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Testing for improvement in prediction model

performance

Margaret Sullivan Pepea∗, Kathleen F. Kerrb, Gary Longtona, Zheyu Wangb

New methodology has been proposed in recent years for evaluating the improvement in prediction performance

gained by adding a new predictor, Y , to a risk model containing a set of baseline predictors, X, for a binary

outcome D. We prove theoretically that null hypotheses concerning no improvement in performance are equivalent

to the simple null hypothesis that the coefficient for Y is zero in the risk model, P (D = 1|X, Y ). Therefore, testing

for improvement in prediction performance is redundant if Y has already been shown to be a risk factor. We

investigate properties of tests through simulation studies, focusing on the change in the area under the ROC

curve (AUC). An unexpected finding is that standard testing procedures that do not adjust for variability in

estimated regression coefficients are extremely conservative. This may explain why the AUC is widely considered

insensitive to improvements in prediction performance and suggests that the problem of insensitivity has to do with

use of invalid procedures for inference rather than with the measure itself. To avoid redundant testing and use

of potentially problematic methods for inference, we recommend that hypothesis testing for no improvement be

limited to evaluation of Y as a risk factor, for which methods are well developed and widely available. Analyses

of measures of prediction performance should focus on estimation rather than on testing. Copyright c© 2011 John

Wiley & Sons, Ltd.

Keywords: Biomarker; Logistic regression; Receiver operating characteristic curve; Risk factors; Risk

reclassification

1. Introduction

Prediction modeling has long been a mainstay of statistical practice. The field has been re-energized recently due to the

promising identified through imaging and molecular biotechnologies. Accordingly, there has been renewed interest in

methods for evaluating the performance of prediction models. In particular, statisticians have been examining methods for

evaluating improvement in performance that is gained by adding a novel marker to a baseline set of predictors.

For example, novel markers for predicting risk of breast cancer beyond traditional factors in the Gail model [1, 2]

include breast density [3, 4] and genetic polymorphisms [5, 6, 7]. For cardiovascular outcomes, numerous studies have
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been performed in recent years to evaluate candidate markers for their capacities to improve upon factors in the standard

Framingham risk score [8]. Tzoulaki et al. [9] recently performed a meta-analysis of 79 such published studies.

A typical approach to analysis is to first determine the statistical significance of an observed association between

the novel marker, Y , and the outcome, D, controlling for the baseline predictors that we denote by X. The p-value is

usually derived from regression modeling techniques. If the contribution of Y to the risk model is found to be statistically

significant, the second step in the typical approach is to test a null hypothesis about improvement in prediction performance

for the model that includes Y in addition to X compared with the baseline model that includes only X. The most

popular statistic for testing improvement in prediction performance is the change in the area under the receiver operating

characteristic (ROC) curve [9]. Alternate measures are also used, including risk redistribution metrics [10, 11] and risk

reclassification metrics [12, 13, 14, 15, 16].

In this paper we question the strategy of testing the null hypothesis about no improvement in prediction performance

after testing the statistical significance of Y in the risk model. Our main theoretical result is that the null hypotheses are

equivalent. This implies that if Y is shown to be a risk factor, the prediction performance of the model that includes Y

cannot be the same as the performance of the baseline model, and there is no point to a second, redundant hypothesis test.

In Section 2 we prove our main result that the null hypothesis about Y as a risk factor can be expressed equivalently

as a variety of null hypotheses about the improvement in performance of the expanded model compared with the baseline

model. In Section 3 we discuss the choice of methodology for testing the common null hypothesis. We recommend use of

standard statistics derived from regression modeling of the risk as a function of X and Y . This recommendation is based

partly on the superior power achieved with likelihood based tests, but also on the new finding corroborated by other recent

reports in the literature [14, 17], that standard ROC methods for nested models appear to be excessively conservative. We

emphasize that estimation of the increment in prediction performance is more important than testing the null hypothesis

of no improvement. The results are discussed in Section 4 in the context of a real dataset concerning risk of renal artery

stenosis as a function of baseline predictors and a biomarker, serum creatinine.

2. Equivalent Null Hypotheses

Suppose that the outcome is binary, D = 1 for cases or D = 0 for controls, which could represent occurrence of an event

within a specified time period, say breast cancer within 5 years. Let risk(X) = P (D = 1|X) and risk(X, Y ) = P (D =

1|X, Y ) be the baseline and enhanced model risk functions respectively. To evaluate the incremental value of Y for

prediction over use of X alone, the first step is often to test the null hypothesis

H0 : risk(X, Y ) = risk(X). (1)

We use subscripts (X, Y ) and X to indicate entities relating to use of risk(X, Y ) and risk(X), respectively. For example,

ROC(X,Y ) is the ROC curve for risk(X, Y ) while ROCX is the ROC curve for risk(X). The ROC curve for W is a plot of

P (W > w|D = 1) versus P (W > w|D = 0) and is a classic plot for displaying discrimination achieved with a variable

W [18] (Chapter 4). To test if discrimination provided by risk(X, Y ) is better than that provided by risk(X), one could

test

H0 : ROC(X,Y )(·) = ROCX(·). (2)

