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TESTING FOR INDEPENDENCE OF OBSERVATIONS IN 

ANIMAL MOVEMENTS1 

ROBERT K. SWIHART AND NORMAN A. SLADE 

Museum of Natural History and Department of Systematics and Ecology, 

University of Kansas, Lawrence, Kansas 66045 USA 

Abstract. Many analyses of animal movements assume that an animal's position at time t + 1 

is independent of its position at time t, but no statistical procedure exists to test this assumption with 

bivariate data. Using empirically derived critical values for the ratio of mean squared distance between 

successive observations to mean squared distance from the center of activity, we demonstrate a 

bivariate test of the independence assumption first proposed by Schoener. For cases in which the null 

hypothesis of independence is rejected, we present a procedure for determining the time interval at 

which autocorrelation becomes negligible. To illustrate implementation of the test, locational data 

obtained from a radio-tagged adult female cotton rat (Sigmodon hispidus) were used. The test can be 

used to design an efficient sampling schedule for movement studies, and it is also useful in revealing 

behavioral phenomena such as home range shifting and any tendency of animals to follow prescribed 

routes in their daily activities. Further, the test may provide a means of examining how an animal's 

use of space is affected by its internal clock. 

Key words: cotton rat; home range; independence; Markov process; movements; radiotelemetry; 

Sigmodon hispidus; spatial analysis. 

INTRODUCTION 

Independence between successive observations is an 

implicit assumption in most statistical analyses of an­

imal movements (Hayne 1949, Calhoun and Casby 

1958, Jennrich and Turner 1969, Metzgar 1972, Koeppl 

et al. 1975, 1977, Wierzbowska 1975), yet this as­

sumption is rarely addressed by ecologists studying the 

spatial dynamics of organisms (Anderson 1982, Don 

and Rennolls 1983), Stated simply, independence re­

sults when an animal's position in its home range at 

time t + k is not a function of its position at time t. 

In studies characterized by relatively long intervals be­

tween locational observations, independence of suc­

cessive observations is likely to be achieved (although 

temporal rhythmicity in movements may reduce this 

likelihood). However, frequent monitoring of an in­

dividual's location via radiotelemetry or direct obser­

vation severely jeopardizes the validity of the inde­

pendence assumption (Dunn and Gipson 1977). 

Because frequent successive observations will tend to 

be positively correlated, sample variances of locations 

will be underestimates of the true values, and statistical 

estimates of home range size will underestimate the 

true size of the home range by an amount related to 

the covariance between successive observations. Non-

statistical home range measures (e.g., minimum area 

or boundary strip methods; see Stickel 1954) are not 

affected by dependent data in this manner. 

Dunn and Gipson (1977) presented a sophisticated 

procedure for dealing with dependent locational ob­

servations. They assumed that successive locations were 

dependent observations from a bivariate normal dis­

tribution with fixed mean (center of activity) and vari-

ance-covariance matrix; that is, the animals occupied 

stable home ranges during the observation period. Us­

ing the additional assumption that the observations 

followed a Markov (i.e., first-order autoregressivc) pro­

cess, Dunn and Gipson (1977) derived estimators of 

the center of activity, confidence regions for location, 

and measures of interanimal correlation in move­

ments. 

We chose to follow Schoener's (1981) suggestion of 

a simpler approach to the study of independence that 

seems reasonably robust to the actual distribution of 

activity within the home range. First, we present a test 

of the null model of independence. When dependence 

is implied by this test, we suggest a procedure for de­

termining the time interval necessary to yield obser­

vations that can be considered independent. Obser­

vations separated by this minimum time interval can 

then be analyzed by traditional statistical methods. 

MARKOV PROC ESSES AND 

MEASURES OF INDEPEN DENCE 

Several statistics have been proposed to measure ad­

herence to a Markov process. The best known of these 

is the Durbin-Watson statistic, which is used to detect 

autocorrelated error terms in regression analysis (Dur-

bin and Watson 1971, Chatteijee and Price 1977). The 

Durbin-Watson statistic is a special case of what is 

sometimes referred to as von Neumann's ratio (Bulmer 

1975). Von Neumann (1941) considered n successive 

observations from a normal population with mean px 

and variance ax
2. Using the (slightly) biased estimator 

of ax\ 

1 M anuscript received 4 May 1984; accepted 31 October 

1984. 
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and the mean squared difference between successive 

observations, 

d2 = 2 (**. - X,)\ (2) 
n - I 

von Neumann (1941) examined the ratio V — d2/s2. 

This ratio is intuitively appealing as a measure of in­

dependence between successive observations, because 

s2 represents a measure of variability that does not 

consider the order of observations, whereas the im­

portance of order is explicit in d2 (von Neumann et al. 

