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Testing for deterministic trend and seasonal components in
time series models

BY L. FRANZINI AND A. C. HARVEY

Department of Statistics, London School of Economics

SUMMARY

A univariate time series model can be set up as the sum of trend, seasonal and irregular
components. The trend and seasonal components will normally be stochastic, but
deterministic components arise as a special case. This paper develops a test that the
trend and seasonal components are deterministic using the approach of Lehmann. The
procedure is then extended to test for deterministic components in a model formulated in
first differences. Both tests are exact and critical values are tabulated.

Some key words: Deterministic component; Forecasting; Generalized least squares; Local and global trend;
Most powerful invariant test; Time-varying parameter.

1. INTRODUCTION

A univariate time series model can be set up as the sum of trend, seasonal and irregular
components. By allowing the trend and seasonal components to change slowly over time,
more weight is put on the most recent observations in making predictions. A model of
this kind is attractive for modelling time series because it has a natural interpretation.
Furthermore, estimation is a feasible proposition, either in the time domain, using the
Kalman filter, or in the frequency domain; see Kitagawa (1981) and Harvey & Todd
(1983).

Although such a model will normally have stochastic trend and seasonal components,
a model in which these components are deterministic emerges as a special case. The
purpose of this paper is to develop a test of the deterministic, or global, model against the
more general stochastic alternative. The global model we have in mind is

y^a + pt + ZjdjZjt + s, (t = l,...,T), (M)

where ylt ...,yT are the observations, a and /? are the trend parameters, e, is a normally
distributed white noise disturbance term with mean zero and variance a2, the Zj,'s are
seasonal dummies and the S/s are their coefficients. If there are s seasons in the year
there will normally be s— 1 seasonal dummy variables. This makes a total of 3+1
regression parameters and these parameters can be estimated efficiently by ordinary
least squares. The corresponding stochastic model is

y , = », + y , + e, (t=l,...,T), (1-2)

where \it and y, are the trend and seasonal components respectively. The trend is defined
as

i+ril, /?, = /?,-! + £, (* = 1, T), (1-3)

where r\t and £t are normally and independently distributed white noise processes with
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zero means and variances a2 and a2 respectively. The seasonal component is

'ty,-j = oit (t=l,...,T), (1-4)
7=0

where to, is normally distributed white noise with variance a\. The irregular component
e, is normally distributed white noise with variance a2. A complete class of structural
models can be defined by generalizing this specification, and it is argued by Harvey &
Todd (1983) that models of this kind provide a useful alternative to the integrated
autoregressive-moving average models proposed by Box & Jenkins (1976). However, for
the purposes of this paper we will restrict attention to what we call the 'basic structural
model'. A similar model forms the basis of the Bayesian forecasting procedure used by
Harrison & Stevens (1976).

In the basic structural model, the trend has both its level, \iu and its slope, f}t, slowly
changing over time. The seasonal pattern is also changing over time, but when
a2 = a2 = a2, = 0 both the trend and the seasonal components are deterministic and the
model is equivalent to (11). It is the hypothesis that these three variances are all zero
that we wish to test.

Various partially deterministic models also arise as special cases of the basic structural
model. The most important of these is the seasonal random walk with drift, i.e.

Ay, = p+ ^6^ + 1, (t = 2,...,T), (1-5)

where rj, is normally distributed white noise with variance a2 and A is the first difference
operator. This model has been found to fit many economic time series remarkably well;
see, for example, Pierce (1978). The hypotheses to be tested are concerned with whether
the mean and the seasonal pattern are indeed constant over time.

2. THE BASIC STRUCTURAL MODEL

The model defined by (l-2), (13) and (1-4) can be written as a regression model in which
the parameters change over time. Suppose that s = 4. Definition of the vectors

ar = (^,>^,yf,Vr-l,Vr-2)'. h = (f«. Cr, «>«. 0, 0)'

enables us to write
a, = C*t_l + T, (t = l,...,T), (2-1)

where C is an appropriately defined matrix; see Harvey & Todd (1983). Equat ion (12^
can now be writ ten as

B, (t=\,...,T), (2-2)

where x, = (1 0 1 0 0)' for all t.
If a0 is regarded as fixed, (21) can be used to express a, in terms of a0 for all

t = l,...,T. Substitution into (2-2) then gives

( < = l , . . . , n (2-3)
where x, = C x, and

w^^t^'^Tj + E, (t=l,...,T). (2-4)