In ROC analysis the area under the ROC curve (AUC) is typically used as the basis of a test statistic. Then the null

hypothesis is more specifically stated as

H0 : AUC(X,Y ) = AUCX . (3)
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In the ROC framework another approach is to assess if, conditional on X, the ROC curve for Y is equal to the null

ROC curve [19]. This is particularly relevant when controls are matched by design to cases on X [20]. The corresponding

null hypothesis is

H0 : ROCY |X(f) = f, f ∈ (0, 1) ∀ X. (4)

Several authors have proposed alternatives to ROC analysis for comparing nested prediction models. The predictiveness

curve displays the distribution of risk as the risk quantiles [10, 21, 22]. We write the cumulative distribution of risk as

F(X,Y )(p) = P (risk(X, Y ) ≤ p) and FX(p) = P (risk(X) ≤ p). One can test if the risk distributions based on X or on

(X, Y ) are different by testing the null hypothesis

H0 : F(X,Y )(·) = FX(·). (5)

Another view is to consider the risk distributions in the case population (denoted with superscript D) and in the control

population (superscript D̄), separately. We could test

H0 : F D
(X,Y )(·) = F D

X (·) and F D̄
(X,Y )(·) = F D̄

X (·) (6)

The integrated discrimination improvement statistic is a summary measure based on the difference in average risks

between cases and controls, MRD = E(risk(·)|D = 1) − E(risk(·)|D = 0). The MRD has many interpretations, for

example as the proportion of explained variation, as an R2 statistic, as Yates slope, and as an average Youden’s index

[15, 23, 24]. Pencina and others [12] define the integrated discrimination improvement (IDI) as IDI = MRD(X,Y ) −

MRDX and propose testing H0 : IDI = 0. That is, they propose testing

H0 : MRD(X,Y ) = MRDX . (7)

Another interesting summary of the difference between the case and control risk distributions concerns proportions

with risk above the average population risk, ρ = P (D = 1). The above average risk difference is AARD = P (risk(·) >

ρ|D = 1) − P (risk(·) > ρ|D = 0). Like the MRD, the AARD has multiple interpretations and relates to existing measures

of prediction performance. The AARD is the continuous net reclassification index (NRI (>0), defined below) statistic [13]

for comparing a risk model with the null model that has no predictors in which all subjects are assigned risk P (D = 1) = ρ.

The AARD is also equal to the two-category NRI for comparing a model with the null model when the two risk categories

are defined as: low risk≡‘risk≤ ρ’ and high risk≡‘risk> ρ’. The AARD can also be considered as a measure relating

to the risk distribution in the population, F in equation (5). In particular Bura and Gastwirth [25] defined the total gain

statistic as the area between the predictiveness curve for risk(·) and the horizontal line at ρ, which is the predictiveness

curve for the null model. Gu and Pepe [24] showed that the standardized total gain, total gain/2ρ(1 − ρ), is ρAARD. One

can compare the performance of two risk models by evaluating the AARD values and testing the null hypothesis

H0 : AARD(X,Y ) = AARDX (8)

The medical decision making framework has also been used to compare risk models. Vickers and Elkin [26] suggested

use of decision curves that plot the net benefit (NB(t)) ≡ ρP (risk(·) > t|D = 1) − (1 − ρ) t
1−t

P (risk(·) > t|D = 0)

against t, the risk threshold. One could envision testing the equality of decision curves

H0 : NB(X,Y )(·) = NBX(·) (9)

to compare performance of a model that includes Y with one that does not. Baker [27, 28] suggests standardizing the net

benefit by the maximum possible benefit resulting in a relative utility measure. Testing equality of relative utility curves

3
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is the same as testing equality of decision curves in (9).

Risk reclassification methodology is yet another approach to comparing risk models. In this framework, for each

individual indexed by ı, risk(Xı, Yı) is compared directly with risk(Xı). The NRI statistic is a risk reclassification measure

that has gained tremendous popularity since its introduction by Pencina and colleagues in 2008 [12]. The continuous NRI

[13] is defined as

NRI(> 0) = 2{P [risk(X, Y ) > risk(X)|D = 1]− P [risk(X, Y ) > risk(X)|D = 0]}

The final null hypothesis that we consider testing is

H0 : NRI(> 0) = 0 (10)

Our key result is that all of the null hypotheses in equations (1) through (10) are equivalent.

Theorem 1

The following null hypotheses are equivalent

H1
0 : risk(X, Y ) = risk(X) with probability 1

⇔H2
0 : AUC(X,Y ) = AUCX

⇔H3
0 : ROC(X,Y )(f) = ROCX(f) ∀ f ∈ (0, 1)

⇔H4
0 : ROCY |X(f) = f ∀ f ∈ (0, 1)

⇔H5
0 : F(X,Y )(p) = FX(p) ∀ p ∈ (0, 1)

⇔H6
0 : F D

(X,Y )(p) = F D
X (p) and F D̄

(X,Y )(p) = F D̄
X (p) ∀ p ∈ (0, 1)

⇔H7
0 : MRD(X,Y ) = MRDX i.e., IDI = 0 = 0

⇔H8
0 : AARD(X,Y ) = AARDX

⇔H9
0 : NB(X,Y )(t) = NBX(t) ∀ t ∈ (0, 1)

⇔H10
0 : NRI(> 0) = 0

Proof

That H1
0 implies each of H2

0 − H10
0 is obvious. Therefore we focus on showing that each of H2

0 − H10
0 imply H1

0 . We

start with H7
0 and work in reverse order through H6

0 , H5
0 , . . . , H2

0 . Then we show H8
0 , H9

0 , H10
0 ⇒ H1

0 .

