizes what we
can distinguish. Let us start with the notion of the binary variation.

Definition 11. Let f be a function fromP([n]) to X, and letI ⊆ [n] be a subset of coordinates. We define
thebinary variationof f on I as

BinVrf (I)
def
= max

g∈F(X)
Vrg◦f (I) = max

g∈F(X)
Ew∈P([n]\I)

[
Vz∈P(I) [g(f(w t z))]

]
.

By Lemma 9 and by the definition of the binary variation, the following simple fact follows.

13

Lemma 12 (probability of detection). Let f be a function fromP([n]) to X, and letI ⊆ [n] be a subset of
coordinates. Ifw ∈ P([n]\I) andz1, z2 ∈ P(I) are chosen independently, then

Pr[f(w t z1) 6= f(w t z2)] ≥
1

2
BinVrf (I).

The binary variation also is monotone and sub-additive, which directly follows from the sub-additivity
and monotonicity of the original variation (Lemma 10).

Lemma 13(monotonicity and sub-additivity).

BinVrf (A) ≤ BinVrf (A ∪B) ≤ BinVrf (A) + BinVrf (B).

Proof.

BinVrf (A) = max
g

Vrg◦f (A) ≤ max
g

Vrg◦f (A ∪B)

≤ max
g

(Vrg◦f (A) + Vrg◦f (B))

≤ max
g

Vrg◦f (A) + max
g

Vrg◦f (B)

≤ BinVrf (A) + BinVrf (B).

�

Now we will define the extreme variation which differs from the binary variation by switching the order
of the expectation and maximization in the definition.

Definition 14. Let f be a function fromP([n]) to X, and letI ⊆ [n] be a subset of coordinates. We define
theextreme variationof f on I as

ExtVrf (I)
def
= Ew∈P([n]\I)

[
max

g∈F(X)
Vz∈P(I) [g(f(w t z))]

]
.

It turns out that the two new notions of variation are closelyrelated. Namely, they stay within a constant
factor.

Lemma 15.
BinVrf (I) ≤ ExtVrf (I) ≤ 4 · BinVrf (I).

Proof. The first inequality is trivial, and directly follows from the definitions of the binary and extreme
variations.

Focus now on the second inequality. Fixw ∈ P([n]\I). To maximizeVz∈P(I)[(g ◦ f)(wt z)], we need
to takeg such that splitsX into two sets such that the probability that the function value belongs to each of
them is as close to1/2 as possible. Ifp is the probability that(g ◦ f)(w t z) = −1, then

V (p)
def
= Vz∈P(I)[(g ◦ f)(w t z)] = 4p(1 − p).

BecauseV is concave inp, we have
2V (p/2) ≥ V (p)

for p ∈ [0, 1]. Let p? be the greatestp in the range[0, 1/2] that we can achieve. This means that the
corresponding functiong? splits X into two setsX1 andX2 of probability p? and1 − p?, respectively,
where the first one is mapped to−1, and the other to1.

14

Now consider a functiong ∈ F(X) that is uniformly chosen at random. Such ag maps at least half
(measured by probability) ofX1 to either−1 or 1; assume w.l.o.g. that it maps at least half ofX1 to −1.
Independently, with probability at least1/2 we have thatg maps at least half ofX2 to 1. This means that for
a randomly choseng, with probability1/2 we have thatp is in the range[p?/2, 1 − p?/2], which implies in
turn thatV (p) ≥ V (p?)/2. Therefore,

BinVrf (I) = max
g

Ew∈P([n]\I)

[
Vz∈P(I) [(g ◦ f)(w t z)]

]

≥ Eg

[
Ew∈P([n]\I)

[
Vz∈P(I) [(g ◦ f)(w t z)]

]]

= Ew∈P([n]\I)

[
Eg

[
Vz∈P(I) [(g ◦ f)(w t z)]

]]

≥ Ew∈P([n]\I)

[
1

2
· 1
2

max
g

Vz∈P(I) [(g ◦ f)(w t z)]

]

=
1

4
ExtVrf (I).

�

A.3. The independence test.

An important sub-test that will be used throughout the main test is the independence test.

Independence test:Given a functionf , and a set of variablesI, choosew ∈R P([n]\I) andz1, z2 ∈R P(I).
Accept iff(w t z1) = f(w t z2) and reject iff(w t z1) 6= f(w t z2).

The independence test always accepts iff is independent of the coordinates inI, and Lemma 12 states
that it rejects with probability at least12BinVrf (I) in the non-Boolean setting, and with probability exactly
1
2Vrf (I) in the Boolean setting.

A.4. Small variation and closeness to juntas.

Denote byPlurxf(x) the most commonly occurring output off for argumentsx with ties broken
arbitrarily (often referred to as the plurality).

Fischeret al. [6] showed that if the variation of some subset of variables is small, then the function is
close to a function that does not depend on these variables. We will show that an almost identical claim
holds for the binary variation.

Lemma 16. LetJ be a set of coordinates such thatBinVrf (J) < 1
4ε. Let

h(x)
def
= Plurz∈P(J)[f((x ∩ J) t z)].

The functionh is a |J |-junta, depends only on variables inJ , and agrees withf on a set of assignments
of measure more than1− ε.

The original lemma stated that it suffices to haveVrf (J) < 2ε to be ε-close to a junta onJ for a
Boolean-valued functionf . Because of the difference in the required bound on variation of J in the non-
Boolean setting (ε/4 vs. 2ε) we need to run the independence test, which is a subroutine in the junta test,
more times to get the required result. Fortunately, it is enough to replace each single run of the independence
test byc independent runs for some constantc. (It is also possible that actually the original algorithmswith
the original constants work for non-Boolean ranges, but to show this, a more careful analysis would be
necessary.)

We start with the following lemma that helps us connect simple probabilities for multi-valued functions
with probabilities for two-valued functions.

15

Lemma 17. Letf be a function from a setD (with some probability measure on it) toX. It holds that

Pr
x

[f(x) = Pluryf(y)] ≥ 2 min
g∈F(X)

Pr
x

[(g ◦ f)(x) = Plury(g ◦ f)(y)]− 1.

Proof. Let p = Prx[f(x) = Pluryf(y)]. This means that for anyr in X it holds thatp ≥ Prx[f(x) = r].
Enumerate elements ofX. They arer1, r2, r3, and so forth. Denote bypi the probability thatf(x) equals
rj for j ≥ i. Obviously, pi = pi+1 + Prx[f(x) = ri] ≤ pi+1 + p, that ispi+1 ≥ pi − p. Since
p1 = 1 and the sequencepi converges to0 and does not drop too quickly, there is an indexi? such that
pi? ∈ [(1−p)/2, (1+p)/2]. LetX1 = {r1, . . . , ri?−1}, andX2 = {ri? , ri?+1, . . .}. Defineg? : X→{−1, 1}
as

g?(r)
def
=

{
−1 for r ∈ X1,

1 for r ∈ X2.

It holds that

max
g∈F(X)

Pr
x

[(g ◦ f)(x) 6= Plury(g ◦ f)(y)] ≥ Pr
x

[(g ◦ f?)(x) 6= Plury(g ◦ f?)(y)] ≥ 1− p

2
,

which can be rearranged to the required form:

1− min
g∈F(X)

Pr
x

[(g ◦ f)(x) = Plury(g ◦ f)(y)] ≥ 1

2

(
1− Pr

x
[f(x) = Pluryf(y)]

)
,

Pr
x

[f(x) = Pluryf(y)] ≥ 2 min
g∈F(X)

Pr
x

[(g ◦ f)(x) = Plury(g ◦ f)(y)]− 1.

�

Now we can prove our main lemma on binary variation and closeness to juntas:

Proof of Lemma 16.Let y ∈ P(J) andz ∈ P(J). We have

h(y t z) = Plurt∈P(J)f(y t t).

Assume now thatx ∈ P([n]), y, z andt are random over their respective domains and independent. We
have

Pr
x

[f(x) = h(x)] = Ey

[
Pr
z

[f(y t z) = h(y t z)]
]

= Ey

[
Pr
z

[f(y t z) = Plurtf(y t t)]
]

≥ Ey

[
2 min

g∈F (X)
Pr
z

[(g ◦ f)(y t z) = Plurt(g ◦ f)(y t t)]− 1

]
(3)

= Ey

[
min

g∈F (X)
Ez [(g ◦ f)(y t z) · Plurt(g ◦ f)(y t t)]

]
(4)

= Ey

[
min

g∈F (X)
Ez [(g ◦ f)(y t z)] · sign(Et[(g ◦ f)(y t t)])

]

= Ey

[
min

g∈F (X)

∣∣∣Ez [(g ◦ f)(y t z)]
∣∣∣
]

≥ Ey

[
min

g∈F (X)

(
Ez [(g ◦ f)(y t z)]

)2
]

= Ey

[
1− max

g∈F (X)
Vz [(g ◦ f)(y t z)]

]

= 1− ExtVrf (J) ≥ 1− 4BinVrf (J) > 1− ε, (5)

16

where (3) is by Lemma 17 applied to the functionf(yt·), (4) is becausef ◦g andPlur are both±1-valued,
and the first inequality in (5) is by Lemma 15. �

A.5. Unique variation.

We will make use of the following technical tool which was defined by Fischeret al. [6].

Definition 18. Let f be a function that mapsP([n]) to {−1, 1}, and letJ ⊆ [n] be a set of coordinates. For
each coordinatei ∈ [n], we define theunique variation ofi with respect toJ as

Urf (i)
def
= Vrf ([i]\J)−Vrf ([i− 1]\J),

and forI ⊆ [n] we define the unique variation ofI as

Urf (I)
def
=

∑

i∈I

Urf (i).

The most important property of the unique variation that distinguishes it from the other notions of
variation is that for any set of coordinates, its variation simply equals the sum of the variations of each of its
coordinates. This makes it easy to compute the expected value of the unique variation on a random subset
of coordinates. Furthermore, the following properties hold.

Lemma 19(Fischeret al. [6]).

• For any coordinatei ∈ [n], Urf ({i}) ≤ Vrf ({i}).

• For every setI ⊆ [n] of coordinates,Urf (I) ≤ Vrf (I\J).

• Urf ([n]) = Urf ([n]\J) = Vrf ([n]\J).

We will also use the following technical claim.

Lemma 20(Fischeret al. [6]). LetX =
∑l

i=1 Xi be a sum of non-negative independent random variables
Xi, and denote expectation ofX byα. If everyXi is bounded above byt, then

Pr[X < ηα] < exp
(α

et
(ηe − 1)

)

for everyη > 0.

A.6. Application to testing juntas.

It turns out that one can use the binary variation in place of the variation of Fischeret al. to carry out the
proof that their algorithms work in the non-Boolean setting. The only difference is in some constant factors
– we want to make sure that the set of variables that we classify as non-relevant has binary variation at most
ε/4, instead of variation2ε in the original analysis. This results in an increase in the number of runs of the
independence test by a constant factor. Other than this small difference, the properties established above for
the binary variation let the proofs given by Fischeret al.go through directly for non-Boolean functions, so
we do not repeat them. Summarizing, we get three tests forJ-juntas for functions with non-Boolean ranges
from [6]:

• a non-adaptive one-sided test with query complexityÕ(J4/ε),

• an adaptive one-sided test with query complexityÕ(J3/ε),

• a non-adaptive two-sided test with query complexityÕ(J2/ε).

The last of these is simply theIdentify-Critical-Subsets subroutine from Figure 1, modified to output “yes”
in Step 4 instead of the list of critical subsets.

17

B. Proof of Theorem 4

For convenience we restate Theorem 4 in somewhat more detailbelow:

Theorem 4.There is an algorithmA with the following properties:
Let C be a class of functions fromΩn to X. Suppose that for everyτ > 0, C(τ) ⊆ C is a (τ, J(τ))-

approximator forC. Suppose moreover that for everyε > 0, there is aτ satisfying

τ ≤ κ · ε2

ln(|Ω|) · J(τ)2 · ln2(J(τ)) · ln ln(J(τ)) · ln2(|C(τ)J(τ)|) · ln(ln(|Ω|)
ε ln |C(τ)J(τ)|)

,

whereκ > 0 is a fixed absolute constant. Letτ? be the largest valueτ satisfying (2) above. Then algorithm
Amakes:

2sh + (2gJ(τ?)dlg |Ω|e+ 1)m

= Θ

(
1

ε
J(τ?)2 ln2(J(τ?)) log log J(τ?) ln(|C(τ?)J(τ?)|)

)

+Θ

(
lg |Ω|

ε2
J(τ?)2 ln2(|C(τ?)J(τ?)|) ln(

1

ε
ln(|C(τ?)J(τ?)|))

)

= Õ

(
ln |Ω|

ε2
J(τ?)2 ln2(|C(τ?)J(τ?)|)

)

many black-box queries tof , and satisfies the following:

• If f ∈ C thenA outputs “yes” with probability at least2/3;

• If f is ε-far fromC thenA outputs “no” with probability at least2/3.