1941). Hence, testing the null model of independence 

is equivalent to testing for significant differences be­

tween d2 and s2. Von Neumann (1941) used the nor­

mality assumption to show that V and s2 are stochast­

ically independent random variables , so that E( V) — 

Eid^/E^s2) = 2n/(n - 1) under the assumption of in­

dependence, where E is expected value. Thus for large 

n (or for all n if the unbiased estimator for ax
2 is used), 

observed values of V that are significantly less than 2 

indicate positive autocorrelation or aggregation be­

tween success ive observatio ns, whereas values of V 

significantly greater than 2 indicate overdispersion be­

tween observations. 

Despite its appealing properties, von Neumann's V 

is not directly applicable to studies of autoregressive 

processes in animal movements, because V belongs to 

a univariate family of distributions, whereas bivariate 

or trivariate distributions are necessary to describe an­

imal movements (Calhoun and Casby 1958, Jennrich 

and Turner 1969, Koeppletal. 1975, 1977). Schoener 

(1981) described a bivariate extension of von Neu­

mann's V calculated from a random sample of size n 

drawn from any bivariate distribution with means (MA-, 

Hy) and variances (<rx
2, o>2), respectively. In the dis­

cussion following, note that covariance of Xand Ydoes 

not affect distances between points and so does not 

enter Schoener's (1981) argument. He defined the mean 

squared distance between successive observations as 

1 
<*-—2 <*«•. - x<f 

m £f 

+  -  2  a » ,  -  y , y ,  ( 3 )  
m fTt 

where m is the number of pairs of successive obser­

vations (m = n — 1 when all pairs are used) and i de­

notes the order in which observations were collected. 

The mean squared distance from the center of activity 

(X, Y) is given by 

= * r 2 (*< ~ 
n  -  I f f  

+ " 7 2 (Y, ~ Y)2, (4) 

where X= Z X/n and Y- Z Yt/n. Schoener's ratio is 

defined as t2/r2. Schoener (1981) demonstrated that 

E(t2)/E(r2) = 2, but this does not imply that the ex­

pectation of the test statistic, t2/r2, equals 2 (Hogg and 

Craig 1978). If t2/r2 and r2 are stochastically indepen­

dent, then E(t2/r2) = E(t2)/E(r2) ~ 2, but to our knowl­

edge such independence has not been proven. Hence, 

although Schoener's ratio is conceptually similar to von 

Neumann's V, it does not necessarily follow mathe­

matically that E(t2/r2) = 2. Our simulations do provide 

empirical support for this notion, however (see below). 

MONTE CARLO SIMULAT IONS: 

SUCCESSIVE OB SERVATIONS 

The ratio t2/r2 is potentially useful as a test of in­

dependence, but we were unable to derive its statistical 

distribution analytically. Therefore we explored the 

distribution of Schoener's ratio using Monte Carlo sim­

ulation techniques. Initially, n independent pairs of 

random variables (X, Y) were drawn from a bivariate 

normal distribution with mean (0, 0) and ax? = aY
2 = 

1. A second set , of simulations was then conducted 

using independent uniform random numbers in the 

interval [0,1] to represent X and Y coordinates. Schoe­

ner's ratio (t2/r2) was calculated 1000 times for a va­

riety of sample sizes (n — 5-16 inclusive, 24, 32, 40, 

and 100). Selected percentiles of the distribution were 

saved, and the process was repeated until 10 of these 

trials had been completed for each sample size. Means 

and standard errors of the percentile values were then 

computed, as well as the standard deviation and coef­

ficients of skewness and kurtosis of the distribution of 

t2/r2. For both the normal and uniform cases, separate 

simulations were performed for a variety of eccentric­

ities (<? = 1, 1.5, 2, 3, 4, 5, 6 where e is the ratio of the 

lengths of the major and minor axes of the home range). 

Specifically, nY = nxe and crY2 = cr/e2. 

In our simulations the use of independent X and Y 

coordinates insures no covarian ce between X an d Y 

(axy = 0). As noted earlier, squared distances between 

successive points and squared distances from the center 

of activity do not involve axy. However, eccentricity 

of the home range, which can be affected by axr, does 

influence the distribution of t2/r2 (Table 1). We have 

used c/o) > 1 a s our measure of eccentricity, but for 

aXY ¥> 0 the appropriate measure would be \/Xv%, 

where X, and X2 are the eigenvalues of the variance-

covariance matrix of X and Y. 

Table 1 presents critical values of the t2/r2 distri­

bution for 4 < m < 10. We present critical values for 

relatively large a's because our ultimate objective is to 

choose sampling intervals such that autocorrelation be­

tween successive observations is negligible. By increas­

ing the time lag, k, between observations, we will even­

tually accept the null hypothesis of independence, and 

we chose a to lessen the probability of type II errors. 