(i) H7
0 implies H1

0

Pepe, Feng and Gu [23] write

MRD(X,Y ) − MRDX = {var(risk(X, Y )) − var(risk(X))}/P (D = 1)P (D = 0),

and because E(risk(X, Y )) = E(risk(X)) = Prob(D = 1) it follows that

var(risk(X, Y )) − var(risk(X)) = E(risk(X, Y ))2 − E(risk(X))2

= E(risk(X, Y ))2 − 2E(risk(X))2 + E(risk(X))2 .

4
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Since E{risk(X, Y )|X} = risk(X) we have E(risk(X)risk(X, Y )) = E(risk(X)E(risk(X, Y )|X)) =

E(risk(X))2 . Therefore

var(risk(X, Y )) − var(risk(X)) = E(risk(X, Y ))2 − 2E(risk(X)risk(X, Y )) + E(risk(X))2

= E{risk(X, Y ) − risk(X)}2

Therefore if MRD(X,Y ) − MRDX = 0 it follows that E{risk(X, Y ) − risk(X)}2 = 0 and so risk(X, Y ) = risk(X)

with probability 1. That is, H1
0 follows.

(ii) H6
0 implies H1

0

Equality of the case specific distributions implies that the case specific means are equal: E(risk(X, Y )|D = 1) =

E(risk(X)|D = 1). Similarly E(risk(X, Y )|D = 0) = E(risk(X)|D = 0). Therefore, H6
0 implies H7

0 which we

have shown implies H1
0 .

(iii) H5
0 implies H1

0

The case specific distribution of risk can be derived from the population distribution of risk using Bayes’ theorem

[29].

P (risk(·) = r|D = 1) =
P (D = 1|risk(·) = r)P (risk(·) = r)

P (D = 1)

= rP (risk(·) = r)/P (D = 1)

A similar argument applies to the control specific distributions. Therefore equality of population risk distributions

in H5
0 implies equality of case and control specific risk distributions in H6

0 which in turn implies H1
0 .

(iv) H4
0 implies H1

0

H4
0 states that, conditional on X, the distributions of Y in the case and control populations are equal:

P (Y |D = 1, X) = P (Y |D = 0, X) = P (Y |X)

Using Bayes’ theorem it follows that

P (D = 1|Y, X)P (Y |X)

P (D = 1|X)
= P (Y |X)

and so P (D = 1|Y, X) = P (D = 1|X). That is H1
0 holds.

(v) H3
0 implies H1

0

Huang and Pepe [30] derived the one-one mathematical relationship between the ROC curve for risk(·) and the

predictiveness curve which characterizes the risk distribution. Therefore equality of ROC curves for risk(X, Y )

and risk(X) implies equality of the risk distributions, H5
0 , which in turn implies H1

0 .

(vi) H2
0 implies H1

0

We now show that equality of AUCs for risk(X, Y ) and risk(X) implies equality of the ROC curves, i.e.

H2
0 ⇒ H3

0 , from which H1
0 follows. A fundamental result from decision theory is that decision rules of the form

‘risk(X, Y ) > c’ have the best operating characteristics in the sense that when c is chosen to yield a false-positive

5
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rate f , f = P (r(X, Y ) > c(f)|D = 0), the corresponding true-positive rate t = P (r(X, Y ) > c(f)|D = 1) cannot

be exceeded by another decision rule based on (X, Y ). This result follows from Neyman-Pearson [31] and is

discussed in detail in McIntosh and Pepe [32].

It follows that the ROC curve for risk(X, Y ) is at least as high at all points than the ROC curve for any other

function of (X, Y ). In particular, the ROC curve for the function risk(X) cannot exceed ROC(X,Y )(·) at any point.

Therefore, if the areas under ROC(X,Y )(·) and ROCX(·) are equal, the functions must be equal at all points. That

is H3
0 must hold.

(vii) H8
0 implies H1

0

In the Appendix, Theorem A.1 considers the entity ROC(X,Y )(t
ρ

(X,Y )) − tρ(X,Y ) where tρ(X,Y ) ≡ P (risk(X, Y ) >

ρ|D = 0). But, by definition of tρ(X,Y ) and the ROC curve, we recognize ROC(X,Y )(t
ρ

(X,Y )) = P (risk(X, Y ) >

ρ|D = 1). Therefore Theorem A.1 states that if P (risk(X, Y ) > ρ|D = 1) − P (risk(X, Y ) > ρ|D = 0) =

P (risk(X) > ρ|D = 1) − P (risk(X) > ρ|D = 0) it follows that ROC(X,Y )(t) = ROCX(t) ∀ t. That is, H8
0

implies H3
0 , which in turn implies H1

0 .

(viii) H9
0 implies H1

0

If NB(X,Y )(t) = NBX(t) ∀ t, then in particular we have equality at t = ρ : NB(X,Y )(ρ) = NBX(ρ). Recall that

NB(t) is defined as

NB(t) = ρP (risk > ρ|D = 1) − (1 − ρ)
t

1 − t
P (risk > ρ|D = 0)

so at t = ρ we have

NB(ρ) = ρAARD.