Let us describe how the parameterss, h, g andm mentioned above (and others) are set. (The table below
should perhaps be glossed over on a first pass through the paper, but will be useful for subsequent reference.)
Givenε > 0, let τ? be as described in the theorem statement. We set:

r
def
= 25J(τ?)2 Θ(J(τ?)2),

s
def
= 25J(τ?)(7 + ln r) Θ(J(τ?) ln J(τ?)),

ε2
def
= ε

2 Θ(ε),

m
def
= 1

ε2
ln 6|C(τ?)J(τ?)| Θ(1

ε ln(|C(τ?)J(τ?)|)),
ε1

def
= 1

200m Θ(ε/ ln(|C(τ?)J(τ?)|))
θ

def
= ε1J(τ?)

24er Θ(ε/(ln(|C(τ?)J(τ?)|)J(τ?))),

g
def
= 2

θ ln
(
100mJ(τ?)dlg |Ω|e

)
Θ

(
1
ε J(τ?) ln(|C(τ?)J(τ?)|) · ln

(
ln |Ω|

ε J(τ?) ln(|C(τ?)J(τ?)|)
))

,

h
def
= 2

θ (3 + 2 ln s) Θ(1
ε ln(|C(τ?)J(τ?)|)J(τ?) ln J(τ?) ln ln J(τ?)),

wheree is the base of the natural logarithm. Note thatε1 + ε2 < ε.
Observe that for some suitable (small) absolute constantκ > 0, our setting of parameters and choice of

τ? yields the following bounds that we will use later:

• 2mgJ(τ?)dlg |Ω|e · τ? ≤ 1/100 (used in Lemma 26)

• 2sh · τ? ≤ 1/100 (used in Corollary 25),

• m(ε1 + τ?) < 1/100 (used in Lemma 26).

18

Identify-Critical-Subsets (input is black-box access tof : Ωn → X andε > 0)

1. Partition the variablesx1, . . . , xn into r random subsets by assigning each ofx1, . . . , xn equiprob-
ably to one ofI1, . . . , Ir.

2. Chooses random subsetsΛ1, . . . ,Λs ⊆ [r] of sizeJ(τ?) by uniformly choosing without repeti-

tionsJ(τ?) members of[r]. Each setΛi determines a blockBi
def
=

⋃
j∈Λi

Ij. (Note that we do
not guarantee that the blocks are disjoint.)

3. Apply h iterations of theindependence test(see Section A.3) to each blockBi. If all of the
independence test iterations applied to blockBi accept, thenBi is declared to bevariation-free,
and all the subsetsIj with j ∈ Λi are declared to be variation-free on its behalf.

4. If:

(a) at least half of the blocksB1, . . . ,Bs are variation-free; and

(b) except for at mostJ(τ?) subsets, every subset in the partitionI1, . . . ,Ir is declared variation-
free on behalf of some block,

then output the listIi1 , . . . , Iij of those subsets that arenot declared to be variation-free. (We call
these thecritical subsets.) Otherwise, halt and output “Not inC.”

Figure 4. The subroutine Identify-Critical-Subsets.

B.1. Step 1: Identifying critical subsets.

Step 1 of the algorithm consists of running the procedureIdentify-Critical-Subsets, reproduced for
convenience in Figure 4. This procedure performs2sh queries tof . The procedure is nearly identical to the
“two-sided” junta test of Section 4.2 of Fischeret al. with two small differences. The first is that we have
adjusted various constant factors slightly (we need a smaller failure probability because we are using this in
the context of a larger test). The second is thatIdentify-Critical-Subsets outputs the list of subsets that are
declared to be not variation-free (whereas the Fischeret al. test simply accepts or rejectsf), since we will
need these subsets for the rest of our test.

We now prove two quick lemmata that will be useful in establishing the soundness and completeness of
the algorithm.

Lemma 21. Let f be a function with at mostJ(τ?) variablesxi that haveBinVrf ({i}) ≥ θ. Then with
probability at least1− 1/400, each of the variablesxi that haveBinVrf ({i}) ≥ θ occurs in some subsetI`

that is not declared variation-free byIdentify-Critical-Subsets.

Proof. Fix a variablexi such thatBinVrf ({i}) ≥ θ. Let I` denote the subset to whichxi belongs. By
Lemma 13 we have that

θ ≤ BinVrf ({i}) ≤ BinVrf (I`) ≤ BinVrf (Bk)

whereBk is any block such that̀ ∈ Λk. This implies that for any such blockBk, the probability that allh
iterations of the independence test accept is at most(1 − θ

2)h < 1
20s2 < 1

400sJ(τ?) . So the probability that

any block that containsxi is declared variation-free is at most 1
400J(τ?) . By a union bound over all at most

J(τ?) variablesxi that haveBinVrf ({i}) ≥ θ, the probability that any block that contains such a variable
causes any subsetI` containing the variable to be declared variation-free is atmost1/400. �

19

Lemma 22. Let V be any set of at mostJ(τ?) variables fromx1, . . . , xn. Then with probability at least
1− 1/25, every subsetI`, 1 ≤ ` ≤ r, contains at most one variable fromV.

Proof. Let j′ denote the number of variables inV. The probability that no two variables inV end up in the
same subsetIi is

r!

(r − j′)!rj′ >

(
1− j′ − 1

r

)j′

> 1− j′(j′ − 1)

r
= 1− j′(j′ − 1)

25J(τ?)2
> 1− 1

25
.

So the probability that any subsetI1, . . . , Ir ends up with two or more variables fromV is at most1/25. �

Let K ⊆ [n] denote a set of coordinates satisfyingBinVrf (K) < 1
4ε1. Lemma 16 states that the

following function:

h(x)
def
= Plurz∈P(K)[f((x ∩ K) t z)] (6)

is ε1-close tof .
Let J denote the set of those coordinates on whichf has binary variation at leastθ. To prove the

soundness ofIdentify-Critical-Subsets, we must prove that iff passesIdentify-Critical-Subsets with
probability greater than 1/3, then it isε1-close to aJ(τ?)-junta. This is accomplished by showing that
|J | ≤ J(τ?), and thatJ can be used in place ofK above,i.e., BinVrf (J) < 1

4ε1. Then we can invoke
Lemma 16 to finish the proof. In addition, we will also prove some properties about the subsetsIi1, . . . , Iij

output by the algorithm.

Lemma 23. If f passesIdentify-Critical-Subsets with probability higher than 1/3, then:

(i) |J | ≤ J(τ?);

(ii) BinVrf (J) < 1
4ε1,

andf is thusε1-close to aJ(τ?)-junta by Lemma 16.
Let h be defined as in Equation (6) usingJ as the setK. Suppose thatf passesIdentify-Critical-

Subsetswith probability greater than 1/3. Then given thatf passes, the sets output by the algorithm,
Ii1 , . . . , Iij , have the following properties with probability at least 6/7:

(iii) Every xi ∈ J occurs in some subsetIi` that is output;

(iv) Every subsetIi` , 1 ≤ ` ≤ j, contains at most one variable fromJ .

Proof. Condition (i): (paraphrasing Prop. 3.1 and Lemma 4.3 of [6]) Suppose|J | > J(τ?). Then with
probability at least3/4 (using the same argument as in the proof of Lemma 22), the number of subsetsIi`

containing an element fromJ is at leastJ(τ?) + 1. For any fixed subsetIi` that contains an element from
J and any fixed blockB containingIi` , the probability ofB being declared variation-free is bounded by:

(1− θ/2)h = (1− θ/2)2(3+2 ln s)/θ <
1

20s(J(τ?) + 1)
.

Union bounding over the at mosts blocks to which the subsetIi` can belong, and union bounding over
J(τ?) + 1 subsets that contain an element fromJ , we have that with probability at least3

4 · 19
20 > 2

3 , at
leastJ(τ?) + 1 subsets are not declared variation-free and consequentlyf does not passIdentify-Critical-
Subsets. Thus, iff passesIdentify-Critical-Subsets with probability at least1/3, it must be the case that
|J | ≤ J(τ?).

Condition (ii): (paraphrasing Prop. 3.1 and Lemma 4.3 of [6]) SupposeBinVrf (J) ≥ 1
4ε1, and letg

be a function such thatBinVrf (J) = Vrg◦f (J). We will show that each blockB` has high variation with

20

high probability. This will imply that the number of blocks not declared variation-free is larger thans/2
with high probability, so the test will reject with probability at least2/3.

Fix any valuè ∈ [s]. The blockB` is a random set of variables independently containing each variable
xi coordinate with probabilityJ(τ?)/r. Let Urg◦f (I) be the unique variation of a setI with respect toJ
(see Definition 18). Then the expected value of the unique variation ofB` is

E[Urg◦f (B`)] =
J(τ?)

r
Urg◦f (J) =

J(τ?)

r
Vrg◦f (J) ≥ ε1J(τ?)

4r
.

By Lemma 19 and Lemma 20 (takingη = 1/2e, t = θ andα = ε1J(τ?)
4r in Lemma 20), we have

Pr

[
Vrg◦f (B`) <

ε1J(τ?)

8er

]
≤ Pr

[
Urg◦f (B`) <

ε1J(τ?)

8er

]
< exp

(
−ε1J(τ?)

8erθ

)
= e−3 <

1

12
.

Hence the probability that the variation ofB` is less thanε1J(τ?)/8er = 3θ is less than1/12. This
implies that the expected number of blocks with variation less than3θ is smaller thans/12. From Markov’s
inequality we get that with probability at least1 − 1

6 , there are less thans/2 blocks with variation smaller
than3θ.

The probability of a block with variation greater than3θ being declared variation free is at most:

(
1− 3θ

2

)h

=

(
1− 3θ

2

)2(3+2 ln s)/θ

< e−(9+6 ln s) <
1

1000s
,

and therefore with probability at least1 − 1
1000 none of these blocks are declared variation free. So with

overall probability at least1− (1
6 + 1

1000) > 2
3 , more thans/2 blocks are declared variation-free and the test

rejects.
Condition (iii): We may suppose thatf passesIdentify-Critical-Subsets with probability greater than

1/3. Then we know that|J | ≤ J(τ?) by Condition (i). By Lemma 21, given thatf passesIdentify-Critical-
Subsets, the probability that somexi ∈ J does not occur in some subsetIi` output by the algorithm is at
most3/400. (The bound is3/400 rather than1/400 because we are conditioning onf passingIdentify-
Critical-Subsets, which takes place with probability at least1/3.)

Condition (iv): As above we may suppose thatf passesIdentify-Critical-Subsets with probability
greater than 1/3. By Condition (i) we know that|J | ≤ J(τ?), so we may apply Lemma 22. Hence condi-
tioned onf passingIdentify-Critical-Subsets (an event which has probability at least1/3), the probability
that any subsetIi` output by the algorithm includes more than one relevant variable ofh is at most3/25.

Summing the probabilities, we get that conditions (iii) and(iv) are true with probability at least1 −
(3
400 + 3

25) > 6
7 . �

Fischeret al. establish completeness by showing that iff is a junta then with probability at least2/3
conditions (a) and (b) are both satisfied in Step 4. However weneed more than this, since we are going to
use the subsetsIi1 , . . . , Iij later in the test. We will prove:

Lemma 24. Suppose thatf is a J(τ?)-junta. LetK be the set of variables satisfyingBinVrf ({i}) ≥ θ.
Then with probability at least6/7, algorithm Identify-Critical-Subsets outputs a list ofj ≤ J(τ?) subsets
Ii1 , . . . , Iij with the property that:

(i) each variablexi ∈ K occurs in some subsetI` that is output;

(ii) BinVrf (K) < ε1/4;

(iii) Every subsetIi` , 1 ≤ ` ≤ j, contains at most one relevant variable forf.

21

Proof. Condition (a): Fix any partitionI1, . . . ,Ir. If f is aJ(τ?)-junta, then it is independent of all but at
mostJ(τ?) subsets in the partition. Hence for any fixed`, the probability over the selection of the blocks
thatf is independent ofB` is at least:

(
r − J(τ?)

J(τ?)

)
/

(
r

J(τ?)

)
>

(
r − 2J(τ?)

r − J(τ?)

)J(τ?)

=

(
1− J(τ?)

r − J(τ?)

)J(τ?)

> 1− J(τ?)2

r − J(τ?)
≥ 23

24
.

The probability thatf depends on more than half of the blocks is therefore smaller than 2
24 using the Markov

inequality. (See [6], Lemma 4.2).
Condition (b) fails with probability at most:

r

(
1− 1

25J(τ?)

)s

= r

(
1− 1

25J(τ?)

)25J(τ?)(7+ln r)

< r · S 1

1000r
=

1

1000
,

(see [6], Lemma 4.2, which usess = 20J(3 + ln r) instead).
Condition (i): Since we assume thatf is aJ(τ?)-junta we may apply Lemma 21, and thus the prob-

ability that any variablexi that hasVrf ({i}) ≥ θ occurs in a subsetI` that is declared variation-free by
Identify-Critical-Subsets is at most1/400.

Condition (ii): LetL denote the relevant variables forf that are not inK, and letT denote[n]\(K∪L).
By Lemma 10 we have

BinVrf (L) ≤
∑

i∈L
BinVrf ({i}) ≤ J(τ?)θ = J(τ?)