Standard errors of mean percentile values ranged from 

0.052 to 0.004. In general, larger standard errors were 

associated with extreme percentiles and smaller stan­

dard errors with values near the median. 
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1 ABLE 1. Empirically derived critical values of the t2/r2 distribution (where t2 = the mean squared distance between successive 

observations and r2 = the mean squared distance of observations from the center of activity), calculated using successive 
pairs of observations (m) for 4 < m < 10. 

m e* 

Normal Uniform 

m e* 

af af 

m e* .050 .100 .250 .050 .100 .250 

4 1.0 1.084 1.272 1.605 1.101 1.288 1.614 
1.5 1.067 1.259 1.605 1.066 1.270 1.610 
2.0 1.000 1.207 1.577 1.032 1.223 1.561 
3.0 0.915 1.143 1.536 0.969 1.174 1.537 
4.0 0.887 1.105 1.526 0.909 1.129 1.506 
5.0 0.853 1.097 1.504 0.872 1.095 1.508 
6.0 0.841 1.074 1.499 0.869 1.100 1.505 

5 1.0 1.165 1.326 1.640 1.138 1.308 1.614 
1.5 1.091 1.284 1.613 1.112 1.281 1.600 
2.0 1.052 1.251 1.592 1.076 1.253 1.599 
3.0 0.964 1.178 1.561 1.006 1.194 1.561 
4.0 0.938 1.142 1.516 0.978 1.174 1.541 
5.0 0.926 1.132 1.523 0.947 1.154 1.535 
6.0 0.926 1.137 1.531 0.904 1.110 1.500 

6 1.0 1.216 1.387 1.676 1.196 1.375 1.669 
1.5 1.157 1.329 1.641 1.181 1.352 1.647 
2.0 1.099 1.284 1.619 1.106 1.283 1.622 
3.0 1.004 1.219 1.589 1.054 1.239 1.586 
4.0 0.983 1.177 1.547 1.007 1.193 1.562 
5.0 0.959 1.170 1.562 0.992 1.192 1.557 
6.0 0.941 1.137 1.538 0.977 1.188 1.549 

7 1.0 1.226 1.383 1.665 1.250 1.403 1.680 
1.5 1.191 1.368 1.662 1.223 1.384 1.670 
2.0 1.143 1.315 1.637 1.145 1.322 1.635 
3.0 1.073 1.255 1.602 1.093 1.259 1.592 
4.0 1.005 1.218 1.569 1.040 1.236 1.584 
5.0 1.001 1.199 1.574 1.037 1.231 1.570 
6.0 0.980 1.184 1.576 1.037 1.226 1.586 

8 1.0 1.257 1.413 1.695 . 1.255 1.403 1.689 
1.5 1.215 1.374 1.667 1.217 1.386 1.674 
2.0 1.165 1.326 1.643 1.171 1.346 1.652 
3.0 1.086 1.271 1.618 1.116 1.297 1.623 
4.0 1.050 1.233 1.579 1.075 1.266 1.609 
5.0 1.052 1.237 1.598 1.079 1.263 1.592 
6.0 1.031 1.216 1.583 1.040 1.230 1.579 

9 1.0 1.301 1.452 1.707 1.299 1.448 1.705 
1.5 1.269 1.420 1.689 1.262 1.425 1.686 
2.0 1.194 1.370 1.672 1.214 1.371 1.673 
3.0 1.138 1.319 1.646 1.165 1.333 1.638 
4,0 1.086 1.282 1.623 1.121 1.308 1.624 
5.0 1.071 1.265 1.612 1.091 1.283 1.613 
6.0 1.072 1.271 1.611 1.085 1.281 1.603 

* e = eccentricity, the ratio of the lengths of the major and minor axes of the home range, 

t Significance levels (a) are appropriate for one-tailed tests of the null hypothesis: Mr2 > 2. 

Comparison of coefficients of skewness and kurtosis 

and percentile values (± 2 SE) indicated that, for sample 

sizes of 10 or more, the empirical distribution of Schoe-

ner's ratio closely approximated a normal distribution 

with mean 2, regardless of the kurtosis of the distri­

bution of (X, Y) pairs or the eccentricity of the home 

range. Thus, knowledge of s, the sample standard de­

viation of t2/r2, would permit simple calculation of 

critical values using a standard normal table. Graphical 

analysis (Fig. 1) suggested that In m and e might be 

useful predictors of s; examination of residuals sug­

gested the quadratic term e2 was also important. Thus, 

we fitted multiple regression models (with In 5 as the 

dependent variable) for the t2/r2 distributions derived 

from bivariate uniform and bivariate normal random 

variables using e, e2, and In m (m > 7) as predictor 

variables. Both regression equations fit the model ex­

tremely well (R2 = 0.995 for uniform, R2 = 0.997 for 

normal), and no pattern could be discerned in the stan­

dardized residuals. The equations for uniform and nor­

mal cases, respectively, are: 

In 5= -0.0751 + 0.173(e) - 0.0164^) 

- 0.433(In m) (5) 

In 5 = -0.0502 + 0.164(e) - 0.0156(e2) 

- 0.437(ln m). (6) 

Approximate tests of significance of the regression coef-
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TABLE 2. A comparison of critical values of tVr2 distribu­
tions derived from uniform (U), normal (N), and observed 
(O) sampling distributions for successive observations. Es­
timated eccentricity e - 1.61. Symbols defined in Table 1. 