Therefore H9
0 implies H8

0 , which in turn implies H1
0 .

(ix) H10
0 implies H1

0

We show below that P (risk(Y ) > ρ|D = 1) ≥ P (risk(Y ) > ρ|D = 0). The analogous statement when

conditioning on X is that

0 ≤ P (risk(X, Y ) > risk(X)|D = 1, X) − P (risk(X, Y ) > risk(X)|D = 0, X).

But

NRI(> 0) = 2{P (risk(X, Y ) > risk(X)|D = 1) − P (risk(X, Y ) > risk(X)|D = 0)}

= 2E{P (risk(X, Y ) > risk(X)|D = 1, X) − P (risk(X, Y ) > risk(X)|D = 0, X)}

So if NRI(> 0) = 0 it follows that for all X with probability 1 we have

P (risk(X, Y ) > risk(X)|D = 1, X) − P (risk(X, Y ) > risk(X)|D = 0, X) = 0

The corollary to Theorem A.1 in the Appendix then implies that the ROC curve for Y conditional on X is the null

ROC curve. That is, for all X with probability 1, ROCY |X(f) = f ∀ f .

In other words H4
0 holds, which in turn implies H1

0 .
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To complete the proof we need to prove our assertion that P (risk(Y ) > ρ|D = 1) ≥ P (risk(Y ) > ρ|D = 0). Using

Bayes’ theorem this can be restated as

P (D = 1|risk(Y ) > ρ)

P (D = 1)
≥

P (D = 0|risk(Y ) > ρ)

P (D = 0)

a

b
≥

1 − a

1 − b

But this holds because we have a ≥ b, implying that 1 − a ≤ 1 − b, from which it follows that a/b ≥ 1 ≥

(1 − a)/(1 − b).

�

Theorem 1 is a mathematical result involving the functions risk(X, Y ) and risk(X) and performance measures that are

functionals of them. No modeling of the risk functions is assumed. In the next section we consider practical implications

of Theorem 1 for data analysis in which models for risk(X, Y ) and risk(X) may be fit to data.

3. Recommendations for Hypothesis Testing

The equivalence of the various null hypotheses in Theorem 1 should not be confused with the equivalence of different

hypothesis tests. Two tests can have the same null hypothesis but still be different tests and give different results on a

dataset because they are based on different test statistics with different statistical properties. However, it does not make

sense to test the same null hypothesis twice — a single test should be chosen. How does one choose the statistical test for

the null hypothesis of no incremental value?

There are many possible choices, but we focus here on the choice between a test for the coefficient for Y in a regression

model of the risk function risk(X, Y ) and the change in the AUC for the ROC curves associated with estimated risk

functions, risk(X) and risk(X, Y ). To make the discussion concrete we consider the Wald test based on β̂Y where βY is

the coefficient for Y in a model for risk(X, Y ) and a test based on the difference ∆ÂUC = ÂUC(X,Y ) − ÂUCX where

ÂUC is calculated with the empirical distributions of the fitted values for the risk function in subjects with D = 1 and

D = 0.

3.1. Testing the regression coefficient has highest power

When the data are independent identically distributed observations, the Wald test is asymptotically the most powerful test

for testing H1
0 − H10

0 , and so, at least in this classic setting, the test based on β̂Y is to be preferred. We see the power

advantage demonstrated in the second row of the simulation results in Table 1 where the procedure based on ∆ÂUC is

fixed to have size equal to the nominal level of 0.05. It is also instructive to consider the special case where there are no

baseline covariates. In that setting ∆ÂUC is equivalent to the nonparametric two-sample Wilcoxon statistic while β̂Y from

a linear logistic risk model is asymptotically equivalent to the difference in means and so is equivalent to a two-sample

Z-statistic. The Z-statistic is well known to have superior performance compared with the Wilcoxon statistic for normal

data. That is, testing using β̂Y is well known to be superior to testing using ∆ÂUC for normally distributed data and no

baseline covariates.

3.2. Standard tests of performance measures may not be valid

From a practical point of view, there are additional issues that make the Wald test more desirable than the ∆ÂUC test.

In particular, procedures for fitting risk regression models and for testing coefficients in regression models are highly

developed. In contrast, surprisingly little work has been done regarding inference for the ROC performance of nested

7
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models. The typical approach to testing with ∆ÂUC uses the fitted values for risk(X, Y ) and risk(X) as data inputs to a

test of equal AUCs for two diagnostic tests such as the DeLong test [33] or the resampling based test [34]. The fact that

the coefficients in the fitted values are estimated from the data is ignored in these testing procedures.

We used simulation studies to investigate the properties of these tests in a simple scenario. We generated data for X

and Y as independent and normally distributed with standard deviation 1 in cases (D = 1) and controls (D = 0). The

mean of X was 0.74 in cases and 0 in controls yielding an AUC of 0.7 for the baseline risk model. The mean of Y was 0

in cases and in controls under scenarios simulating the null setting for evaluating size, while the means were 0.37 or 0.74

in cases and 0 in controls under scenarios simulating the alternative setting for evaluating power. We see from the third

and fourth rows in Table 1 that standard tests ignoring sampling variability in the estimated risk regression coefficients

are extremely conservative. Both the DeLong test [33] that uses the normal approximation and a standard error formula

and the test using percentiles of the bootstrap distribution [34] have size less than .005 with sample sizes as large as 100

cases and 900 controls. The conservatism is due to estimating the coefficients in the nested models since the same tests

comparing X alone to another independent marker with equal performance were not conservative with comparable sample

sizes (data not shown).