ε1J(τ?)

24e · 25J(τ?)2
<

ε1

4
.

We have thatK = L ∪ T , so by Lemma 10 we get

BinVrf (K) = BinVrf (L ∪ T) ≤ BinVrf (L) + BinVrf (T) = BinVrf (L) ≤ ε1/4.

Condition (iii): Suppose there are preciselyj′ ≤ J(τ?) many relevant variables. Then by Lemma 22,
the probability that any subsetI1, . . . , Ir ends up with two or more relevant variables is at most1/25.

Summing failure probabilities, we find that all the requiredconditions are fulfilled with probability at
least1− (1/12 + 1/1000 + 1/400 + 1/25) which is greater than6/7. �

We are ultimately interested in what happens whenIdentify-Critical-Subsets is run on a function from
C. Using the above, we have:

Corollary 25. Supposef is τ?-close to someJ(τ?)-junta f ′. Then with probability at least5/6, algorithm
Identify-Critical-Subsets outputs a list ofj ≤ J(τ?) subsetsIi1, . . . , Iij with the property that

(i’) each variablexi which hasBinVrf ′({i}) ≥ θ occurs in some subsetI` that is output;

(ii’) BinVrf ′(K) < ε1/4;

(iii’) Every subsetIi` , 1 ≤ ` ≤ j, contains at most one relevant variable forf ′.

Proof. The crucial observation is that each of the2sh queries thatIdentify-Critical-Subsets performs is
on an input that is selecteduniformly at randomfrom Ωn (note that the query points are not all independent
of each other, but each one considered individually is uniformly distributed). Sincef andf ′ disagree on at
most aτ? fraction of all inputs, the probability thatIdentify-Critical-Subsets queries any point on which
f andf ′ disagree is at most2sh · τ? < 1/100. Since by Lemma 24 we know that conditions (i’), (ii’) and
(iii’) would hold with probability at least6/7 if the black-box function weref ′, we have that conditions (i),
(ii) and (iii) hold with probability at least6/7 − 1/100 > 5/6 with f as the black-box function. �

22

Construct-Sample (input is the listIi1 , . . . , Iij output by Identify-Critical-Subsets and black-box
access tof)

1. Repeat the followingm times to construct a setS of m labeled examples(x, y) ∈ ΩJ(τ?) × X,
whereΩ = {ω0, ω1, . . . , ω|Ω|−1}:

(a) Drawz uniformly fromΩn. Let Xq
def
= {i : zi = ωq}, for each0 ≤ q ≤ |Ω| − 1.

(b) For` = 1, . . . , j

i. w
def
= 0

ii. For k = 1, . . . , dlg |Ω|e
A. Ω0

def
= union of(Xq ∩ Ii`) taken over all0 ≤ q ≤ |Ω| − 1 such that thek-th bit of

q is zero

B. Ω1
def
= union of(Xq ∩ Ii`) taken over all0 ≤ q ≤ |Ω| − 1 such that thek-th bit of

q is one

C. Apply g iterations of theindependence testto Ω0. If any of theg iterations reject,
markΩ0. Similarly, applyg iterations of theindependence testto Ω1; if any of the
g iterations reject, markΩ1.

D. If exactly one ofΩ0, Ω1 (sayΩb) is marked, set thek-th bit of w to b.

E. If neither ofΩ0, Ω1 is marked, set thek-th bit of w to unspecified.

F. If bothΩ0, Ω1 are marked, halt and output “no”.

iii. If any bit of w is unspecified, choosew at random from{0, 1, . . . , |Ω| − 1}.
iv. If w /∈ [0, |Ω| − 1], halt and output “no.”

v. Setx` = ωw.

(c) Evaluatef onz, assign the remainingJ(τ?)− j coordinates ofx randomly, and add the pair
(x, f(z)) to the sample of labeled examples being constructed.

Figure 5. The subroutine Construct-Sample.

B.2. Step 2: Constructing a sample.

Step 2 of the algorithm consists of running the procedureConstruct-Sample. The algorithm makes
(2gjdlg |Ω|e + 1)m many queries tof , and either outputs “no” or else outputs a sample ofm labeled
examples(x, y) where eachx belongs toΩJ(τ?).

We introduce some notation. Given functionsf : Ωn→X andf ′ : Ωj→X with j ≤ n and a permutation
σ : [n]→[n], we write f

σ∼ f ′ to indicate that∀x ∈ Ωn : f ′(xσ(1), . . . , xσ(j)) = f(x1, . . . , xn). If
f : Ωn→X is a function withj relevant variables, we usefσ

j to mean the function overj variables that
results by mapping thei-th relevant variable underf to thei-th character of aj-character string overΩ; i.e.
if σ is a permutation which induces such a mapping, thenfσ

j is the function satisfyingf
σ∼ fσ

j . Given a

functionf : Ωj→X and permutationσ : [n]→[n], we writefσ
↑ to denote thej-junta satisfyingfσ

↑
σ∼ f .

Lemma 26. Givenf : Ωn→X and someJ(τ?)-junta f ′ that isτ?-close tof , letK be the set of variables
satisfyingBinVrf ′({i}) ≥ θ. SupposeConstruct-Sampleis given oracle access tof and inputsIi1 , . . . , Iij ,
with j ≤ J(τ?), where:

1. Each variablexi ∈ K is contained in one ofIi1 , . . . , Iij ;

23

2. BinVrf ′(K) < ε1/4;

3. Every subsetIi` , 1 ≤ ` ≤ j, contains at most one relevant variable forf ′.

Leth be the function defined as in Equation 6 using the setK. LetH ⊆ K be the set of relevant variables for
h, and letσ : [n]→[n] be some permutation which maps the variable fromH in bin Ii` to bit `. Then with
probability at least1 − 3/100, Construct-Sampleoutputs a set ofm uniform, random examples labeled
according to aJ(τ?)-junta g which depends on no variables outside ofK and satisfiesPrz∈Ωn [gσ

↑ (z) 6=
f ′(z)] ≤ ε1.

Proof. By Lemma 16 we have thatPrz∈Ωn [h(z) 6= f ′(z)] ≤ ε1. We now show that except with probability
less than3/100, Construct-Sampleproduces a setS of m examples that are uniform, random, and labeled

according tog
def
= hσ

J(τ?) (note thatgσ
↑ ≡ h).

Consider a particular iteration of Step 1 ofConstruct-Sample. The iteration generates an examplex
that is uniform random and labeled according tog if

(a) for every binIi` which contains a variable fromH, Step 1(b)ii constructs the indexw such thatXw

contains that variable;

(b) for every binIi` that contains no variable fromH, in every iteration of Step 1(b)ii(C) at most one of
Ω0,Ω1 is marked, and the valuew that is considered in Step 1(b)iv lies in[0, |Ω| − 1]; and

(c) h(z) = f(z).

Item (a) ensures that ifIi` contains a variable fromH, thenx` takes the value of that variable under the
assignmentz (and, sincez is a uniform random value, so isx`). Item (b) ensures that ifIi` contains no
variable fromH, Construct-Sampledoes not output “no” and assignsx` a uniform random value, because
x` either gets a fresh uniform random value in Step 1(b)iii or gets the value ofz (which is uniform random).
Together, these ensure thatg(x) = g(zσ(1), . . . , zσ(J(τ?))), and item (c) ensures that the label for the example
x will be h(z) = g(x).

It remains to bound the probability that any of (a), (b), or (c) fail to hold. Suppose first that every query
of every iteration of the independence test is answered according tof ′. Then item (3) implies that (a) can
only fail to hold if we do not manage to figure out some bit ofw in Step 1(b)ii for somè for which Ii`

contains a variable fromH (which means that allg executions of the independence test pass for that bit
failed), and it also implies that condition (b) holds (it is possible for a bit ofw to be unspecified, but not for
bothΩ0,Ω1 to be marked or forw to be set to an out-of-range value). Thus the probability that either (a) or
(b) fails to hold is at most

jdlg |Ω|e(1− θ/2)g + 2jgdlg |Ω|e · τ?,

where the first term bounds the probability that allgdlg |Ω|e executions of the independence test pass for
some` and the second term bounds the probability that any execution of the independence test queries a
point z such thatf(z) 6= f ′(z). Finally, the probability that (c) fails to hold is at mostε1 + τ?.

Now considering allm iterations, we have that the overall probability of either outputting “no” or
obtaining a bad example in them-element sample is at mostmjdlg |Ω|e(1 − θ/2)g + 2jgmdlg |Ω|e · τ? +
(ε1 + τ?)m ≤ 1/100 + 1/100 + 1/100, and the lemma is proved. �

B.3. Step 3: Checking consistency.

The final step of the algorithm, Step 3, is to runCheck-Consistency. This step makes no queries tof.
The following two lemmata establish completeness and soundness of the overall test and conclude the

proof of Theorem 4.

24

Check-Consistency(input is the sampleS output byIdentify-Critical-Subsets)

1. Check every function inC(τ?)J(τ?) to see if any of them are consistent with sampleS. If so
output “yes” and otherwise output “no.”

Figure 6. The subroutine Check-Consistency.

Lemma 27. Suppose thatf ∈ C. Then with probability at least 2/3, algorithmA outputs yes.

Proof. Let f ′ be someJ(τ?)-junta inC(τ?) that isτ?-close tof . By Corollary 25, we have that except with
probability at most1/6, f passesIdentify-Critical-Subsets and the inputsIi1 , . . . , Iij given toConstruct-
Samplewill satisfy conditions (i’)-(iii’). Let K be the set consisting of those variables that have binary
variation at leastθ underf ′. We use Lemma 26 to conclude that with probability at least1 − 3/100,
Construct-Sampleoutputsm uniform, random examples labeled according to someJ(τ?)-juntag satisfy-
ing Prz[g

σ
↑ (z) 6= f ′(z)] ≤ ε1. Let σ′ map the variables inK to the same values asσ, but also map the re-

maining, possibly relevant variables off ′ to the remainingJ(τ?)−j bits. ClearlyPrz[g
σ′
↑ (z) 6= f ′(z)] ≤ ε1,

and since the relevant variables ofgσ′
↑ (which are contained inK) are a subset of the relevant variables off ′,

we have thatPrx[g(x) 6= (f ′)σ
′

J(τ?)(x)] ≤ ε1.
Assuming thatConstruct-Sampleoutputsm uniform random examples labeled according tog, they

are also labeled according tof ′σ′
J(τ?) ∈ C(τ?)J(τ?) except with probability at mostε1m. Summing all the

failure probabilities, we have thatCheck-Consistencydoes not output “yes” with probability at most1/6+
3/100ε1m < 1/3, and the lemma is proved. �

Lemma 28. Suppose thatf is ε-far fromC. Then the probability that algorithmA outputs “yes” is less than
1/3.

Proof. We assume thatf passesIdentify-Critical-Subsets with probability greater than 1/3 (otherwise we
are done), and show that iff passesIdentify-Critical-Subsets, it will be rejected byConstruct-Sampleor
Check-Consistencywith probability at least 2/3.

Assumef passesIdentify-Critical-Subsets and outputsIi1 , . . . , Iij . Using Lemma 23, we know that
except with probability at most 1/7,J , the set of variables with binary variation at leastθ underf , satisfies:

• BinVrf (J) < ε1/4;

• each variable inJ is contained in some binIi` that is output;

• each binIi` contains at most one variable fromJ .

As in Lemma 26, we construct a functionh using the variables inJ according to Equation 6 in Section B.1.
Let H ⊆ J be the set of relevant variables forh, and letσ : [n]→[n] be as in Lemma 26. We have that
Prz∈Ωn [h(z) 6= f(z)] ≤ ε1. We show that with probability greater than1 − 2/100, Construct-Sample

either outputs “no” or a set ofm uniform, random examples labeled according tog
def
= hσ

J(τ?).
Consider a particular random draw ofz ∈ Ωn As in Lemma 26, this draw will yield a uniform, random

examplex ∈ ΩJ(τ?) for g as long as

(a) for every binIi` which contains a variable fromH, Step 1(b)ii constructs the indexw such thatXw

contains that variable;

(b) for every binIi` that contains no variable fromH, in every iteration of Step 1(b)ii(C) at most one of
Ω0,Ω1 is marked, and the valuew that is considered in Step 1(b)iv lies in[0, |Ω| − 1]; and

25

(c) h(z) = f(z).