The model is now in the form of a standard regression and if the covariance matrix of the
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wt's were known up to a scalar factor, the minimum variance unbiased estimator of a0

could be computed by generalized least squares.
Model (2-3) can be expressed in matrix form as y = Xyo + w, where y is the T x 1 vector

y = (yl,...,yT)', X is t h e T x ( s - t - l ) m a t r i x X — (xl,...,xT)', a n d w = (wlt . . . , w T ) ' . T h e
mean of w is the null vector while its covariance matrix, c2Q, has as its element (s,t)

X C-JQC"-J)xt

min(s,I)

= 5«+ Z <-jQx.-), (2-6)

where <5n is the Kronecker delta and

Q = a-2E(xtr't) = diag{ff2,ff2,a2,0,0}. (2-7)

Given the relative variances, a2 = a21 a2, a2 = a21 a2 and a2, = a2ja2, the generalized
least squares estimator of y0, y0, can be computed. The corresponding generalized
residual sum of squares is

S(a2,d2,ai) = (y-X%)'Q-l(y-Xy0). (2-8)

The generalized residual sum of squares is the main element in the test statistic
proposed in the next section. However, it can be calculated without constructing and
inverting the T xT matrix fi. As expressed in (21) and (2-2) the model is effectively in
state space form. It is therefore possible to run through the Kalman filter with starting
values formed from the first s+1 observations; see Harvey (1981, p. 205) or Garbade
(1977). The generalized residual sum of squares is then given by the sum of squares of the
standardized one-step ahead prediction errors, i.e.

S(d2,d2,dl)= £ v2//,, (2-9)

where vr is the one-step ahead prediction error at time t and/, = a~2 var (v(). The proof of
the equivalence of (28) and (2-9) is along the lines of the proof set out by Harvey &
Phillips (1979, pp. 54-5). The attraction of being able to use the Kalman filter algorithm
to compute (2-9) is that this algorithm will need to be employed anyway, if it is decided
to fit the more general local trend model and use it to make optimal predictions of future
observations.

3. TEST PROCEDURES

3 1 . General approach

The three classical test procedures, i.e. likelihood ratio, Wald and Lagrange multiplier,
all run into difficulties in the present context; compare with a similar situation analysed
by Sargan & Bhargava (1983). The solution we propose is to develop a most powerful
invariant test based on the theory of invariance (Lehmann, 1959, Chapter 5). The test is
exact, but the price paid for this is that specific values must be assigned to a2, a2 and a\,
under the alternative.

Given the regression interpretation of the model in (2-3), a most powerful invariant
test can be derived by following the approach used, for example, by Berenblut & Webb
(1973). In an unpublished paper L. Franzini extended this approach to develop tests for
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time-varying parameters in regression and the tests used here are of the same form as
those given by Franzini. If the matrix Q is understood to be evaluated at specific values
of o*, o% and d^, the critical region for testing the null hypothesis that a\ = a\ = d^ = 0
is of the form

(y-Xyoy(y-Xyo)
 <e' m )

where y0 is the ordinary least squares estimator of y0. The denominator is therefore
simply the residual sum of squares obtained by regressing y on X, while the numerator is
the generalized residual sum of squares, (28). As already noted (2-8) can be most easily
evaluated in the form (2-9).

Critical values for the test defined by (3*1) can be computed using the method of Imhof
(1961). These values depend on T and s, and on the values assigned to the relative
variances. If these relative variances can be fixed according to some suitable rule, critical
values for the test procedure can be tabulated once and for all.

3-2. Choice of test statistic

The first step in deciding on suitable values of a\, a^ and a\ is to fix the relationship
between them. Two possibilities will be considered. The first is to set them all equal,
while the second is to set a\ = d^ but to have a\ = 0. The rationale behind the second
choice is that if there is variation in the trend, of whatever sort, it will tend to show up in
a test against d* > 0.