We implemented an alternative version of the ∆ÂUC test in the hope that acknowledging sampling variability in the

estimated regression coefficients would lead to a test with correct size. This approach used the bootstrap. We resampled

observations from the original dataset, fit the risk models, and calculated ∆ÂUC for each resampled dataset. Tests using

percentiles of the bootstrap distribution (results shown in line 5 of Table 1 as ∆ÂUC-adjusted) or the standard deviation of

the bootstrap distribution (results not shown) remained conservative, though they were less conservative than procedures

not adjusting for variability in regression coefficients. We conclude that all currently available procedures for testing

incremental value based on ∆ÂUC are unacceptably conservative in the classic scenarios we studied. From Table 1 we

observe that as a consequence they have extremely low power compared with the Wald test for βY .

3.3. What if models are not well calibrated?

The results of Theorem 1 have implications for the analysis of data when the functional form of risk(X, Y ) is

approximately correct. That is, for testing the null hypothesis of no improvement in prediction performance the theorem

implies that we can test if regression coefficients for Y are zero, but this requires that the regression model for risk(X, Y )

is correctly specified at least under the null. If the form of the regression model for risk(X, Y ) under the null is in doubt,

i.e., if risk(X) is misspecified, tests based on the regression model may not be valid.

With misspecified model forms one might still use the risk modeling exercise to generate combination scores,

r̂isk
∗
(X, Y ) and r̂isk

∗
(X). Under these circumstances we believe that a case can be made for considering tests of increment

in performance using statistics based on performance measures such as ∆AUC instead of tests based on the regression

coefficient for Y . Note that with this approach one should derive the combination scores in a training set and test for

equality of performance in an independent test dataset since our simulation results (Table 1) and others [14, 17] show that

current testing procedures are not valid if both steps are undertaken in the same dataset.

It is our opinion however that poorly calibrated models are not acceptable in the context of risk prediction research. It is

unethical to apply a model known to be poorly calibrated when calculating a person’s risk. The assessment of calibration

must be a priority and should precede assessment of prediction performance. A minimum requirement is weak calibration

defined by :

P̂ (D = 1|risk(·) = r) ≈ r

so that of persons whose risks are calculated as r, approximately a proportion r are cases. If a model is poorly calibrated

in the weak sense, it is simply not valid for the population and its performance characteristics are of less interest. One

can and should at least recalibrate the models to the study population. The performance characteristics of the recalibrated

models in the study population will then be of interest and can be assessed.
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3.4. Recommendation

Our recommendation is to ensure the use of well calibrated risk models and to base hypothesis testing on β̂Y rather than

on ∆ÂUC. Procedures based on ∆ÂUC do not have correct size. Kerr et al [35] found similar problems for the IDI statistic

under the null. It is possible that new approaches to testing based on ∆ÂUC could be developed to properly account for

sampling variability in the fitted risk values and thereby yield appropriately sized tests. However, even if such procedures

were developed, we have argued and observed in Table 1 (line 2) that tests based on β̂Y are still likely to be more powerful,

at least when likelihood based procedures are used to estimate parameters in the risk models. Therefore testing based on

β̂Y would still be the better choice.

More important than testing if there is any increment in prediction performance is estimating the size of the gain in

performance. The sizes of the regression coefficients for Y and X in risk(X, Y ) are not sufficient because prediction

performance depends on the population distribution of the predictors (X, Y ) in addition to the conditional probability

function P (D = 1|X, Y ) = risk(X, Y ). A variety of measures to quantify the prediction performance of a risk model

were described in Section 2 and a comparison of the measures calculated with risk(X) and risk(X, Y ) constitutes the

corresponding increment in performance due to Y . The field of risk prediction has not yet settled debates about which

are the best measures for quantifying performance increment and we do not debate this question further here. Our

recommendation is to focus on estimating a compelling measure of increment in prediction performance. Any testing

should be limited to testing whether Y is a risk factor when controlling for X in a regression model.

4. Application to a Renal Artery Stenosis Dataset

Diagnosis of stenosis in the renal artery involves a risky surgical procedure and is only undertaken for patients deemed

likely to have a positive finding. The risk of having renal artery stenosis is estimated from clinical data in order to

guide decisions about undergoing invasive surgery for definitive diagnostic procedures. Data for 426 patients who were

surgically assessed for renal stenosis were reported by Janssens and others [36]. We consider the improvement in prediction

performance that is gained by adding serum creatinine to the baseline predictors.

We randomly chose one third of the observations (n = 142) to generate a baseline risk predictor X that is a combination

of the candidate clinical variables. Using linear logistic regression we found that age, body mass index (BMI) and

abdominal bruit (bruit) were highly significantly associated with renal stenosis but that gender, hypertension and vascular

stenosis were not. We refit the model including only age (in years), BMI (kg/m2) and bruit (yes=1, no=0) to derive the

linear combination

X = 0.93× age − 0.24 BMI + 1.58× bruit.