The probability of (c) failing is bounded byε1. The probability of (a) failing is at mostjdlg |Ω|e(1−θ/2)g <
1

100m . If neither (a) nor (c) occurs, then the example satisfies (a), (b) and (c) unless it fails to satisfy (b), but
if it fails to satisfy (b)Construct-Sampleoutputs “no” in Step 1(b).ii.F or Step 1(b).iv. a Thus iff passes
Identify-Critical-Subsets, we have that with probability at least

1− 1/7 − 1/100 − ε1m ≥ 1− 1/7− 2/100 > 1− 1/6

Construct-Sampleeither outputs “no” or it outputs a set ofm uniform random examples forg.
SupposeConstruct-Sampleoutputs such a set of examples. We claim that with probability at least

1 − 1/6 over the choice of random examples forg, Check Consistencywill output “no”. Suppose that
Check Consistencyfinds someg′ ∈ C(τ?)J(τ?) consistent with allm examples. Theng′ cannot beε2-close
to g. (Otherwise, we have thatPrz[g

′σ
↑ (z) 6= gσ

↑ (z)] ≤ ε2, from which it follows thatPrz[g
′σ
↑ (z) 6= f(z)] ≤

ε2 + ε1 < ε sincegσ
↑ (z) is ε1-close tof . But g′ ∈ C(τ?)J(τ?), sog′σ↑ ∈ C(τ?) ⊆ C which contradicts our

assumption thatf is ε-far fromC.) By choice ofm, the probability there exists ag′ ∈ C(τ?)J(τ?) consistent
with all m examples that is notε2-close tog is at most|C(τ?)J(τ?)|(1 − ε2)

m = 1/6. Thus, if f passes
Identify-Critical-Subsets, thenConstruct-SampleandCheck-Consistencyoutput “yes” with probability
less than1/6 + 1/6 < 1/3. This proves the lemma. �

C. Making the algorithm non-adaptive

The algorithmA presented in the previous section is adaptive. In this section, we show thatA can be
made non-adaptive without considerably increasing its query complexity.

The only part of our current algorithm that fails to be non-adaptive is Step 2, theConstruct-Sample
subroutine, which relies on knowledge of the critical subsets identified in Step 1. To remove this reliance,
one approach is to modify theConstruct-Samplesubroutine (in particular thefor-loop in step 1(b)) so
that it iterates over every subset rather than just the critical ones. This modified subroutine can be run before
the critical subsets are even identified, and the queries it makes can be stored for future use. Later, when the
critical subsets are identified, the queries made during theiterations over non-critical subsets can be ignored.
Since there areΘ(J(τ?)2) total subsets compared to theΘ(J(τ?)) critical ones, the cost of this modified
algorithm is an additional factor ofΘ(J(τ?)) in the query complexity given in Theorem 4. For all of our
applications, this translates to only a small polynomial increase in query complexity (in most cases, merely
an additional factor ofΘ(s)).

We briefly sketch a more efficient approach to nonadaptivity;this is done essentially by combining Steps
1 and 2. Specifically, each of them examples that we currently generate in Step 2 can be generated using the
techniques from Step 1. To generate a single example, we takea random assignment to all of the variables,
and we split each setIi of variables into|Ω| setsIi,ω, whereIi,ω consists of those variables inIi that were
assignedω. We getΘ(|Ω|J(τ?)2) sets of variables. Now, as in theIdentify-Critical-Subsets subroutine,
we createk = O(J(τ?) log(|Ω|J(τ?))) blocks, each consisting of exactly|Ω|J(τ?) setsIi,ω chosen at
random. We run the independence testΘ(1

θ log(km)) times on each of these blocks, and declare variation
free those not rejected even once. If for each critical subset Ii, at least|Ω|−1 setsIi,ω are declared variation
free on behalf of some block, the remainingIi,ω which are not declared variation free give us the values of
the influential variables. One can show that this happens with probability1 − O(1/m). Therefore when
the procedure is repeated to generate allm examples, the probability of overall success is constant. Without
going into a detailed analysis, the query complexity of thismodified algorithm is essentially the same as that

given in Theorem 4, namelỹO
(

ln |Ω|
ε2

J(τ?)2 ln2(|C(τ?)J(τ?)|)
)

. Thus, for all of our applications, we can

achieve non-adaptive testers with the same complexity bounds stated in Theorems 29 and 33.

26

D. Applications to Testing Classes of Functions

The algorithmA in Theorem 4 can be applied to many different classes of functions that were not
previously known to be testable. The following two subsections state and prove our results for Boolean and
non-Boolean functions, respectively.

D.1. Boolean Functions

Theorem 29. For anys and anyε > 0, AlgorithmA yields a testing algorithm for

(i) decision lists using̃O(1/ε2) queries;

(ii) size-s decision trees using̃O(s4/ε2) queries;

(iii) size-s branching programs using̃O(s4/ε2) queries;

(iv) s-term DNF usingÕ(s4/ε2) queries;

(v) size-s Boolean formulas using̃O(s4/ε2) queries;

(vi) size-s Boolean circuits using̃O(s6/ε2) queries;

(vii) functions with Fourier degree at mostd usingÕ(26d/ε2) queries.

Proof. We describe each class of functions and apply Theorem 4 to prove each part of the theorem.

Decision Lists.A decision listL of lengthm is described by a list(`1, b1), . . . , (`m, bm), bm+1 where each
`i is a Boolean literal and eachbi is an output bit. Given an inputx ∈ {0, 1}n the value ofL on x is bj,
wherej ≥ 1 is the first value such that̀j is satisfied byx. If `j is not satisfied byx for all j = 1, . . . ,m
then the value ofL(x) is bm+1.

Let C denote the class of all Boolean functions computed by decision lists. Since only a1/2j fraction of

inputsx cause the(j + 1)-st literal`j in a decision list to be evaluated, we have that the classC(τ)
def
= {all

functions computed by decision lists of lengthlog(1/τ)} is a(τ, J(τ))-approximator forC, whereJ(τ)
def
=

log(1/τ). We have|C(τ)J(τ)| ≤ 2 · 4log(1/τ)(log(1/τ))!. This yieldsτ? = Õ(ε2), so Theorem 4 thus yields
part (i) of Theorem 29.

Decision Trees.A decision treeis a rooted binary tree in which each internal node is labeledwith a variable
xi and has precisely two children and each leaf is labeled with an output bit. A decision tree computes
a Boolean function in the obvious way: given an inputx, the value of the function onx is the output bit
reached by starting at the root and going left or right at eachinternal node according to whether the variable’s
value inx is 0 or 1. Thesizeof a decision tree is simply the number of leaves of the tree (which is one more
than the number of internal nodes).

Let C denote the class of all Boolean functions computed by decision trees of size at mosts. It is obvious

that any size-s decision tree depends on at mosts variables. We may thus takeC(τ)
def
= C and we trivially

have thatC(τ) is a(τ, J(τ))-approximator forC with J(τ)
def
= s.

Now we bound|C(τ)J(τ)| by (8s)s. It is well known that the number ofs-leaf rooted binary trees in

which each internal node has precisely two children is the Catalan numberCs−1 = 1
s

(
2s−2
s−1

)
, which is at

most4s. For each of these possible tree topologies there are at mostss−1 ways to label thes − 1 internal
nodes with variables fromx1, . . . , xs. Finally, there are precisely2s ways to choose the leaf labels. So the
total number of decision trees of sizes over variablesx1, . . . , xs is at most4s · ss−1 · 2s < (8s)s.

We thus haveτ? = Õ(ε2/s4) in Theorem 4, and we obtain part (ii) of Theorem 29.

27

Branching Programs. Similar results can be obtained forbranching programs.A branching program of
sizes is a rooteds-node directed acyclic graph with two sink nodes labeled0 and1. Each internal node has
fanout two (and arbitrary fan-in) and is labeled with a variable fromx1, . . . , xn. Given an inputx, the value
of the branching program onx is the output bit reached as described above.

Let C denote the class of alls-node branching programs over{0, 1}n. As with decision trees we may

takeC(τ)
def
= C andJ(τ)

def
= s. We show that|C(τ)J(τ)| ≤ ss(s + 1)2s.

The graph structure of the DAG is completely determined by specifying the endpoints of each of the two
outgoing edges from each of thes internal vertices. There are at mosts + 1 possibilities for each endpoint
(at mosts− 1 other internal vertices plus the two sink nodes), so there are at most(s + 1)2s possible graph
structures. There are at mostss ways to label thes nodes with variables from{x1, . . . , xs}. Thus the total
number of possibilities for a size-s branching program overx1, . . . , xs is at mostss(s + 1)2s.

Again we haveτ? = Õ(ε2/s4), so Theorem 4 yields part (iii) of Theorem 29.

DNF Formulas. An s-term DNF formula is ans-way OR of ANDs of Boolean literals. Ak-DNF is a DNF
in which each term is of length at mostk.

It is well known that anys-term DNF formula over{0, 1}n is τ -close to alog(s/τ)-DNF with at mosts
terms (see e.g. [15] or Lemma 30 below). Thus ifC is the class of alls-term DNF formulas over{0, 1}n, we
may takeC(τ) to be the class of alls-termlog(s/τ)-DNF, and we have thatC(τ) is a(τ, J(τ))-approximator

for C with J(τ)
def
= s log(s/τ). An easy counting argument shows that|C(τ)J(τ)| ≤ (2s log(s/τ))s log(s/τ).

We getτ? = Õ(ε2/s4), so Theorem 4 yields part (iv) of Theorem 29.

Boolean Formulas. We define aBoolean formulato be a rooted tree in which each internal node has
arbitrarily many children and is labeled with either AND or OR and each leaf is labeled with a Boolean
variablexi or its negationxi. The size of a Boolean formula is the number of AND/OR gates it contains.

Let C denote the class of all Boolean formulas of size at mosts. Similar to the case of DNF, we have the
following easy lemma:

Lemma 30. Any size-s Boolean formula (or size-s circuit) over{0, 1}n is τ -close to a size-s formula (or
size-s circuit) in which each gate has at mostlog(s/τ) inputs that are literals.

Proof. If a gateg has more thanlog(s/τ) many inputs that are distinct literals, the gate isτ/s-approximated
by a constant function (1 for OR gates, 0 for AND gates). Performing such a replacement for each of thes
gates in the circuit yields aτ -approximator for the overall formula (or circuit). �

We may thus takeC(τ) to be the class of all size-s Boolean formulas in which each gate has at most
log(s/τ) distinct literals among its inputs, and we have thatC(τ) is a (τ, J(τ))-approximator forC with

J(τ)
def
= s log(s/τ). An easy counting argument shows that|C(τ)J(τ)| ≤ (2s log(s/τ))s log(s/τ)+s; for each

of thes gates there is a two-way choice for its type (AND or OR) and an at mosts-way choice for the gate
that it feeds into. There are also at mostlog(s/τ) literals fromx1, . . . , xs log(s/τ), x1, . . . , xs log(s/τ) that

feed into the gate. Thus there are at most(2s log(s/τ))log(s/τ)+1 possibilities for each of thes gates, and
consequently at most(2s log(s/τ))s log(s/τ)+s possibilities overall. Again we getτ? = Õ(ε2/s4), which
gives part (v) of Theorem 29.

Boolean Circuits. An even broader representation scheme is that ofBoolean circuits. A Boolean circuit
of sizes is a rooted DAG withs internal nodes, each of which is labeled with an AND, OR or NOTgate.
(We consider circuits with arbitrary fan-in, so each AND/ORnode is allowed to have arbitrarily many
descendants.) Each directed path from the root ends in one ofthen + 2 sink nodesx1, . . . , xn, 0, 1.

For C the class of all size-s Boolean circuits, using Lemma 30 we may takeC(τ) to be the class of all
size-s Boolean circuits in which each gate has at mostlog(s/τ) distinct literals among its inputs, and we

have thatC(τ) is a(τ, J(τ))-approximator forC with J(τ)
def
= s log(s/τ). It is easy to see that|C(τ)J(τ)| ≤

28

22s2+4s. To completely specify a size-s Boolean circuit, it suffices to specify the following for each of thes
gates: its label (three possibilities, AND/OR/NOT) and theset of nodes to which it has outgoing edges (at
most22s+2 possibilities, since this set is a subset of thes + 2 sink nodes and thes internal nodes).

This results inτ? = Õ(ε2/s6), and consequently Theorem 4 yields part (vi) of Theorem 29.

Functions with bounded Fourier degree.For convenience here we takeΩ = {−1, 1}. Recall that every
Boolean functionf : {−1, 1}n → {−1, 1} has a unique Fourier representation, i.e. a representationas a
multilinear polynomial with real coefficients:f(x) =

∑
S⊆[n] f̂(S)

∏
i∈S xi. The coefficientsf̂(S) are the

Fourier coefficientsof f. TheFourier degreeof f is the degree of the above polynomial, i.e. the largest value
d for which there is a subset|S| = d with f̂(S) 6= 0.

Let C denote the class of all Boolean functions over{−1, 1}n with Fourier degree at mostd. Nisan and
Szegedy [11] have shown that any Boolean function with Fourier degree at mostd must have at mostd2d

relevant variables. We thus may takeC(τ)
def
= C andJ(τ)

def
= d2d. The following lemma gives a bound on

|C(τ)J(τ)|:

Lemma 31. For anyd > 0 we have|C(τ)J(τ)| < 2d2·22d
.

Proof. We first establish the following simple claim:

Claim 32. Suppose the Fourier degree off : {−1, 1}n → {−1, 1} is at mostd. Then every nonzero Fourier
coefficient off is an integer multiple of1/2d−1.

Proof. Let us viewf : {−1, 1}n → {−1, 1} as a polynomial with real coefficients. Define the polynomial
p(x1, . . . , xn) as

p(x1, . . . , xn) =
f(2x1 − 1, . . . , 2xn − 1) + 1

2
.