In terms of (2-7), the first test sets Q = q diag(l, 1,1,0,0), while the second test has
Q = ^diag(l,0, 1,0,0). Given these two tests the second step is to decide on suitable
values of q. Let the proportion of total variance due to variation in the regression
coefficients be denoted by 9. It can be shown that 9 is related to q by the expression

otr(MQ*)
~ tr(M) + qtr(MQ*)'

where Q* is the T xT matrix defined implicitly by writing
M = 1-

(La Motte & McWhorter, 1978). The suggested procedure is therefore to fix q by solving
(32) for a given choice of 6. In the special case when 9 = q = 0, the test statistic as given
in (31) is inappropriate. However, as shown in the unpublished paper by Franzini, the
use of L'Hopital's rule gives a test of the form

(y-Xyoyn*(y-Xyo)

(y-Xyo)'(y-Xyo)
 >C' ( 3 ' 3 )

The sensitivity of the first test, the b*(6) test, to three choices of 6, 0, 05 and 09, was
examined for a range of true values of 9 from 005 to 0-99. Exact powers were computed
by the method of Imhof, and a full set of results can be found in our original research report
which is available on request. Our conclusion is that setting 6 = 0-5 is a sensible choice
since the resulting test has relatively high power for the full range of values of 6. Thus,
for example, a comparison of b + (0) and b + ($) for a sample size of 20 shows that 6 + (0) has
a power of 0110 for 9 = 005 while b+($) has a power which is only slightly lower at 0105.
On the other hand, the power of b + (0) at 9 = 099 is 0-774 while that of 6 + (|) is 0891. A
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comparison between 6 + (O9) and b + (\) gives comparable results. The same exercise
carried out for the b(9) test leads to similar conclusions and in the power comparisons
which follow 9 will be set at \ in both cases. Bearing this in mind the two tests will be
denoted by 6+ and 6 respectively.

3-3. Comparison of powers

The purpose of this subsection is to compare the power functions of the b+ and b tests
for a number of different quarterly models. The power functions of two other tests, the
Durbin-Watson test and the 4th-order Durbin-Watson test (Wallis, 1972), are also
examined. These tests, which throughout the paper are employed as one-sided tests
against positive serial correlation, will be denoted by dt and dA respectively. Critical
values for dx are tabulated by King (1981). All the powers reported were computed by
the method of Imhof. The number of observations is T = 20 unless explicitly stated
otherwise, and the level of significance is 5% in all cases.

The power functions shown in Fig. la are for a model in which there is equal variation
in the level, slope and trend components, that is Q = <?diag(l, 1,1,0,0). This is the
situation for which the b+ test is designed. However, although the power function of the
b+ test dominates that of the other tests both the b and dx tests perform quite well.

l-O-i (a) 1

0-8-

0 6 -

I 0 4 -

0 2 -

O8-

O6-

5

O4-

O2-

0 O2 O4 O6 08 0 0 O2 O4 06 08 0
Fig. 1. Power functions (a) for variation in all components, (b) for trend, i.e. level and seasonal

variation only.

Similar calculations for T = 40 indicate a tendency for the relative power of the b test to
improve as the sample size is increased. For example, for 6 = \, the powers of the b+ and
b tests are 077 and 069 respectively.

Figure lb shows the power functions when there is equal variation in the level and
seasonal components, that is Q = (?diag(l,0,1,0,0). The b test is most powerful
invariant when 9 = \, but it clearly dominates the other tests for all values of 9.

Two other cases were also examined. In the first, the variation was restricted to the
level component in the trend, that is Q = gdiag(l,O,O,O,O), and the dt test performed
rather well, as might be expected. However, its power function was dominated by that of
the&+ test for 9 < 054. Both dx and6+ had higher power than b for all values of 9, while
the d4 test was biased. The second case considered had only seasonal variation present,



678 L. FRAXZIXI AND A. C. HARVEY

that is Q = gdiag(0,0,1,0,0). The d4 test was the most powerful test, although b still
had relatively high power. Both dx and b+ had decreasing power functions. This is
because seasonal variation of the form (1-4) induces negative first-order autocorrelation
in the residuals.

The main conclusion to be drawn from the above results is that b is the only statistic
with relatively high power in all cases. The other three are all capable of performing
extremely badly in certain situations. Furthermore a model in which there is both trend
and seasonal variation, but a2 is relatively small, is one of the more likely cases to arise in
practice. The recommended test procedure is therefore the b test. Critical values for b(\),
the appropriate quarterly 6-statistic, together with the values of q corresponding to
9 = \, are given in Table 1.