Sampling 

distri­
bution m 

a Sampling 

distri­
bution m .050 .100 .250 

U 1.609 1.695 1.839 

N 40 1.610 1.696 1.840 

O 1.596 1.683 1.833 

u 1.737 1.795 1.892 

N 100 1.738 1.796 1.893 

O 1.744 1.801 1.895 

u 1.805 1.848 1.920 

N 200 1.807 1.849 1.921 

O 1.817 1.856 1.921 

FIG. 1. Graphical depiction of the relationship between 

sample size m (number of pairs of observations), eccentricity 

e (the ratio of the lengths of the major and minor home-range 

axes), and the sample standard deviation of the t2/r2 distri­

bution, normal case, t2 = mean squared distance between 

successive observations, r2 = mean squared distance of ob­

servations from the center of activity. For illustrative pur­

poses, only standard deviations from distributions with ec­

centricities of 1 and 4 are shown. Sample sizes were included 

in the plot only if the corresponding t2/r2 distribution was 

normally distributed. 

ficients revealed no differences between corresponding 

coefficients of the equations for uniform and normal 

distributions (P > . 10 in all four instances), which sug­

gests that for m > 9, different sampling distributions 

yield nearly equivalent normal representations for the 

P/r2 distribution. 

TESTING FOR INDEP ENDENCE: AN EXAMPLE 

To illustrate the use of Schoener's ratio as a test of 

the null hypothesis of independence, we radio-tracked 

a 125-g resident female cotton rat (Sigmodon hispidus) 

from 17 to 22 December 1982 in an old pasture on 

the John H. Nelson Environmental Studies Area, 14 

km northeast of Lawrence, Kansas. The cotton rat was 

equipped with a 3.2-g transmitter package on 15 De­

cember and held for nearly 48 h for observation. She 

was then released at the point of capture. Tracking was 

conducted from 1200 to 2000 each day with a hand­

held three-element Yagi antenna. We attempted to make 

locational readings by triangulation at 5-min intervals, 

but 10-min intervals were common also. The loca­

tional records were consistent with previous trapping 

records, and the radio collar appeared to have no 

adverse effect on the cotton rat; her body mass was 

127 g at the conclusion of the study. 

The observed distribution of locational records re­

sulting from the telemetry study was multimodal and 

asymmetric (Fig. 2) and clearly did not conform to 

either of the sampling distributions employed in our 

simulations (bivariate uniform, bivariate normal). In­

deed, animal movements in general may arise from 

strange sampling distributions more frequently than 

they arise from common, well-known distributions (e.g., 

Adams and Davis 1967, Schoener 1981, Anderson 

1982; but see Hawes 1977). If this supposition is true, 

then the utility of the critical values of t2/r2 that we 

have provided (Table 1; Eqs. 5 and 6) depends on the 

impact the underlying sampling distributions of X and 

Y have on the distribution of t2/r2. 

To check the generality of the t2/r2 distribution, we 

performed the following randomization experiment. 

Sampling with replacement, random samples of loca-

FIG. 2. Distribution of locational records for a radio-col­

lared adult female cotton rat near Lawrence, Kansas, from 17 

to 22 December 1982. The large peak in the utilization dis­

tribution occurred at a 15-m2 brush pile, presumably the fe­

male's nesting site. Each grid square represents «3,8 m2. 
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TABLE 3. Empirically derived critical values of the t2/r2 distribution calculated using disjunct pairs of observations (m) for 
4 < m < 15. Symbols defined in Table 1. 

m e* 

Normal Uniform 

m e* 

at af 

m e* .050 .100 .250 .050 .100 .250 

4 1.0 0.902 1.140 1.557 0.968 1.187 1.577 
1.5 0.864 1.094 1.541 0.917 1.126 1.542 
2.0 0.800 1.013 1.479 0.869 1.094 1.538 
3.0 0.660 0.910 1.428 0.755 0.991 1.473 
4.0 0.594 0.863 1.405 0.686 0.917 1.417 
5.0 0.583 0.834 1.377 0.636 0.898 1.411 
6.0 0.534 0.818 1.385 0.640 0.889 1.396 