The polynomialp maps{0, 1}n to {0, 1}. Sincef is a multilinear polynomial of degree at mostd, so isp.
Now it is well known that there is a unique multilinear polynomial that computes any given mapping from
{0, 1}n to {0, 1}, and it is easy to see that this polynomial has all integer coefficients. Since

f(x1, . . . , xn) = 2p

(
1 + x1

2
, . . . ,

1 + xn

2

)
− 1,

it follows that every coefficient off is an integer multiple of 1
2d−1 , and the claim is proved. �

To prove Lemma 31 we must bound the number of distinct Booleanfunctions with Fourier degree

at mostd over variablesx1, . . . , xd2d . First observe that there are at mostD =
∑d

i=0

(d2d

i

)
≤ (d2d)d

monomials of degree at mostd over these variables.
If f : {−1, 1}d2d → {−1, 1} has Fourier degree at mostd, then by Claim 32 every Fourier coefficient is

an integer multiple of1/2d−1. Since the sum of squares of all Fourier coefficients of any Boolean function
is 1, at most22d−2 of the D monomials can have nonzero Fourier coefficients, and each such coefficient
takes one of at most2d values. Thus there can be at most

(
D

22d−2

)
· (2d)2

2d−2 ≤ (D2d)2
2d−2

< 2d2·22d

many Boolean functions overx1, . . . , xd2d that have Fourier degree at mostd. �

We thus get thatτ? = Õ(ε2/26d), and Theorem 4 yields part (vii) of Theorem 29. �

29

D.2. Non-Boolean Functions

Theorem 33. For anys and anyε > 0, AlgorithmA yields a testing algorithm for

(i) s-sparse polynomials over finite fieldΩ usingÕ((s|Ω|)4/ε2) queries;

(ii) size-s algebraic circuits over finite ring or fieldΩ usingÕ(s4 log3 |Ω|/ε2) queries;

(iii) size-s algebraic computation trees over finite ring or fieldΩ usingÕ(s4 log3 |Ω|/ε2) queries.

Proof. We describe class of functions and apply Theorem 4 to prove each part of the theorem.

Sparse Polynomials over Finite Fields.Let Ω denote any finite field and letX = Ω. An s-sparse polyno-
mial overΩ is a multivariate polynomial in variablesx1, . . . , xn with at mosts nonzero coefficients.

Let us say that thelength of a monomial is the number of distinct variables that occur in it (so for
example the monomial3x2

1x
4
2 has length two). We have the following:

Lemma 34. Any s-sparse polynomial overΩ is τ -close to ans-sparse polynomial overΩ in which each
monomial has length at most|Ω| ln(s/τ).

Proof. If a monomial has length̀ greater than|Ω| ln(s/τ), then it can beτ/s-approximated by 0 (for a
uniform randomx ∈ Ωn, the probability that the monomial is not 0 underx is (1 − 1/|Ω|)`). Performing
this approximation for alls terms yields aτ -approximator for the polynomial. �

For C = the class of alls-sparse polynomials inn variables over finite fieldΩ, we have that the class
C(τ) of all s-sparse polynomials over finite fieldΩ with all monomials of length at most|Ω| ln(s/τ) is a
(τ, J(τ))-approximator withJ(τ) = s|Ω| ln(s/τ). The following counting argument shows that

|C(τ)J(τ)| ≤ (s|Ω|3 ln(s/τ))s|Ω| ln(s/τ).

Consider a single monomialM . To specifyM we must specify a coefficient inΩ, a subset of at most̀
of theJ(τ) possible variables that have nonzero degree (at mostJ(τ)` possibilities), and for each of these
variables we must specify its degree, which we may assume is at most|Ω| − 1 sinceα|Ω| = α for everyα
in finite fieldΩ. Thus there are at most|Ω|(J(τ)|Ω|)` possibilities for each monomial, and consequently at
most |Ω|s(J(τ)|Ω|)s` = |Ω|s(s|Ω|2 ln(s/τ))s|Ω| ln(s/τ) ≤ (s|Ω|3 ln(s/τ))s|Ω| ln(s/τ) possible polynomials
overall.

Settingτ? = Õ(ε2/(s|Ω|)4) and applying Theorem 4 yields part (i) of Theorem 33.

Algebraic Circuits. Let Ω denote any finite ring or field and letX = Ω. A size-s algebraic circuit (or
straight line program) overΩn is a rooted directed acyclic graph withs internal nodes (each with two inputs
and one output) andn + k leaf nodes for somek ≥ 0 (each with no inputs and arbitrarily many outputs).
The firstn leaf nodes are labeled with the input variablesx1, . . . , xn, and the lastk leaf nodes are labeled
with arbitrary constantsαi from Ω. Each internal node is labeled with a gate from{+,×,−} and computes
the sum, product, or difference of its two input values (ifΩ is a field we allow division gates as well).

Let C denote the class of all Boolean functions computed by algebraic circuits of size at mosts over
variablesx1, . . . , xn. (Here we analyze the simpler case of circuits with+, ×, − gates; our analysis can
easily be extended to handle division gates as well.) Any size-s algebraic circuit depends on at most2s

variables. We may thus takeC(τ)
def
= C and we trivially have thatC(τ) is a (τ, J(τ))-approximator forC

with J(τ)
def
= 2s. Now we show that|C(τ)J(τ)| ≤ (75|Ω|2s2)s.

A sizes algebraic circuit can read at most2s leaves as each internal node has two inputs. Thus it can
read at most2s constant leaves, and at most2s input leaves. To completely specify a size-s algebraic circuit,
it suffices to specify the2s constant leaf nodes and the following for each of thes gates: its label (at most

30

three possibilities) and the two nodes to which it has outgoing edges (at most(5s)2 possibilities, since it
can hit two of the at most4s leaves and thes internal nodes). Thus there are at most|Ω|2s(75s2)s different
algebraic circuits.

Equation 2 in Theorem 4 is satisfied for smallτ ’s, but we do not care how large the optimumτ? is as
J(τ) does not depend onτ . Eventually, Theorem 4 yields part (ii) of Theorem 33.

Algebraic Computation Trees. Let Ω denote any finite ring or field and letX = Ω. A size-s algebraic
computation treeover input variablesx1, . . . , xn is a rooted binary tree with the following structure. There
are s leaves, each describes an output value which is either a constant, an input variable, or one of the
variables computed in the ancestors of the leaf. Each internal node has two children and is labeled withyv,
whereyv = yu ◦ yw andyu, yw are either inputs, the labels of ancestor nodes, or constants, and the operator
◦ is one of{+,−,×,÷} (the last one only ifΩ is a field). An input that reaches such a node branches left
if yv = 0 and branches right ifyv 6= 0.

Let C denote the class of all functions computed by algebraic computation trees of size at mosts over
x1, . . . , xn. Any size-s algebraic computation tree depends on at most3s variables. So similar to algebraic

circuits, we can takeC(τ)
def
= C andJ(τ)

def
= 3s. Now we show that|C(τ)J(τ)| ≤ 16s(|Ω|+ 4s)3s.

As in the boolean case, the number ofs-leaf rooted binary trees in which each internal node has precisely
two children is at most4s. A tree hass − 1 internal nodes ands leaves. For each of these possible tree
topologies there are at most4(|Ω| + 4s)2 ways to label thes − 1 internal nodes (with one of 4 operations
on two constants, variables or ancestor nodes). Finally, there are at most(|Ω| + 4s)s ways to choose the
leaf labels. So the total number of decision trees of sizes over variablesx1, . . . , x3s is at most4s · (4(|Ω|+
4s)2)s−1 · (|Ω|+ 4s)s ≤ 16s(|Ω|+ 4s)3s.

As before we do not care what the optimalτ? in Theorem 4 is. Finally, we obtain query complexity
Õ(s4 log3 |Ω|/ε2) by Theorem 4, that is, we obtain part (iii) of Theorem 33. �

E. Lower Bound Proofs

In this section we restate and prove the testing lower boundsdiscussed in Section 4. The main result in
that section was Theorem 5, the lower bound for testings-sparse polynomials over finite fields of constant
size. In Subsection E.1, we prove Theorem 5. In Subsection E.2, we prove some simpler (and weaker) lower
bounds for other function classes.

E.1. Lower Bound for s-Sparse Polynomials

Throughout this section we writeF to denote the finite field withP elements, whereP = pk is a prime
power. For convenience, we restate Theorem 5:

Theorem 5. Let F be any fixed finite field, i.e.|F| = O(1) independent ofn. There exists a fixed constant
ε > 0 (depending on|F|) such that anynon-adaptiveε-testing algorithm for the class ofs-sparse polynomials
overFn must makẽΩ(

√
s) queries.

To prove Theorem 5, we consider the following two distributions over functions mappingFn to F:

• A draw from DYES is obtained as follows: independently and uniformly (with repetitions) draws
variablesxi1 , . . . , xis from x1, . . . , xn, and letf(x) = xi1 + · · ·+ xis .

• A draw fromDNO is obtained as follows: independently and uniformly (with repetitions) draws + p
variablesxi1 , . . . , xis+p

from x1, . . . , xn, and letf(x) = xi1 + · · · + xis+p
.

31

It is clear that every draw fromDYES is ans-sparse polynomial overF, and that for anyn = ω((s+p)2)
almost all the probability mass ofDNO is on functions withs + p distinct nonzero coefficients.

Theorem 5 then follows from the following two results:

Theorem 35. LetA be any non-adaptive algorithm which is given black-box access to a functionf : Fn →
F and outputs either “yes” or “no.” Then we have

∣∣∣∣ Pr
f∈DYES

[Af outputs “yes”]− Pr
f∈DNO

[Af outputs “yes”]

∣∣∣∣ ≤
1

3

unlessA makes̃Ω(
√

s) queries to the black-box functionf.

Theorem 36. Let
Φ(P)

def
= 1/(PP 2+P 10P2+26

).

Fix anys ≤ n− 1. Letg be ans-sparse polynomial inF[x1, . . . , xn]. Theng is Φ(P)-far from every affine
function overF in whichs + 1 or more variables have nonzero coefficients, i.e. every function of the form

a1x1 + · · ·+ as+rxs+r + b (7)

where0 6= ai ∈ F, b ∈ F, andr ≥ 1.

Theorem 35 shows that any non-adaptive algorithm that can successfully distinguish a random linear
form xi1 +· · ·+xis from a random linear formxi1 +· · ·+xis+p

must makẽΩ(
√

s) queries; this is a technical
generalization of a similar result forF2 in [6]. Theorem 36 establishes that every functionxi1 + · · ·+ xis+p

is far from everys-sparse polynomial overF. Together these results imply that any testing algorithm for
s-sparseF polynomials must be able to distinguish length-s linear forms from length-(s + p) linear forms,
and must makẽΩ(

√
s) queries. We prove these theorems in the following subsections.

We note that it is conceivable that a stronger version of Theorem 36 might be true in whichΦ(P) is
replaced by an absolute constant such as1/3; however Theorem 36 as stated suffices to give our desired
lower bound.

E.1.1 Proof of Theorem 35.

First, let us recall the definition of statistical distance:

Definition 37 (statistical distance). Let S be a finite set andP, Q be probability measures on(S, 2S). The

statistical distancebetweenP andQ is defined by‖P −Q‖ def
= maxA⊆S |P(A)−Q(A)|.

The following fact is an immediate consequence of the definition:

Fact 38. ‖P−Q‖ ≡ 1
2

∑
x∈S |P(x)−Q(x)| ≡∑

x∈S

(
P(x)−Q(x)

)±
.

We now explain how Theorem 35 can be reduced to a convergence-type result about random walks
on the groupZq

p (Theorem 6). We remark that the argument given here is an immediate generalization
of the corresponding argument in Section 6 of [6]. Our main technical contribution is in fact the proof of
Theorem 6.

Recall that a non-adaptive testing algorithm queries a fixedsubsetQ of the domainFn, where|F| =
P = pk is a prime power. To prove Theorem 35, it suffices to argue thatfor any query setQ ⊂ Fn of
cardinalityq = |Q| = Õ(

√
s) the induced distributions onFq (obtained by restricting the randomly chosen

functions to theseq points) have a statistical distance less than1/3.

32

Let us now describe the distributions induced byDYES andDNO on Fq. Let r1, r2, . . . , rq ∈ Fn be the
queries, and letM be aq × n matrix with rowsr1, . . . , rq. To choose an elementx ∈ Fq according to the
first (induced) distribution, we choose at random (with repetitions) s columns ofM and sum them up. This
gives us an element ofFq. The same holds for the second distribution, the only difference being that we
chooses + p columns.

For x ∈ Fq ∼= Z
kq
p , let P(x) be the probability of choosingx when we pick a column ofM at random.

Consider a random walk on the groupZkq
p , starting at the identity element, in which at every step we choose

an element of the group according toP and add it to the current location. LetPt be the distribution of this
walk aftert steps. Observe thatPs andPs+p are exactly the distributions induced byDYES andDNO. We
want to show that fors sufficiently large compared toq, the distributionsPs andPs+p are close with respect
to the statistical distance. To do this, it suffices to prove the following theorem (restated from Section 4):

Theorem 6. Let r be a prime,q ∈ N andP be a probability measure on the additive groupZq
r. Consider

the random walkX onZq
r with step distributionP. LetPt be the distribution ofX at stept. There exists an

absolute constantC > 0 such that for every0 < δ ≤ 1/2, if t ≥ C log 1/δ
δ · r4 log r · q2 log2(q + 1) then

‖Pt − Pt+r‖ ≤ δ.