We then evaluated the performances of risk models based on X and on the combination of X and Y = log (serum

creatinine) using the remaining two thirds of the data (n = 284).

Linear logistic models were fit:

Baseline: logitP (D = 1|X) = α0 + α1X

Enhanced: logitP (D = 1|X, Y ) = β0 + β1X + β2Y.

Figure 1 shows that these models are well calibrated to the study cohort since observed event rates in each decile of

modeled risk (shown as open circles) are approximately equal to the modeled risks (shown as the points on the risk

quantile curves). Hosmer-Lemeshow goodness of fit statistics [10, 38] do not provide any evidence against the null of

good calibration (p-values of 0.39 for the baseline model, risk(X), and 0.98 for the enhanced model, risk(X, Y )).

9
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The Wald test for H0 : β2 = 0 is highly significant with p < 0.001 (Table 2). According to Theorem 1 we can conclude

that prediction model performance is improved by addition of Y to the model. Nevertheless we implemented tests based

on ∆AUC as well to compare inference. The test for equality of AUCs is also significant but with much weaker p-value,

p = 0.014, using the DeLong variance formula and p = 0.012 using percentiles of the bootstrap distribution. Recall that

these tests do not acknowledge variability in the estimated regression coefficients (β̂1 , β̂2) and are extremely conservative.

Bootstrapping that incorporated refitting the risk model in each resampled dataset yielded a stronger p-value (p <0.001).

However, in accordance with our recommendation in Section 3, the test based on β̂2 yielded the strongest evidence that

prediction performance is improved by including serum creatinine as a predictor.

We repeated the analysis using a weaker marker, Y ∗, for illustration. Here Y ∗ = Y + ε where ε is a standard normal

random variable, adding noise to Y . In this analysis the coefficient for Y ∗ is highly statistically significant (p = 0.009,

Table 2) while the standard tests based on ∆AUC are not (p = 0.12 using the DeLong variance formula and p = 0.13

using percentiles of the bootstrap distribution). The bootstrapped adjusted ∆AUC test that refits the models is significant,

p = 0.02, but not as convincing as the test for Y ∗ in the risk model (p = 0.009). Again, this is consistent with our simulation

results and theoretical expectations and supports our recommendation for testing the null hypothesis of no performance

improvement on the basis of the regression coefficient for Y in the enhanced risk model, risk(X, Y ).

Estimates of prediction performance are shown in Table 3 for the baseline and enhanced risk models. Confidence

intervals were calculated using 2.5th and 97.5th percentiles of bootstrap distributions with models refit in each

bootstrapped dataset. We estimated that the area under the ROC curve increased from 0.78 to 0.82 with addition of

serum creatinine. We also considered a point on the ROC curve. In particular, setting the risk threshold so that 80% of the

cases are sent for the invasive diagnostic renal arteriography, we find that the proportion of controls who unnecessarily

undergo the procedure, denoted by ROC−1(0.8) in Table 3, decreases from 0.44 to 0.31. Note that Pfeiffer and Gail

[37] recommend calculating the percent needed to follow (PNF) that is a simple function of ROC−1(f) : PNF(f) =

ρf + (1 − ρ)ROC−1(f). Therefore the PNF decreased from 0.55 to 0.45. The IDI statistic is the change in the MRD

statistic and is calculated as 0.06 while the conceptually similar change in the AARD is 0.03. The continuous-NRI statistic

is NRI(> 0) = 0.54. Note that the NRI is measured on a scale from 0 to 2, unlike most other measures that are restricted to

(0,1). We calculated the net benefit using a risk threshold of 0.25. This threshold implicitly assumes that the net benefit of

diagnosis for a subject with renal artery stenosis is 3 times the net cost of the diagnostic procedures for a subject without

stenosis since the cost-benefit ratio = risk threshold/(1-risk threshold) [26]. The maximum possible benefit of a risk model

in this population would be that associated with diagnosing all 67 (24%) subjects who have renal stenosis and not sending

any controls for the diagnostic procedure. We calculate that the net benefit is 27.1% of maximum with use of the baseline

model and 36.4% of maximum with use of the model that includes serum creatinine. We see that 95% confidence intervals

for some but not all measures of improvement in performance exclude the null value of 0. However the single test of

H0 : β2 = 0 is sufficient to conclude that performance is improved.

5. Discussion

The main result of this paper is that the common practice of performing separate hypothesis tests, for the coefficient of Y

in the risk prediction model and for the change in performance of the model, is literally testing the same null hypothesis

twice. Vickers et al. [17] make a heuristic argument for this point. We have proven the result with formal mathematical

theory. Testing the same null hypothesis in multiple ways is poor statistical practice and should be replaced with a more

thoughtful strategy for analysis that employs a single test of the null. Arguments in favor of basing the single test on

the regression coefficient for Y in a risk model include: (i) that such tests are most powerful asymptotically; and (ii)

that techniques are well developed and widely available for performing such tests. This strategy relies on employing risk

models that have approximately correct forms. We have argued that good calibration is a crucial aspect of risk model
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assessment. If necessary models should be recalibrated to the population of interest prior to assessing model performance.