Table 1. Critical values for b at 5% level of significance, 8 = 05

T

12
16
20
24
28
32
36
40

9

0-384
0-314
0-265
0-229
O201
0-180
0-162
0-148

Critical
value

0437
0447
0465
0-485
0-504
0-523
0-540
0-555

T

44
48
52
56
60
64
68
72

9

0-136
0-126
0-117
O109
0-102
0-096
0-091
0-087

Critical
value

0-570
0-583
0-595
0-606
0-616
0-626
0-635
0-643

T.

76
80
88
96

104
112
120

9

0-082
0-078
0-072
0-066
0-061
0-057
0-053

Critical
value

0-651
0-659
0-672
0-684
0-695
0-705
0-714

4. TEST PROCEDURES FOR A PARTIALLY DETERMINISTIC MODEL

Suppose that first differences are taken in the basic structural model and a2 is set equal
to zero. The resulting model can then be written as

Ay, = P,-i+y?+i, (t = 2,...,n (4-i)

where /?, is as defined in (1*3), and yf = Ay,, so that

The model defined in (15) is a special case of (4-2) in which a2 = a2, = 0. It is this
hypothesis we wish to test.

If we proceed as before, (41) can be expressed in the form

where z, = (1,1,0,0)' for all t and 5, is a vector of time-varying regression parameters
which obey the transition equation

0
- ]

- 1

- 1

0

1

0

0

0"

0

1

0.

C,-i"

GJ,

-0),

0 .

(4-4)

Compare this with the state space form of an autoregressive-moving average model
(Harvey & Phillips, 1979). This model can be expressed in a form analogous to (2-5) and
it follows once again that the most powerful invariant test against a specific alternative



Deterministic trend and seasonal components 679

hypothesis is of the form (3-1). The recommended test procedure is to set o\ = o^ = qo*
under the alternative hypothesis and to choose q in such a way that the 6 defined for (4-3)
is equal to \. This will be termed the b* test. Table 2 shows the critical values for such a
test with quarterly data at the 5% level of significance.

The denominator in the test statistic is simply the residual sum of squares from
applying ordinary least squares to (15). The numerator can be computed by running

Table 2. Critical values for b* at 5% level of significance, 9 = 0 5

T

12
16
20
24
28
32
36
40

1

0-156
0-125
0-103
0-088
0-077
0-068
O061
O056

Critical
value

0-421
O453
0-486
O514
0-538
0-560
O579
0-595

T

44
48
52
56
60
64
68
72

g

0-051
0-047
0-044
0-041
0-038
0-036
0-034
0032

Critical
value

0-611
O624
0-637
0-648
0-658
0-668
0-677
0-685

T

76
80
88
96

104
112
120

q

O030
0-029
O026
0-024
0-022
0-021
0-020

Critical
value

0-692
O699
0-712
0-724
0-734
0-743
0-752

The number of differenced observations is T — 1.

through the Kalman filter for the basic structural model with the covariance matrix
of the disturbance term on the transition equation defined as o~*Q*, where
Q* = diag(l,<7, g, 0,0) and the variance of a, defined as o*h where h = 0. The scalar a*
does not appear in the filtering equations and (2-9) is applicable exactly as before.

The powers shown in Fig. 2a are for a model in which Q* = diag(l,q,q,O,O), that is
there is equal variation in the slope and seasonal components. This is the situation for
which the b* test is designed and its power function dominates those of rfj and d4.
However, while the power of dY is low, even for quite high values of 6, that of d4 is
relatively high. As previously, the tests are at the 5% level of significance, the sample
size is 20 and the powers have been computed exactly by Imhofs method.

When there is trend variation only, i.e., Q* = diag (l,q,0,0,0), dx dominates b*,
except for low values of 6; see Fig. 2b. The d4 test is dominated by both d1 and b*. The
figure for seasonal variation only, that is Q* = diag (1,0, q, 0,0), has not been reproduced

I (a)

0-8-

0-6-

0-4-

0-2-

0-2 0-4 0-6 0-8

»<h(b)

0-8-

0-6-

I 0-4-

0-2-

-' dA

0-2 0-4 0-6 0-8

Fig. 2. Differenced observations: power functions (a) for trend, i.e. slope, and seasonal variation, (b) for
trend variation only.
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here. In this case the power functions of the b* and dA tests are similar, although the b*
test dominates slightly for values of 9 less than 073. Both tests attain a power of around
06 when 9 = 099. The d1 test, on the other hand, is biased for all values of 9.