Indeed, since the underlying additive group of the fieldF is Zk
p, by applying the above theorem forr = p

andq′ = kq the result follows. We prove Theorem 6 in the following subsection.

E.1.2 Proof of Theorem 6.

To prove Theorem 6, we start with some basic definitions and facts about random walks on (finite) groups.
For a detailed treatment of the subject, see [4] and references therein. For basic facts about Fourier Analysis
on finite groups, see [13, 14].

Let (G,+) be a finite group. For any probability measuresP, Q onG, the convolution(P ∗Q) of P and
Q is the probability measure onG defined by:

(P ∗Q)(y) =
∑

x∈G

P(x)Q(x + y)

Let P1, . . . , Pn be probability measures onG. Theconvolution productof thePi’s, is defined as follows:

{∗
∏
}ji=jPi

def
= Pj

{∗∏}ni=jPi
def
= Pj ∗ {∗

∏}ni=j+1Pi, if n > j

Similarly, P∗n, the n-fold convolution product ofP with itself is defined by:P∗1 def
= P andP∗n def

=
P∗(n−1) ∗ P, if n > 1.

A distribution (probability measure)P on G induces a random walk onG as follows: Denoting byXn

its position at timen, the walk starts at the identity element ofG (n = 0) and at each step selects an element
ξn ∈ G according toP and goes toXn+1 = ξn + Xn. Denote byPn the distribution ofXn. SinceXn is the
sum ofn independent random variables with distributionP, it follows thatPn = P∗n.

We will be interested in such random walks onfinite abelian groupsand in particular on the group
(Zq

r,+) , where+ denotes componentwise addition modulor. We remark that for abelian groups, the
convolution operation is commutative. In fact, commutativity is crucially exploited in the proof of the
theorem.

For a functionf : Zq
r → C, we define its Fourier transform̂f : Zq

r → C by

33

f̂(x)
def
=

1

rq

∑

y∈Zq
r

f(y)(ωr)
〈x,y〉

whereωr
def
= e2πi/r and forx, y ∈ Z

q
r we denote〈x, y〉 def

= (
∑q

i=1 xiyi) mod r.

Fact 39. LetP, Q be probability measures onZq
r. Then,P̂ ∗Q(y) = rq · P̂(y) · Q̂(y), y ∈ Z

q
r.

Forp ≥ 1 andf : Zq
r → C, thelp norm off is defined by‖f‖p def

= {Ex∈Zq
r
[|f(x)|p]}1/p. The inner product

of f, g : Zq
r → C is defined as:〈f, g〉 def

= Ex∈Zq
r
[f(x)g(x)].

Fact 40(Parseval’s identity). Letf : Zq
r → C. Then,‖f‖22 ≡ 〈f, f〉 = ∑

x∈Zq
r
|f̂ |2(x).

Proof of Theorem 6.
The special case of this theorem forr = 2 was proved by Fischeret al. [6]. Our proof is a technical

generalization of their proof. Moreover, our proof has the same overall structure as the one in [6]. However,
one needs to overcome several difficulties in order to achieve this generalization.

We first give a high-level overview of the overall strategy. Any givenx ∈ (Zq
r)∗ partitions the space into

r non-empty subspacesV x
i = {y ∈ Z

q
r : 〈y, x〉 = i} for i = 0, 1, . . . , r − 1. We say that anx ∈ (Zq

r)∗ is
degenerateif there exists somei whose probability measureP(V x

i) is “large”. (We note that the definition
of degeneracy in the proof of [6] is quite specialized for thecaser = 2. They define a direction to be
degenerate if one of the subspacesV x

0 , V x
1 has “small” probability. Our generalized notion - that essentially

reduces to their definition forr = 2 - is the conceptually correct notion and makes the overall approach
work.)

We consider two cases: If all the Fourier coefficients ofP are not “very large” (in absolute value), then
we can show by standard arguments (see e.g. [4]) that the walkis close to stationarity after the desired
number of steps. Indeed, in such a case the walk converges rapidly to the uniform distribution (in the
“classical” sense, i.e.‖Pt − U‖ → 0 ast approaches infinity).

If, on the other hand, there exists a “very large” Fourier coefficient of P, then we argue that there must
also exist a degenerate direction (this is rather non-trivial) and we use induction on the dimensionq. It
should be noted that in such a case the walkmay not converge at all in the classical sense. (An extreme such
case would be, for example, ifP was concentrated on one element of the group.)

Remark: It seems that our proof can be easily modified to hold for anyfinite abelian group. (We remind
the reader that any such group can be uniquely expressed as the direct sum of cyclic groups.) Perhaps, such
a result would be of independent interest. We have not attempted to do so here, since it is beyond the scope
of our lower bound. Note that, with the exception of the inductive argument, all the other components of
our proof work (in this generalized setting) without any changes. It is very likely that a more complicated
induction would do the trick.

Now let us proceed with the actual proof. We make essential use of two lemmata. The first one is a
simple combinatorial fact that is used several times in the course of the proof:

Lemma 41. Let n be a positive integer greater than1 andε ∈ (0, 1/2] be a constant. Consider a complex
numberv ∈ C expressible as a (non-trivial) convex combination of then-th roots of unity all of whose
coefficients are at most1− ε. Then, we have|v| ≤ 1− ε/2n2.

34

Proof. We can writev =
∑n−1

j=0 vjω
j
n, with ωn = e2πi/n, vj ≥ 0,

∑n−1
j=0 vj = 1 andmaxj vj ≤ 1 − ε.

For the proof it will be helpful to view theωj
n’s as unit vectors in the complex plane (the angle between two

“adjacent” such vectors beingθn = 2π/n).
By assumption, it is clear that at least two distinct coefficients must be non-zero. We claim that the

length of the vectorv is maximized (over all possible “legal” choices of thevj ’s) when exactly two of the
coefficients are non-zero, namely two coefficients corresponding to consecutiven-th roots of unity.

This is quite obvious, but we give an intuitive argument. We can assume thatn ≥ 5; otherwise the claim
is straightforward. Consider the unit vectore (this vector corresponds to one of theωj

n’s) whose coefficient
ve in v is maximum. We want to “distribute” the remaining “mass”1 − ve to the other coordinates (n-th
roots) so as to maximize the length|v|. First, observe that vectors whose angle withe is at leastπ/2 do not
help; so we can assume the corresponding coefficients are zero. Now consider the set of vectors “above”
e (whose angle withe is less thanπ/2). We can assume that their “mass” (i.e. sum of coefficients) is
concentrated on the unit vectorea adjacent toe (whose angle withe is minimum); this maximizes their total
contribution to the length of the sum. By a symmetric argument, the same holds for the set of vectors “below”
e (denote byeb the corresponding adjacent vector). Finally, it is easy to see that in order to maximize the
total contribution ofea andeb to the length of the sum, one of them must have zero weight (given that their
total mass is “fixed”).

Now let us proceed with the proof of the upper bound. By symmetry, it is no loss of generality to
assume thatv0, v1 > 0 with v0 ≥ v1. The claim now follows from the following sequence of elementary
calculations:

|v|2 = v2
0 + v2

1 + 2v0v1 cos θn = 1− 2v0v1

(
1− cos θn

)

= 1− 2v0

(
1− v0

)(
1− cos(2π/n)

)

≤ 1− 2ε(1− ε)
(
1− cos(2π/n)

)

≤ 1− ε
(
1− cos(2π/n)

)

≤ 1− ε/n2

The last inequality above follows by observing thatcos(2π/n) ≤ 1 − 1/n2, n ≥ 2. The elementary
inequality

√
1− x ≤ 1− x/2 completes the argument. �

Our second lemma is an analytical tool giving a (relatively sharp) upper bound on the statistical distance
between two distributions. It should be noted that this result is a variant of the “upper bound lemma” [4],
which has been used in numerous other random walk problems.

Lemma 42(upper bound lemma, [4]). In the context of Theorem 6, for anyt ≥ 0, we have:

‖Pt − Pt+r‖2 ≤ rq ·
∑

x∈(Zq
r)∗

|α(x)|2t.

Proof. We have:

35

‖Pt − Pt+r‖2 = (r2q/4) · ‖Pt − Pt+r‖21 (8)

≤ (r3q/4) · ‖Pt − Pt+r‖22 (9)

= (r3q/4) ·
∑

x∈Zq
r

∣∣P̂t(x)− P̂t+r(x)
∣∣2 (10)

= (r3q/4) ·
∑

x∈(Zq
r)∗

∣∣rq(t−1)
(
P̂(x)

)t − rq(t+r−1)
(
P̂(x)

)t+r∣∣2 (11)

= (rq/4)
∑

x∈(Zq
r)∗

∣∣αt(x)− αt+r(x)
∣∣2 (12)

≤ rq
∑

x∈(Zq
r)∗

|α(x)|2t (13)

Step (8) follows directly from the definitions of the statistical distance and thel1 norm. Step (9) easily
follows from the Cauchy-Schwarz inequality and step (10) from the Parseval identity. For Step (11) notice
that P̂t(y) = rq(t−1)

(
P̂(y)

)t
andP̂(0) = 1/rq. Step (12) is immediate by the definition ofα and Step (13)

follows from the triangle inequality. �

Let Xt ∈ Z
q
r be the position of the random walk at timet andPt its distribution. By assumptionX0 = 0.

As previously mentioned,Pt = P∗t. It is easy to show that the statistical distance||Pt − Pt+r|| is monotone
non-increasing int; we are interested in the first timet = t(r, q) for which Pt andPt+r areδ-close.

Notation. Forq ∈ N, defineb(q)
def
= q2 log2(q+1), d(r)

def
= r4 log r, Sq

def
=

∑q
j=1 j/b(j), S

def
= limj→∞ Sj

andtq
def
= C log(1/δ)

δ d(r)b(q).

Throughout the proof, we assume for simplicity thattq is an integer. IfP is a probability measure onZq
r and

P̂ is its Fourier transform, we denoteα(x)
def
= rqP̂(x). A word concerning absolute constants. The letterC

will always denote an absolute constant, but as is customarythe value ofC need not be the same in all its
occurrences. Also note thatS is an absolute constant, soC can depend onS.

Theorem 6 follows from the following claim:

Claim 43. There exists a universal constantC > 0 such that for any0 < δ ≤ 1/2, any t ≥ tq and any
probability measureP onZ

q
r it holds ||Pt − Pt+r|| ≤ δ

S · Sq < δ.

We will prove the claim by induction onq.

Base case(q = 1). Given an arbitrary probability measureP on the discrete circleZn, n ∈ N∗, we will
show that, for allt ≥ t1 ≡ C log 1/δ

δ · n4 log n, it holds‖Pt − Pt+n‖ ≤ δ
S .

Setε0 := δ
Sn and consider the following two cases below:

Case I (There exists ak ∈ Zn such thatP(k) ≥ 1 − ε0.) In this case, we claim that for allt ∈ N∗ it holds
‖Pt − Pt+n‖ ≤ nε0 = δ/S. (In fact, this holds independently of the value of the timet.) This should be
intuitively obvious, but we give an argument.

Recall that the statistical distance‖Pt − Pt+c‖ is a monotone non-increasing function oft for any
constantc. Hence,‖Pt − Pt+n‖ ≤ ‖P− Pn+1‖ and it suffices to argue that‖P− Pn+1‖ ≤ nε0. The crucial

36

fact is that for alli ∈ Zn we havePn+1(i) ≥ (1 − nε0) · P(i). This directly implies that‖P − Pn+1‖ ≡∑
i∈Zn

(P(i)− Pn+1(i))
+ ≤ nε0 ·

∑
{i:P(i)>Pn+1(i)} P(i) ≤ nε0 ·

∑
i∈Zn

P(i) = nε0.
To see that the aforementioned fact is true, observe that foranyi ∈ Zn, conditioned on the walk being

at positioni at timet = 1, with probability at least(1− ε)n each of the nextn steps isk, so with probability
at least(1− ε0)

n ≥ 1− nε0 the walk is at positioni again at timet = n + 1.

Case II (For allk ∈ Zn it holdsP(k) ≤ 1−ε0.) Note that, fork ∈ Zn, we can writeα(k) =
∑n−1

l=0 P(l)·ωk·l
n ,

whereωn = e2πi/n. SinceP is a probability measure, it follows thatα(0) = 1. Now observe that fork ∈ Z∗
n,

α(k) is a convex combination ofn-th roots of unity with coefficients at most1 − ε0. Hence, an application
of Lemma 41 gives the following corollary:

Corollary 44. For all k ∈ Z∗
n, it holds|α(k)| ≤ 1− δ

2Sn3 .