After recalibrating the models, testing based on regression coefficients is the most powerful and reliable approach to

detecting if there is any improvement in predictor performance by adding a predictor to a baseline model.

After testing if there is any improvement in prediction performance, the next task is to estimate the extent of

improvement achieved. How to quantify the improvement in performance is a topic of much debate in the literature.

A multitude of metrics exist, including ∆AUC, ∆MRD, ∆AARD, approaches based on risk reclassification tables

[13, 15, 16], approaches based on the Lorenz curve [37] and approaches based on medical decision making [7, 26, 28, 39].

This paper does not seek to provide guidance on the choice of measure, but we do emphasize that estimation of the

improvement gained is crucial. Moreover, if hypothesis testing based on performance measures is employed, it should be

with regard to a null hypothesis concerning minimal improvement, H0 : performance improvement ≤ minimal rather than

any improvement, H0 : performance improvement = 0. The exercise of setting standards for minimal improvement may

have the added benefit of helping us to choose a clinically relevant measure of performance improvement.
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Table 1. Performance of two-sided nominal 0.05 level tests. Tests are based on β̂Y , the estimated regression coefficient for Y in the risk model logit risk(X, Y ) =

β0 + βXX + βY Y and on ∆ÂUC = ÂUC(X,Y ) − ÂUCX . Tests based on ∆ÂUC were: ‘adjusted’ if regression coefficients were estimated from each bootstrap

resampled dataset; and ‘standard’ if bootstrap resampling (bootstrap) or DeLong standard error (se) calculation used r̂isk(X, Y ) and r̂isk(X) derived from the

original dataset. Data were simulated with (X, Y ) ∼ N(0, 1) in controls, X ∼ N(0.74, 1) in cases, Y ∼ N(0, 1) in cases under the null and Y ∼ N(0.37, 1) in cases

under the alternative. 1000 simulations for each scenario and 1000 bootstrap samples per analysis.

Test Statistic Size(βY = 0) Power (βY = 0.37) Power (βY = 0.74)

n0 = nD̄ = 50 nD = 100,nD̄ = 900 nD = nD̄ = 50 nD = 100,nD̄ = 900 nD = nD̄ = 50 nD = 100,nD̄ = 900
bβY 0.048 0.051 0.388 0.908 0.928 1.000

∆ÂUC-size fixed† 0.050 0.050 0.256 0.799 0.775 1.000

∆ÂUC-se-standard 0.000 0.002 0.039 0.280 0.356 0.988

∆ÂUC-bootstrap-standard 0.000 0.002 0.047 0.291 0.365 0.988

∆ÂUC-bootstrap-adjusted 0.012 0.014 0.183 0.666 0.692 0.999

†The rejection thresholds for this test were chosen using the null distribution calculated from 50,000 simulated datasets. In practice the null

distribution is unknown so this test cannot be applied.
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Table 2. Logistic regression models for risk of renal artery stenosis fit to data for 284 patients. The addition of Y =
log(serum creatinine) to a model including the baseline covariate X = 0.93 age − 0.24 BMI + 1.58 bruit is assessed.

Also shown are results for a model including Y ∗ = Y + ε where ε ∼ N(0, 1) random variable. Log odds ratios are

displayed along with standard errors and p-values.

Intercept X Y or Y ∗

Baseline Model (X)
coefficient 0.03 0.74 —

se 0.22 0.11 —

p-value 0.88 <0.001 —

Enhanced Model (X,Y )
coefficient −0.20 0.66 0.70

se 0.24 0.12 0.19

p-value 0.39 <0.001 <0.001

Enhanced Model (X,Y ∗)
coefficient −0.05 0.71 0.34

se 0.23 0.12 0.13

p-value 0.81 <0.001 0.009
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Table 3. Performance of baseline and enhanced models for prediction of renal artery stenosis and performance

improvement with 95% confidence interval calculated with 1000 bootstrap samples.

Baseline Model Enhanced Model Performance Improvement†

Performance Measure X (X,Y )

ROC Area AUC 0.78 0.82 0.04 (0.01,0.08)

FPR at TPR=0.8 ROC−1(0.8) 0.44 0.31 −0.12 (−0.22,0.06)

Mean Risk Difference MRD 0.20 0.26 0.06∗ (0.015,0.13)

Above Average Risk Difference AARD 0.43 0.46 0.03∗∗ (−0.05,0.13)

Continuous NRI NRI (> 0) — — 0.54 (0.23,0.84)

Net Benefit at 0.25 NB (0.25) 6.4% 8.6% 2.2% (−0.6%,5.1%)
† Performance improvement is defined as the difference between the measure for the enhanced model and that for the baseline model

for all measures except for the NRI.
∗ Also known as the IDI statistic.
∗∗ Also known as the Total Gain statistic.
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Figure 1. Predictiveness curves to assess calibration of baseline and enhanced risk models for renal artery stenosis. Shown are the modeled risk quantiles (as curves) and the

observed event rates within each decile of modeled risk (as open circles). Hosmer-Lemeshow statistics corresponding to the plots have p-values equal to 0.39 (baseline model) and

0.98 (enhanced model).
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Appendix

We use the following notation

tρX ≡ 1 − F D̄
X (ρ) = P (risk(X) > ρ|D = 0)

tρ(X,Y ) ≡ 1 − F D̄
(X,Y )(ρ) = P (risk(X, Y ) > ρ|D = 0)

We also assume that the distributions of risk(X, Y ) and risk(X) are absolutely continuous. This implies that their ROC

curves have second derivatives.