5 1.0 1.008 1.218 1.585 1.028 1.220 1.584 
1.5 0.948 1.161 1.565 0.989 1.213 1.580 
2.0 0.858 1.093 1.521 0.917 1.126 1.536 
3.0 0.776 1.014 1.491 0.844 1.073 1.503 
4.0 0.710 0.952 1.454 0.789 1.020 1.483 
5.0 0.690 0.929 1.410 0.767 1.006 1.461 
6.0 0.673 0.927 1.439 0.734 0.973 1.450 

6 1.0 1.099 1.283 1.623 1.104 1.289 1.635 
1.5 1.031 1.227 1.596 1.052 1.246 1.604 

2.0 0.945 1.158 1.562 0.997 1.190 1.560 

3.0 0.871 1.093 1.517 0.888 1.114 1.512 

4.0 0.800 1.029 1.475 0.847 1.070 1.514 
5.0 0.753 0.992 1.465 0.843 1.071 1.510 

6.0 0.753 1.001 1.468 0.829 1.061 1.489 

7 1.0 1.138 1.324 1.639 1.151 1.338 1.648 

1.5 1.110 1.291 1.617 1.126 1.308 1.635 

2.0 1.020 1.216 1.579 1.073 1.270 1.601 

3.0 0.913 1.138 1.546 0.963 1.176 1.563 

4.0 0.874 1.101 1.513 0.913 1.129 1.523 

5.0 0.846 1.085 1.519 0.922 1.135 1.53S 

6.0 0.858 1.094 1.517 0.811 1.109 1.519 

8 1.0 1.209 1.373 1.669 1.214 1.382 1.664 

1.5 1.159 1.340 1.648 1.177 1.354 1.653 

2.0 1.078 1.265 1.613 1.108 1.305 1.629 

3.0 0.983 1.188 1.572 1.034 1.220 1.588 

4.0 0.945 1.166 1.560 0.976 1.190 1.566 

5.0 0.927 1.139 1.536 0.976 1.167 1.559 

6.0 0.916 1.147 1.539 0.969 1.176 1.543 

9 1.0 1.261 1.418 1.688 1.263 1.422 1.690 

1.5 1.184 1.361 1.666 1.210 1.378 1.665 

2.0 1.138 1.315 1.634 1.153 1.333 1.645 

3.0 1.034 1.238 1.596 1.091 1.283 1.612 

4.0 0.997 1.209 1.576 1.046 1.230 1.583 

5.0 0.977 1.184 1.567 1.014 1.203 1.566 

6.0 0.969 1.180 1.564 0.998 1.204 1.575 

10 1.0 1.286 1.440 1.706 1.275 1.428 1.697 

1.5 1.229 1.397 1.689 1.240 1.406 1.679 

2.0 1.171 1.346 1.650 1.198 1.364 1.659 

3.0 1.103 1.297 1.619 1.118 1.293 1.611 

4.0 1.053 1.253 1.597 1.087 1.268 1.626 

5.0 1.041 1.251 1.598 1.069 1.262 1.609 

6.0 1.017 1.225 1.587 1.038 1.239 1.587 

11 1.0 1.320 1.469 1.721 1.334 1.480 1.720 

1.5 1.266 1.421 1.685 1.274 1.428 1.697 

2.0 1.195 1.364 1.667 1.230 1.384 1.673 

3.0 1.117 1.303 1.618 1.156 1.334 1.637 

4.0 1.083 1.268 1.615 1.130 1.304 1.616 

5.0 1.084 1.286 1.618 1.102 1.280 1.605 

6.0 1.066 1.250 1.603 1.095 1.285 1.615 

12 1.0 1.345 1.491 1.728 1.337 1.474 1.719 

1.5 1.304 1.454 1.706 1.311 1.455 1.712 

2.0 1.242 1.405 1.684 1.263 1.414 1.687 

3.0 1.184 1.349 1.662 1.158 1.343 1.636 

4.0 1.132 1.327 1.653 1.169 1.336 1.648 

5.0 1.125 1.297 1.625 1.130 1.311 1.631 

6.0 1.092 1.273 1.625 1.127 1.317 1.625 
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Normal Uniform 