We have now set ourselves up for an application of Lemma 42. For anyt ∈ N with t ≥ t1, we thus get:

‖Pt − Pt+n‖2 ≤ n
∑

i∈Z∗
n

|α(i)|2t

≤ n2
(
1− δ

2Sn3

)2t
≤ n2

(
1− δ

2Sn3

)2t1

≤ n2(e−
δ

2Sn3)2t1 = n2e−Cn log n log(1/δ)/S

where we used the elementary inequality1 − x ≤ e−x, for x ∈ [0, 1]. For large enoughC, we have
‖Pt − Pt+n‖2 ≤ (δ/S)2 and the base case is proved.

Induction Step: Assume that the claim holds forq − 1, i.e. that for anyt ≥ tq−1 and any probability
measureP onZ

q−1
r it holds‖Pt − Pt+r‖ ≤ δ

S · Sq−1. We will prove that the claim also holds forq.

For x ∈ (Zq
r)∗ andi = 0, 1, . . . , r − 1 defineV x

i
def
= {y ∈ Z

q
r : 〈y, x〉 = i}. At this point we are ready to

formally define the notion of degenerate direction:

Definition 45. We say thatx ∈ (Zq
r)∗ is a degenerate directionif there exists ani ∈ {0, 1, . . . , r − 1} such

that P(V x
i) ≥ 1− 2δq√

Cr2b(q)
.

We distinguish the following two cases below:

Case I (For all x ∈ (Zq
r)∗ it holds |α(x)| < 1 − δq√

Cr4b(q)
.) Note that, sinceP is a probability distribution,

we haveα(0) = 1. Now, for t ≥ tq Lemma 42 yields:

‖Pt − Pt+r‖2 ≤ rq
∑

x∈(Zq
r)∗

|α(x)|2t

≤ r2q
(
1− δq√

Cr4b(q)

)2t
≤ r2q

(
1− δq√

Cr4b(q)

)2tq

≤ r2q(e
− δq√

Cr4b(q))2tq = r2qe−2q log r
√

C log 1/δ

Similarly, if C is large enough, we have‖Pt − Pt+r‖ ≤ δ/S ≤ δ
S · Sq.

Case II (There exists somex0 ∈ (Zq
r)∗ such that|α(x0)| ≥ 1− δq√

Cr4b(q)
.)

37

Sincer is a prime, we may assume without loss of generality thatx0 = ε1 = (10q−1). Then, fori =
0, 1, . . . , r − 1, we haveVi ≡ V x0

i = {y ≡ (y1, y2, . . . , yq) ∈ Z
q
r : y1 = i}; note that eachVi is isomorphic

toZ
q−1
r .
Now observe that we can writeα(x0) =

∑r−1
j=0 P(Vj)ω

j
r with

∑
j P(Vj) = 1, P(Vj) ≥ 0. That is,

α(x0) is a convex combination ofr-th roots of unity whose absolute value is at least1− ε′/2r2, whereε′ :=
2δq√

Cr2b(q)
. Thus, (the contrapositive of) Lemma 41 implies that there must exist somej ∈ {0, 1, . . . , r − 1}

with P(Vj) ≥ 1 − 2δq√
Cr2b(q)

(i.e. x0 is degenerate). Clearly, it is no loss of generality to assume thatj = 0,

i.e.P(V0) ≥ 1− 2δq√
Cr2b(q)

.

For i = 0, 1, . . . , r − 1 andj = tq, tq + r, consider the conditional probability measuresPi
j = (Pj|Vi).

All the 2r distributions obtained in this manner can be viewed as distributions onZq−1
r . By the law of total

probability, we can write:Pj =
∑r−1

i=0 Pj(Vi) · Pi
j.

SinceP(V0) ≥ 1− 2δq√
Cr2b(q)

, it follows that|Pt(Vi)−Pt+r(Vi)| ≤ 2δq√
Crb(q)

, for all i ∈ {0, 1, . . . , r−1}.
(In fact, this holds independently of the value of the timet). This can be shown by an argument similar to
that in Case I of the induction basis.

We will show using the induction hypothesis that fori = 0, 1, . . . , r − 1 andt ≥ tq it holds:

||Pi
t − Pi

t+r|| ≤
δ

S
·
(
Sq−1 +

q

2b(q)

)

We claim that this will conclude the proof. This follows fromthe following chain of inequalities:

‖Pt − Pt+r‖ ≤
r−1∑

i=0

|Pt(Vi)− Pt+r(Vi)|+
∥∥

r−1∑

i=0

Pt(Vi) · (Pi
t − Pi

t+r)
∥∥ (14)

≤ 2δq√
Cb(q)

+
δ

S

(
Sq−1 +

q

2b(q)

)
(15)

≤ δ

S
Sq (16)

Step (14) follows easily from the triangle inequality (recall that the statistical distance is a norm) and
by using the fact that thePi

j ’s are distributions. For Step (15) observe that the second summand in (14) is a
convex combination and Step (16) assumes thatC is large enough.

To finish the proof we show that‖P0
t −P0

t+r‖ ≤ δ
S ·

(
Sq−1 + q

2b(q)

)
. The proofs for ther− 1 remaining

cases are very similar.

For i = 0, 1, . . . , r − 1 denotePi = (P|Vi). Let Nj = (N1
j , . . . , N r−1

j) be a random vector such that

the random variableN l
j (l = 1, 2, . . . , r− 1) counts the number of times the walk makes a stepx ∈ Z

q
r with

x1 = l during the firstj steps. Consider a vectors = (s1, s2, . . . , sr−1) such that|s| def
=

∑r−1
i=1 si ≤ j and∑r−1

k=1 ksk ≡ 0 mod r. Then, we have:

(P0
j |Nj = s) =

(
{∗

∏
}r−1

i=1 (Pi)∗si)
)
∗ (P0)∗(j−|s|)

where by{∗∏} we denote the convolution product. The above equality holdsfor the following reason: The
distribution on the left hand side is the distribution onV0

∼= Z
q−1
r given that the walk makessl stepsx with

x1 = l (l = 1, 2, . . . , r − 1) (andj − |s| steps withx1 = 0). The equality follows by commutativity.

38

Therefore, by the law of total probability, we can writeP0
j as the following convex combination of

conditional distributions:

P0
j =

∑

(
Pr−1

k=1 ksk≡0 mod r) and(|s|≤j)

Pr[Nj = s] ·
(
{∗

∏
}r−1

i=1 (Pi)∗si)
)
∗ (P0)∗(j−|s|)

Using this fact, we can bound‖P0
t − P0

t+r‖ for t = tq as follows:

‖P0
t − P0

t+r‖ ≤ Pr[Nt 6= Nt+r] + Pr[|Nt| ≥ 4qr2 log r
√

C log(1/δ)]

+
∑

s such that
(
∑r−1

k=1 ksk ≡ 0 mod r)

(|s| ≤ 4qr2 log r
√

C log(1/δ))

Pr[Nt = s] ·
∥∥∥
(
{∗

∏
}r−1

i=1 (Pi)∗si
)
∗ [(P0)∗(t−|s|) − (P0)∗(t+r−|s|)]

∥∥∥

The first summand is equal to the probability that a non-trivial step in the first coordinate (i.e stepx
with x1 6= 0) was made in one of the timest + 1, . . . , t + r and this is at most2δq/

√
Crb(q) (because

P(V0) ≥ 1− 2δq/
√

Cr2b(q)).

To upper bound the second summand, we observe that|Nt| =
∑r−1

i=1 N i
t is a binomial random variable

with parameterst = tq andp ≤ 2δq/
√

Cr2b(q). Thus, by a standard Chernoff bound, we get that the second
summand is also very small, so that the sum of the first two summands is at mostδS ·

q
2b(q) for large enough

C.

Now consider the third summand. Since|s| ≤ 4qr2 log r
√

C log(1/δ), it follows thattq − |s| ≥ tq−1

and the induction hypothesis implies:

∥∥∥
(
{∗

∏
}r−1

i=1 (Pi)∗si

)
∗ [(P0)∗(t−|s|) − (P0)∗(t+r−|s|]

∥∥∥ ≤
∥∥∥(P0)∗(t−|s|) − (P0)∗(t+r−|s|)

∥∥∥

≤ δ

S
· Sq−1

The first inequality follows from the fact that{∗∏}r−1
i=1 (Pi)∗si is a distribution. Therefore, the expres-

sion δ
S · Sq−1 is an upper bound for the third summand and the proof is complete.

E.1.3 Proof of Theorem 36.

Recall that thelengthof a monomial is the number of distinct variables that occur in it (so for examplex2
1x

4
2

has length two). Recall that anaffinefunction is simply a degree-1 polynomial.
Let f : Fn → F be any function. We say that theinfluenceof variablexi onf is

Infi(f)
def
= Pr

x1,...,xn,y∈F

[f(x1, . . . , xi−1, xi, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, y, xi+1, . . . , xn)].

If f is a single monomial of length̀ that contains the variablex1, then the influence ofx1 on f is
(1− 1

P)` (the probability that the other̀− 1 variables besidesx1 all take nonzero values is(1− 1
P)`−1, and

then there is a1 − 1
P probability that the value ofx1 changes when we re-randomize). Similarly, ifg is an

39

s-sparse polynomial in whichx1 occurs inr monomials of length̀1, . . . , `r, then the influence ofx1 is at
most (

1− 1

P

)`1

+ · · ·+
(

1− 1

P

)`r

.

The total influenceof f is the sum of the influences of all variables. Each monomial oflength ` in a
polynomialg contributes at most̀(1− 1

P)` to the total influence off (i.e. if a polynomial hask monomials
of lengths`1, . . . , `k then the total influence ofg is at most̀ 1(1− 1

P)`1 + · · ·+ `k(1− 1
P)`k .

Note that each variable in an affine function of the form (7) has influence1− 1
P , and the total influence

of such a function is precisely(s + r)(1− 1
P).

The following fact will be useful:

Fact 46. Letf, g : Fn → F be two functions such that for some variablexi we have|Infi(f)− Infi(g)| = τ.
Thenf is τ/2-far from g.

Proof. We may assume without loss of generality thatInfi(g) = Infi(f)+τ. Letx denote a uniform random
input fromF and letx′ denotex with thei-th coordinate re-randomized. We have

Pr
x,x′

[g(x) 6= g(x′)] ≤ Pr
x,x′

[g(x) 6= f(x)] + Pr
x,x′

[f(x) 6= f(x′)] + Pr
x,x′

[f(x′) 6= g(x′)].

Rearranging, we get

τ = Pr
x,x′

[g(x) 6= g(x′)]− Pr
x,x′

[f(x) 6= f(x′)]

≤ Pr
x,x′

[g(x) 6= f(x)] + Pr
x,x′

[f(x′) 6= g(x′)] = 2 Pr
x,x′

[g(x) 6= f(x)]

where the final inequality holds since bothx andx′ are uniformly distributed. This gives the fact. �

Finally, recall that in any polynomialg(x1, . . . , xn) overF, we may assume without loss of generality
that no variable’s degree in any monomial is greater thanP − 1. (The multiplicative group is of sizeP − 1
and henceαP = α for everyα ∈ F.)

Proof of Theorem 36.
Let g be ans-sparse polynomial inF[x1, . . . , xn] and letA(x) be a fixed affine function given by

equation (7). We will show thatg must beΦ(P)-far fromA and thus prove the theorem.
First note that without loss of generality we may assumeg has no term of degree 1. (Supposeg hast

such terms. Letg′ be the polynomial obtained by subtracting off these terms. Theng′ is (s − t)-sparse and
is Φ(P)-close to the affine functionA′(x) obtained by subtracting off the same terms; this affine function
has at leasts + r− t nonconstant terms. So we can run the following argument ong′ with s− t playing the
role of “s” in the lemma.)

Now we observe thatg must satisfy

Inf1(g) + · · ·+ Infs(g) ≥ (1− 4Φ(P))s(1 − 1

P
). (17)

If this were not the case, then some variablexi in x1, . . . , xs would necessarily have influence at most
(1− 4Φ(P))(1− 1

P) ong. Since the influence ofxi on (7) is1− 1
P , by Fact 46 this would mean thatg is at

least2Φ(P)(1 − 1
P) ≥ Φ(P)-far from (7), and we would be done.

Notation. We will henceforth refer to monomials ing of length less thanP 2 asshort monomials, and we
write S to denote the set of all short monomials ing. For P 2 ≤ ` ≤ P 8, we refer to monomials ing of

40

length` as intermediatemonomials, and we writeI to denote the set of all intermediate monomials ing.
Finally, for ` > P 8 we refer to monomials ing of length` aslong monomials, and we writeL to denote the
set of all long monomials.

Observe that

• Each monomial ing that is intermediate or long contributes at most1/4 to Inf1(g) + · · · + Infs(g).
This is because each monomial of length` ≥ P 2 contributes at most̀(1 − 1

P)` to this sum, and for
integer` the valuemax`≥P 2 `(1 − 1

P)` is achieved at̀ = P 2 where the value is at most1/4 (the
upper bound holds for all integerP ≥ 2).

• Each short monomial ing contributes at mostP/e to Inf1(g) + · · · + Infs(g). This is because
max`≥1 `(1− 1

P)` ≤ P/e (the max is achieved around` ≈ P).