Theorem A.1

ROC(X,Y )(t
ρ

(X,Y )) − tρ(X,Y ) = ROCX(tρX) − tρX (A.1)

⇔ ROC(X,Y )(t) = ROCX(t) ∀ t

Proof

For W = risk(X) or W = risk(X, Y ) it is well known that ROCW (t) − t is a concave function (Pepe 2003, page

71 [18]). Therefore ROC(X,Y )(t) − t has a unique maximizer. Moreover, the maximizer occurs when ROC′
(X,Y )(t) = 1.

Arguments below in the proof of Corollary A.1 show that this implies ROC(X,Y )(t) − t is maximized at tρ(X,Y ).

Since ROC(X,Y )(t) ≥ ROCX(t) ∀ t, we have

ROC(X,Y )(t
ρ
X) − tρX ≥ ROCX(tρX) − tρX

and equation (A.1) implies therefore that

ROC(X,Y )(t
ρ
X) − tρX ≥ ROC(X,Y )(t

ρ

(X,Y )
) − tρ

(X,Y )
.

It follows that tρX = tρ(X,Y ) because, as noted above, ROC(X,Y )(t) − t has a unique maximizer at tρ(X,Y ). This also implies

by equation (A.1) that ROC(X,Y )(t
ρ) = ROCX(tρ) where we now use the notation tρ for the common value of tρ(X,Y ) and

tρX .

Next we show that ROC′
X(t) ≤ ROC′

(X,Y )(t) when t < tρ. To show this we suppose that ROC′
X(t) > ROC′

(X,Y )(t)

for some t < tρ and construct decision rules based on (X, Y ) with an ROC curve exceeding ROC(X,Y ) on a subinterval

of (0, tρ). If ROC′
X(t) > ROC′

(X,Y )(t) at some point t, by continuity of ROC′
X and ROC′

(X,Y ) we have ROC′
X(t) >

ROC′
(X,Y )(t) on an interval (a, b) ⊂ (0, tρ). Let ra denote the risk threshold corresponding to the false positive rate

and consider the family of decision rules that classify positive if {‘risk(X, Y ) > ra
(X,Y )’ or [‘risk(X, Y ) < ra

(X,Y ) and

risk(X) < ra
X and risk(X) > k’ for k > rb

X ]}. These decision rules have an ROC curve equal to ROC
(t)
(X,Y ) at t = a

and with derivative higher than ROC′
(X,Y ) over (a, b). Therefore this ROC curve exceeds ROC(X,Y ) over (a, b). But

this is impossible because the Neyman-Pearson lemma implies that ROC(X,Y )(t) is optimal at all t. In particular

ROC(X,Y )(t) ≥ ROCX(t) at all t.

Recall from above that

0 = ROC(X,Y )(t
ρ) − ROCX(tρ) =

∫ tρ

0

(ROC′
(X,Y )(t) − ROC′

X(t))dt.
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But having shown that the integrand is ≥ 0, we must conclude that the integrated is 0,

ROC′
(X,Y )(t) = ROC′

X(t) ∀ t < tρ.

Moreover equality of ROC(X,Y )(t) and ROCX(t) at t = 0 and at t = tρ implies

ROC(X,Y )(t) = ROCX(t) ∀ t < tρ.

Similar arguments show that ROC(X,Y )(t) = ROCX(t) ∀ t > tρ.

�

Corollary A.1

Let ROCω(·) be the ROC curve for the risk function risk(ω) = P (D = 1|ω). We show that

ROCω(tρω) = tρω (A.2)

⇔ ROCω(t) = t ∀ t ∈ (0, 1)

Proof

ROCω(t) − t is maximized at the point where ROC′
ω(t) = 1. Bayes’ theorem implies that

logitP (D = 1|risk(ω) = r) = logitρ + log ROC′(trω)

where trω = P (risk(ω) > r|D = 0). When ROC′(tω(r)) = 1 therefore, P (D = 1|risk(ω) = r) = ρ. That is, the point that

maximizes ROCω(t) − t is tρω. We write

sup|ROCω(t) − t| = ROCω(tρω) − tρω (A.3)

but (A.2) then implies that sup|ROCω(t) − t| = 0. In other words ROCω(t) = t ∀ t ∈ (0, 1). Note that equation (A.3)

also follows from the fact that both sides of (A.3) were show to equal the standardized total gain statistic (see equations

(6) and (7) of Gu and Pepe [24]).

�

18

http://biostats.bepress.com/uwbiostat/paper379


	3-28-2012
	Testing for improvement in prediction model performance
	Margaret S. Pepe PhD
	Kathleen F. Kerr
	Gary M. Longton
	Zheyu Wang
	Suggested Citation


	1 Introduction
	2 Equivalent Null Hypotheses
	3 Recommendations for Hypothesis Testing
	3.1 Testing the regression coefficient has highest power
	3.2 Standard tests of performance measures may not be valid
	3.3 What if models are not well calibrated?
	3.4 Recommendation

	4 Application to a Renal Artery Stenosis Dataset
	5 Discussion