The above models all have the variance of e, in (1*2) equal to zero. If this is not the case,
the term et — et^1 must be added to the right-hand side of (4-3). We computed the power
functions of the tests for Q* = diag (1, q, q, 0,0) when a2 = o* = 1. All three tests suffered
some loss in power as compared with Fig. 2a, but for the b* and d4 tests this reduction
was not too serious. Furthermore, both of these tests appear to be fairly robust to a
nonzero variance for e, in the sense that when the null hypothesis a\ = a2

a = 0 is true, the
probability that they reject it is still close to 005. For the b* test this probability is 0064
for T = 20 and 0072 for T = 40. This robustness is an advantage because it establishes
the b* test more firmly as a test for nonstationarity in the disturbance term of (15).

Table 3. Critical values for d4 at 5% level of significance*, differenced observations

- 1

12
16
20
24
28
32
36
40

Critical
value

1-271
1-275
1-327
1-371
1-410
1-443
1-471
1-496

T-\

44
48
52
56
60
64
68
72

Critical
value

1-528
1-537
1-554
1-569
1-583
1-596
1-608
1-618

T-\

76
80
88
96

104
112
120

Critica
value

1-628
1-637
1-653
1-668
•681

1-692
L-702

Statistic

where e, is the tth residual obtained from fitting quarterly
mean to Ay, {t = 2,. . . ,T) .

While our results support the use of b*, they also suggest that the power character-
istics of dA are reasonable. Although it gives a less powerful test than b* in most
situations, it is easier to compute and so may sometimes be an attractive alternative. For
this reason, critical values are provided in Table 3.

5. EXAMPLE

The airline passenger data given by Box & Jenkins (1976, p. 531) consist of 144
monthly observations. Aggregation over quarters gives 48 observations and the
logarithms of these observations were used to test whether the deterministic model in
(11) is appropriate. This is a reasonable hypothesis since a plot of the data shows a fairly
steady upward movement over time. However, (11) is easily rejected at the 5% level of
significance since b = 0-353 while the critical value is 0583. A clear rejection is also
obtained with the Durbin-Watson test; d^ = 057.

The partially deterministic model, (15), gives a much better fit to the airline data.
Furthermore, it survives the Durbin-Watson test quite easily since dl = 187 and the
5% critical vaue is 1-47. However, it is rejected by both b* and the 4th-order Durbin-
Watson test, d4. In the case of b*, the critical value is 0624 while the sample test statistic
is b* = 0-458.
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6. CONCLUSIONS AND EXTENSIONS

When a model consisting of a linear trend and seasonal dummies has been fitted, the
recommended test against stochastic variation in the trend and seasonal components
uses b. Although this is the most powerful invariant test only against a particular case of
the more general model, the test has relatively high power in a wide variety of
circumstances. When the data have been differenced and a set of quarterly means fitted,
the preferred test is based on b*. Again this has a relatively high power over a wide range
of alternatives. The d4 test can also be used, but its power is, in general, somewhat below
that of b*.

Similar tests can be constructed for monthly and annual observations and for higher
order polynomial trends (Harrison & Stevens, 1976, p. 217). Furthermore, explanatory
variables can be introduced into (1-2) quite easily. If a;, denotes & kxl vector of fixed
explanatory variables, including lagged values, and S is a k x 1 vector of parameters,
then

y, = n,+y,+48+et (t = i,...,T). (6-1)

Tests of hypotheses concerning stochastic trend and seasonal components can be
constructed in essentially the same way as was done in §3. However, the distribution of
each test statistic will depend on the explanatory variables and this suggests that the
best way to proceed may be to form a bounds test. Similar considerations arise when the
observations are in first differences and the tests are analogous to those in §4.

We thank Simon Peters for carrying out the computations reported in this paper. We
are grateful also to the Social Science Research Council for financial support under the
London School of Economics Programme in Methodology, Inference and Modelling in
Econometrics.
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