at af 

.050 .100 .250 .050 .100 .250 

13 

14 

1.0 1.364 1.503 1.738 1.377 1.507 1.740 

1.5 1.323 1.464 1.722 1.321 1.468 1.710 

2.0 1.273 1.433 1.690 1.266 1.429 1.701 

3.0 1.187 1.359 1.668 1.201 1.375 1.669 

4.0 1.183 1.358 1.657 1.166 1.341 1.651 

5.0 1.151 1.327 1.646 1.182 1.350 1.645 

6.0 1.151 1.316 1.634 1.144 1.322 1.633 

1.0 1.391 1.526 1.752 1.403 1.526 1.749 

1.5 1.347 1.489 1.730 1.357 1.493 1.727 

2.0 1.287 1.445 1.700 1.318 1.464 1.715 

3.0 1.224 1.385 1.673 1.246 1.403 1.680 

4.0 1.209 1.375 1.679 1.210 1.374 1.665 

5.0 1.170 1.354 1.655 1.187 1.362 1.652 

6.0 1.166 1.342 1.639 1.190 1.356 1.664 

* e = eccentricity, the ratio of the lengths of the major and minor axes of the home range, 
t Significance levels (a) are appropriate for one-tailed tests of the null hypothesis: t2/r2 > 2. 

tional observations (m = 40, 100, 200) were drawn 

from the observed cotton rat data, resulting in m in­

dependent pairs of values (A', Y) that were distributed 

approximately as the distribution depicted in Fig. 2. 

Simulations were conducted for each sample size as 

described above in Monte Carlo Simulations: Succes­

sive Observa tions, producing critic al values of t2/r2 

from this unusual sampling distribution (Fig. 2). 

To compare critical values of t2/r2 generated via the 

randomization experiment with critical values ob­

tained from Eqs. 5 and 6, we estimated the eccentricity 

of the cotton rat's home range using e = In this 

case e = 1.61. Critical values derived from the true 

sampling distribution were nearly identical with those 

derived from bivariate normal and bivariate uniform 

sampling distributions (Table 2). 

T. W. Schoener (personal communication) suggested 

that we conduct an additional test of the generality of 

the distribution of t2/r2 by selecting random points 

from a "funnel-shaped distribution." We did this by 

selecting bivariate observations from a circular (or el­

liptical) beta distribution with parameters V = 2 and 

W = 1 (cf. Hastings and Peacock 1975). In a cross 

section through the mean, the probability distribution 

resembles a "V," with highest probability of occurrence 

at the home range boundary and a linear decrease to 

zero at the center. Simulations for eccentricities of 1.0, 

1.5, and 2.0 produced t2/r2 distributions that were not 

significantly different from the normal or uniform re­

sults. 

Thus, it appears that for reasonable sample sizes, the 

t2/r2 distribution is not affected by the underlying dis­

tribution of X and Y. Although small values of m may 

weaken the robustness of t2/r2, we point out that small 

m also restricts one's ability to estimate the underlying 

distribution of X and Y. Thus, if m is small either an 

assumption must be made regarding the sampling dis­

tribution or a randomization experiment must be con­

ducted to produce critical values of t2/r2 derived from 

the empirical sampling distribution (but see Schoener 

1981 for an alternative approach). 

Using Eqs. 3 and 4, we calculated t2 and r2 for the 

cotton rat with all 302 successive pairs of observations. 

The resulting t2/r2 value was 0.499. The estimated 

standard deviation of t2/r2 was calculated from both 

Eqs. 5 and 6 as s = 0.0956. Because we were interested 

in the alternative hypothesis of positive association 

between successive observations, we tested the null 

hypothesis that observations were independent or ov-

erdispersed (i.e., t2/r2 > 2). The a = .25 critical value 

for this one-tailed test was 2 — (0.675 x 0.0956) = 

1.935, where 2 is the mean of t2/r2 and 0.675 represents 

the 75 th percentile of the standard normal distribution. 

Because 1.935 is greater than 0.499, we concluded that 

successive observations were positively correlated. 

MONTE CARLO SIMULAT IONS: 

NONCONSECUTIVE OBSERVATIONS 

If successive observations are independent, then all 

locational records, irrespective of time lags between 

observations, may be used in statistical procedures for 

computing home range size. Dependence between suc­

cessive observations for an individual with a stable 

home range, however, implies that the time interval, 

k, separating these observations is too short to meet 

the statistical assumption of independence. By calcu­

lating Schoener's t2/r2 for records separated by various 

time intervals, a subset of observations may eventually 

be selected for which the independence assumption is 

reasonable. Further, the time lag at which autocorre­

lation can be ignored can be estimated with this pro­

cedure. This latter point may be especially helpful in 

pilot studies geared toward determining optimal sam­

pling effort. 

If all successive observations are equally spaced in 

time, tests of t2/r2 values calculated from nonconsec-
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TABLE 4. A comparison of critical values of t2/r2 distribu­

tions derived from uniform (U), normal (N), and observed 
(O) sampling distributions for disjunct pairs of observa­
tions. Estimated eccentricity e = 1.61. Symbols defined in 
Table 1. 