Since the RHS of(17) is at least(1− 1.2
P)s, we have the following inequalities:

|I|+ |L|
4

+
|S|P

e
≥

(
1− 1.2

P

)
s and |I|+ |L| ≤ s

(the second inequality holds simply because there are at most s long monomials). These inequalities straight-
forwardly yield |S| ≥ s

3P .
Let m` denote the number of monomials ing that have length exactlỳ. Note that we have

∑
`>P 8 m` =

|L| ≤ s.
Given two monomialsM1,M2 that occur ing, we say thatM1 coversM2 if all variables inM1 are also

in M2 (note we do not care about the degrees of the variables in these monomials). We refer to such a pair
(M1,M2) as acoverage; more precisely, ifM1 is of length` we refer to the pair(M1,M2) as aǹ -coverage.
(One can view each̀-coverage as an edge in a bipartite graph.)

Let S′ ⊆ S be the set of those monomialsM in S which are “maximal” in the sense that no other
monomialM ′ ∈ S (with M ′ 6= M) coversM.

Claim 47. We have|S′| ≥ s/(3PP 2
).

Proof. SinceS is finite it is clear thatS′ is nonempty; suppose the elements ofS′ areM1, . . . ,Mk. Each
of the (at leasts/(3P) many) elements ofS is covered by someMi. But eachMi is of length` for some
` ≤ P 2 − 1, and hence can cover at mostP ` monomials (any monomial covered byMi is specified by
giving ` exponents, each between 0 andP − 1, for the` variables inMi). �

Fix any ` ≥ P 2. Each fixed monomial of length̀ participates in at most
(

`
P 2

)
PP 2 ≤ (`P)P

2
many

`-coverages of monomials inS′. (There are
(`
P 2

)
ways to choose a subset ofP 2 variables, and once chosen,

each variable may take any exponent between 0 andP − 1.) Consequently, the length-` monomials ing
collectively participate in at mostm`(`P)P

2
many`-coverages of variables inS′ in total. By Claim 47, it

follows that

EM∈S′ [# `-coveragesM is in] ≤ m`(`P)P
2

s/(3PP 2)
=

3m``
P 2

P 2P 2

s
.

By Markov’s inequality, we have

Pr
M∈S′

[# `-coveragesM is in≥ 3m``
P 2+2P 2P 2

/s] ≤ 1/`2.

So for each̀ ≥ P 2, we have that at most a1/`2 fraction of monomials inS′ are covered by at least
3m``

P 2+2P 2P 2
/s many length-̀ monomials. Since

∑
`≥P 2 1/`2 < 1/2, we have that at least half of the

monomials inS′ have the following property:

41

• For all ` ≥ P 2, at most3m``
P 2+2P 2P 2

/s many length-̀ monomials coverM. (†)

Fix M to be some particular monomial with property(†). SinceM belongs toS′, we know that no short
monomial ing coversM ; we now show that for a constant fraction of all restrictionsρ of variables outside
of M , no intermediate or long monomial ingρ coversM. (Once this is accomplished, we will be almost
done.)

First observe that for any valuèwith P 2 ≤ ` ≤ P 8, using the fact thatm`/s is at most1, we have that
at most

3`P 2+2P 2P 2 ≤ 3P 10P 2+16 ≤ P 10P 2+18

many length-̀ monomials coverM. So in total there are at most(P 8 − P 2 + 1)P 10P 2+18 ≤ P 10P 2+26

many intermediate monomials that coverM ; let T denote the set of these intermediate monomials. Each
intermediate monomial inT has length strictly greater than the length ofM , so each such monomial contains
at least one variable that is not inM . LetV be a set of at mostP 10P 2+26 variables such that each monomial
in T contains at least one variable fromV , and letρ1 be the restriction that sets all variables inV to 0
and leaves all other variables unfixed. Note that for each long monomial ing, applyingρ1 either kills the
monomial (because some variable is set to 0) or leaves it unchanged (no variable in the monomial is set) in
gρ1 . Thus the result of applyingρ1 is that no intermediate monomial ingρ1 coversM.

Now let ρ2 denote a random restriction over the remaining variables which leaves free precisely those
variables that occur inM and fixes all other variables independently to uniformly chosen elements ofF.
SupposeM ′ is a long monomial (of length̀ > P 8) from g that survived intogρ1 . It must be the case that
M ′ contains at least̀− P 2 variables that are neither inM nor in V , and consequently the probability that
M ′ is not killed byρ2 (i.e. the probability that all variables inM ′ that are not inM are set to nonzero values
underρ2) is at most(1 − 1

P)`−P 2
. Consequently the expected number of length-` monomials ingρ1 that

coverM and are not killed byρ2 is at most3m``
P 2

P 2P 2
(1 − 1

P)`−P 2
/s. Summing over all̀ > P 8, we

have

Eρ2[# long monomials that coverM and surviveρ1ρ2] (18)

≤
∑

`>P 8

3m``
P 2

P 2P 2
(1− 1

P)`−P 2

s

≤

 ∑

`>P 8

m`

s

 ·max

`≥P 8
3`P 2

P 2P 2
(1− 1

P
)`−P 2

. (19)

We have
∑

`>P 8
m`

s ≤ 1. A routine exercise shows that for allP ≥ 2, the max in (19) is achieved at
` = P 8 where the value is at most1/2 (in fact it is far smaller). So (18) is certainly at most1/2, and we
have

Eρ2 [# long monomials that coverM and surviveρ1ρ2] ≤ 1/2.

So the probability that any long monomial that coversM survivesρ1ρ2 is at most1/2. Since we already
showed that no short or intermediate monomial ingρ1ρ2 coversM , it follows that with probability at least
1/2 over the random choice ofρ2, no monomial ingρ1ρ2 coversM except forM itself.

Now letρ denote a truly random restriction that assigns all variables not inM uniformly at random and
keeps all variables inM free. Since the variables inV will be assigned according toρ2 with probability

1/PP 10P2+26
, we have that with probability at least1/(2PP 10P2+26

) > 1/(PP 10P2+26+1) over the random
choice ofρ, no monomial ingρ coversM . Supposeρ is such a restriction. SinceM itself clearly survives the
restrictionρ, we have that the functiongρ (a function on length(M) ≤ P 2 − 1 many variables) is different
from the functionAρ – this is simply because the polynomialgρ contains the monomialM , which is not of

42

degree 1, whereas all monomials inAρ have degree 1. Hence the functionsgρ andAρ differ on at least one
of the (at most)PP 2−1 possible inputs.

So, we have shown that for at least a1/(PP 10P2+26+1) fraction of all restrictions of the variables not
occurring inM , the error ofg under the restriction in computingA is at least1/PP 2−1. This implies that
the overall error ofg in computingA is at least

1/(PP 10P2+26+P 2
) = Φ(P)

and we are done with the proof of Theorem 36. �

E.2. Lower Bounds for Boolean Function Classes

In this section we prove lower bounds on the query complexityof testing size-s decision trees, size-s
branching programs,s-term DNF, and size-s Boolean formulas (Theorem 48), and Boolean functions with
Fourier degree at mostd (Theorem 51).

Theorem 48. Let ε = 1/1000. Anyε-testing algorithm for any of the following classes of functions over
{0, 1}n must makeΩ(log s/ log log s) queries: (i) size-s decision trees; (ii) size-s branching programs; (iii)
s-term DNF; (iv) size-s Boolean formulas.

Proof. The proof combines a counting argument with the result of Chockler and Gutfreund [3] showing
that Ω(J/k) queries are required to distinguish betweenJ-juntas and(J + k)-juntas over{0, 1}n. More
precisely, consider the following distributions:

1. DNO is the uniform distribution over all functions (onn variables) that depend on (at most) the first
(J + k) variables.

2. DYES is the distribution obtained in the following way. Choose ak-element subsetIk uniformly and
randomly from the set{1, . . . , J + k}. Then choose a uniformly random function from the set of all
functions onn variables that depend on (at most) the variables indexed by the set[J + k] \ Ik.

Chockler and Gutfreund show that with very high probabilitya random draw fromDNO is far from every
J-junta, whereas clearly every draw fromDYES is aJ-junta. Given any putative testing algorithm, the dis-
tributionsDYES,DNO over functions induce two distributionsCY ES, CNO over “query-answer histories”.
Chockler and Gutfreund show that for any (even adaptive) algorithm that makes fewer thanΩ(J/k) queries,
the statistical difference betweenCY ES andCNO will be at most1/6. This implies that any successful
testing algorithm must makeΩ(J/k) queries.

We adapt this argument to prove Theorem 48 as follows. LetCs be a class of functions for which we
would like to prove a lower bound (e.g.Cs could be the class of all Boolean functions overn variables that
are computed by decision trees of size at mosts). We chooseJ (as a function ofs) such that anyJ-junta is a
function inCs; with this choice the distributionDYES described above is indeed a distribution over functions
in the class. We choosek (as a function ofJ) so that with very high probability, a random function drawn
from DNO (i.e. a random function over the firstJ +k variables) isε-far from every function inCs. This gives
anΩ(J/k) lower bound for testing whether a black-box function is inCs or is ε-far from every function in
Cs.

For all of the classes addressed in Proposition 48 we can takeJ = log2 s andk = Θ(log J). We work
through the analysis for size-s decision trees, sketch the analysis for size-s branching programs, and leave
the (very similar) analysis fors-term DNF and size-s Boolean formulas to the interested reader.

Decision Trees (of sizes): We setJ = log2 s andk = log2 J . It is clear that anyJ-junta can be expressed
as a size-s decision tree.

43

Lemma 49. Fix ε = 1/1000. With very high probability, a random(J+log J)-junta over the first(J+log J)
variables isε-far from any size-s decision tree over the first(J + log J) variables.

Proof. For any size-s decision tree over the first(J + log J) variables, the number of(J + log J)-juntas

(over these variables)ε-close to it equals
∑ε·2J+log J

i=0

(2J+log J

i

)
. Forε = 1/1000, this is at most20.1·2J+log J

=

2(J/10)2J
(recall that the sum of the binomial coefficients

∑n/α
k=0

(n
k

)
isO(C(α)n), whereC(α) = α1/α(α

α−1)
α−1

α .)
Now we upper bound the number of size-s decision trees over the firstJ + log J variables. There are

at most4s = 22·2J
) distinct decision tree topologies for trees withs leaves. For each topology there are at

most(J + log J)s ≤ 22s log log s = 2(2 log J)2J
different labellings of the nodes.

Thus, the number of(J + log J)-juntas that areε-close toany decision tree of sizes (over the first
J + log J variables) is at most2(J/10+2 log J)2J

. This is a vanishingly small fraction of the total number of
(J + log J)-juntas over the first(J + log J) variables, which is22J+log J

= 2J ·2J
. �

We are not quite done, since we need that with very high probability a random function fromDNO is
ε-far from everysize-s decision tree, not just from size-s decision trees over the first(J + log J) variables.
This follows easily from the previous lemma:

Corollary 50. For ε = 1/1000, with very high probability a random(J + log J)-junta over the first(J +
log J) variables isε-far from any size-s decision tree (overn variables).

Proof. Let f be any(J + log J)-junta over the set{x1, . . . , xJ+log J}. Suppose thatg is a size-s decision
tree over{x1, . . . , xn} that isε-close tof . It is not hard to show that then there exists a size-s decision tree
g′ over the relevant variables{x1, . . . , xJ+log J} that isε-close tof as well (g′ can be obtained fromg by
fixing all the irrelevant variables to the values that maximizeg’s agreement withf). �

We have thus established part (i) of Theorem 48.

Branching Programs: We only sketch the required analysis. We setJ = log2 s and k = 10 log2 J .
Any J-junta can be expressed as a size-s branching program. Simple counting arguments show that for
ε = 1/1000, a random(J + k)-junta over{x1, . . . , xJ+k} is with high probabilityε-far from every size-s
Branching Program over{x1, . . . , xJ+k}. An analogue of Corollary 50 completes the argument.

This completes the proof of Theorem 48. �

Remark: We note that these simple arguments do not seem to give any non-trivial testing lower bound for
the class of Boolean circuits of sizes. It would be interesting to obtain lower bounds for this class.

Finally, we point out the following:

Theorem 51. Let 0 < ε < 1/2. Any non-adaptiveε-testing algorithm for the class of Boolean functions
over{0, 1}n with Fourier degreed must makẽΩ(

√
d) queries.

Proof. Consider the following two distributions over Boolean functions on{−1, 1}n:

1. DNO is the uniform distribution over all
(n
d+2

)
parities of exactlyd + 2 variables fromx1, . . . , xn;

2. DYES is the uniform distribution over all
(n

d

)
parities of exactlyd variables fromx1, . . . , xn.

Every function in theDYES distribution clearly has Fourier degree, whereas every function in theDNO

distribution has distance precisely1/2 from every function with Fourier degreed (this follows immediately
from Parseval’s identity). Fischeret al. showed that any non-adaptive algorithm for distinguishingdraws
from DYES versusDNO must makẽΩ(

√
d) draws; this immediately gives the desired result. �

44

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