Sampling 

distri­

bution m 

a 
Sampling 

distri­

bution m .050 .100 .250 

U 1.603 1.690 1.837 
N 40 1.604 1.692 1.838 
O 1.600 1.684 1.833 

U 1.744 1.801 1.895 
N 100 1.743 1.800 1.894 
O 1.745 1.803 1.893 

u 1.817 1.857 1.925 
N 200 1.815 1.856 1.924 
O 1.818 1.859 1.927 

utive locational records (k > 1) may be performed as 

in the example above, using all possible pairs of ob­

servations for P (m — n — k ) and all n observations 

for r2. However, such a data set probably is the excep­

tion rather than the rule because many problems may 

arise in taking a locational reading at a specified time 

(e.g., radio interference or power failure with telemetry, 

loss of visual contact with direct observation). Gaps 

in the time series of locational records mean that m, 

the number of pairs, may not simply be k less than the 

number of observations, and that some observations 

cannot be used with a particular k even though they 

are in the middle of a data series. This could alter the 

distribution of t2/r2 (see Eqs. 3 and 4). 

To test for the effect of gaps in the data, we examined 

the most extreme case of discontinuous observations, 

the case in which each record occurs in only one pair 

of observations separated by k units. That is, t2 is still 

the squared distance between the /th and (/ + l)th ob­

servations, but i is allowed to take on odd values only; 

thus each observation is used only once in the calcu­

lation of t2. In this disjunct case, m = nil. Using the 

simulation procedure described earlier, we again de­

rived t2/r2 distributions with independent random 

variables drawn from bivariate normal and bivariate 

uniform sampling distributions. In each simulation, 

m = 4-16, 24, 32, 40, and 100 disjunct pairs of points 

were used, and simulations were conducted for eccen­

tricities of 1, 1.5, 2, 3, 4, 5, and 6. 

Standard errors of mean percentile values ranged 

from 0.054 to 0.004 and exhibited the same trends as 

in the simulations for successive points. In addition, 

all t2/r2 distributions generated with at least 15 pairs 

of points converged to normality (with mean 2) for the 

disjunct case (Table 3). To permit use of standard nor­

mal tables when m S 15, multiple regression equations 

were fitted to the data as outlined previously. Once 

again, the model fit was very good (R2 = 0.998 for both 

uniform and normal). The equations for the uniform 

and normal disjunct cases are: 

In 5 = 0.1014 + 0.185(e) - 0.0179(e2) 

- 0.481 (In m) (7) 

In 5 = 0.0679 + 0.179(e) - 0.0169(e2) 

— 0.471 (In m). (8) 

Approximate significance tests revealed that the inter­

cepts and the coefficients of e2 differed (P < .05) be­

tween these equations. Further, regression coefficients 

from the simulations of disjunct pairs differed (P S 

.05) from coefficients associated with simulations of 

successive pairs (Eqs. 5 a nd 6), indicating that PIP 

ratios in the disjunct case follow normal distributions 

with variances different from those in the successive 
case. 

Unlike the case of successive pairs, the PIP distri­

bution from disjunct data varies somewhat with the 

distribution of X and Y. Eqs. 7 and 8 may be used to 

calculate critical values for PIP but need not give com­

parable results. Fortunately, Eqs. 7 and 8 appear to 

yield equivalent critical values for 30 < m < 200 and 

1 •< e < 5. The estimates of 5 from Eqs. 7 and 8 are 

within 0.0014 for e = 1.5 and 35 < m < 200, the range 

of data in our example problem. 

Results of randomization experiments for disjunct 

pairs of observations (m = 40, 100, 200) drawn from 

the cotton rat data indicated close agreement between 

critical values derived from the empirical sampling 

distributions and those obtained from simulations us­

ing the bivariate uniform or bivariate normal distri­

butions (Table 4). In addition, simulations using the 

funnel-shaped beta distribution yielded PIP distribu­

tions that were statistically indistinguishable from the 

normal or uniform results. 

Because most sampling schemes will fall between the 

extremes of continuity and discontinuity in data col­

lection, we suggest that critical values obtained from 

Tables 1 and 3 (or from the appropriate equations if 

m is large) be used as lower and upper bounds of sig­

nificance (after Durbin and Watson 1971). For ex­

ample, if m = 8, then a one-tailed test of independence 

(i.e., H0: PIP ^ 2) may proceed as follows. For con­

venience, assume that the distribution of activity is 

bivariate uniform and that the home range exhibits an 

eccentricity of one. At the a = .25 level, the critical 

value from Table 1 is 1.689, and the critical value from 

Table 3 is 1.664. The testing criteria are: (1) if the 

observed PIP is greater than the upper bound (1.689), 

do not reject H0; (2) if the observed PIP is less than 

the lower bound (1.664), reject H0 in favor of the hy­

pothesis of dependence; (3) if PIP falls between the 

upper and lower bounds and the data collection inter­

val is irregular, the test is indeterminate. 

DETERMINING THE "TIME TO INDEPENDENCE" 

Because successive observations of the cotton rat 

were dependent, we asked the following question: what 

is the minimal time interval necessary to yield "in­

dependent" pairs of observations? To answer this ques-
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FIG. 3. Values of Schoener's (1981) t2/r2 ratio as a function of the time interval between observations; t2 and r2 are defined 

in the Table ! legend. Significance tests of each ratio were conducted using Eqs. 5-8. 

tion, t2/r2 values were calculated for all locational rec­

ords separated by a specified time lag, k, where Pranged 

from 5 to 455 min in 5-min increments. Schoener's 

ratio was also calculated for 7c = 17, 18,..., and 24 h. 

Values ol f ir2 increased steadily from k = 5 min to 

k = 60 min. then more erratically to a maximum of 

2.50 at k — 455 min (Fig. 3). Interestingly, t2/r2 values 

declined precipitously for k > 19 h, indicating that a 

diel cycle may underlie the movements exhibited by 

this individual. Indeed, 35% of all points separated by 

7c = 24 h were < 10 m apart, and most of these pairs 

of points (85%) were located outside of a brush pile 

that served as the focal point of the cotton rat's home 

range (Fig. 2). 

To determine the time lag at which autocorrelation 

was negligible, the following arbitrary but objective 

criterion was used. The time interval necessary to 

achieve independence between successive observa­

tions, A T„ v v.s defined as the smallest k exhibiting a 

nonsignificant (a - .25, one-tailed test) t2/r2 ratio and 

followed consecutively by at least two 7c values with 

nonsignificant t2/r2 ratios. Using this criterion, inde­

pendence was achieved at a time interval of 270 min 

for the female cotton rat (Fig. 3). Following the same 

procedure for a = .05 would have changed the AT, 

value to 260 min. A7', also was relatively insensitive 

to sampling interval; using only observations separated 

by at least 30 min resulted in a AT, of 270 min. 

We believe that the measure AT, may prove very 

useful in comparing seasonal or interspecific differ­

ences in the time scaling of movements, because Schoe­

ner's ratio is a dimensionless number, hence AT, is not 

influenced by home range size. One potential appli­

cation might be in testing Mitani and Rodman's (1979) 

hypothesis that a proximate determinant of territori­

ality in primates is the ability of a troop to travel across 

its home range in a single day. In accordance with this 

hypothesis, we predict that AT, will be <24 h for ter­

ritorial primates and > 24 h for nonterritorial primates. 

More generally, Lindstedt and Calder (1981) and 

Calder (1983) have suggested that the allometric re­

lation between home range size and body mass of 

mammalian herbivores may in part be explained by 

physiological time scaling of space use. They predict 

that large herbivores use a smaller fraction of their 

home range in a given unit of time than do small her­

bivores. The "time to independence," AT,, may be 

thought of as the time necessary for an animal to tra­

verse its home range; hence, AT, is related to an ani­

mal's rate of space use and could provide a means of 

testing Lindstedt and Calder's (1981) assertion that 

time scaling influences home range size. If their asser­

tion is correct, we expect AT, to scale with body mass 

raised to the {b — 0.75) power, where b is the scaling 

exponent for the home range-body mass relationship 

and 0.75 represents the metabolic rate-body mass scal­

ing factor (Kleiber 1975). 

Rejection of the independence hypothesis using all 

successive observations might occur in at least three 

instances, even if the time interval between observa­

tions is otherwise adequate. In the first instance, an 

animal that shifts its home range to a new location may 

have a calculated center of activity between its old and 

new centers of activity. This in turn would inflate the 
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value of r2 (Eq. 4), resulting in a t2/r2 value significantly 

less than 2. Secondly, rejection of the independence 

hypothesis might arise in individuals that travel along 

well-defined paths in a temporally predictable manner. 

Traplining species such as euglossine bees (Janzen 1971) 

and bumble bees (Manning 1956, Heinrich 1976, Pyke 

1978) provide examples of this. In traplining species, 

plots of t2/r2 vs. time between successive observations 

should oscillate from low values of t2/r2 (when k cor­

responds to relatively short distances between obser­

vations) to higher values of t2/r2 (when k corresponds 

to longer distances). Finally, small t2/r2 values might 

arise if the time interval between observations corre­

sponds to some multiple of the period length in animals 

displaying temporal cycles in their movements. For 

example, a lag of k = 24 h in the current study would 

have resulted in a t2/r2 value of 1.43 for successive 

observations (Fig. 3). 

By presenting a means of testing for independence 

between successive observations, we do not intend to 

discourage frequent monitoring of individuals; we only 

suggest that the t2/r2 test enables ecologists to success­

fully confront this previously elusive assumption in 

spatial analysis. 
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